Расчет отопления по площади помещения. Как рассчитать отопление для помещения Расход теплоэнергии на отопление здания

26.06.2019

Тепловой расчёт системы отопления большинству представляется легким и не требующим особого внимания занятием. Огромное количество людей считают, что те же радиаторы нужно выбирать исходя из только площади помещения: 100 Вт на 1 м.кв. Всё просто. Но это и есть самое большое заблуждение. Нельзя ограничиваться такой формулой. Значение имеет толщина стен, их высота, материал и многое другое. Конечно, нужно выделить час-другой, чтобы получить нужные цифры, но это по силам каждому желающему.

Исходные данные для проектирования системы отопления

Чтобы произвести расчет расхода тепла на отопление, нужен, во-первых, проект дома.

План дома позволяет получить практически все исходные данные, которые нужны для определения теплопотерь и нагрузки на отопительную систему

Во-вторых, понадобятся данные о расположении дома по отношению к сторонам света и районе строительства – климатические условия в каждом регионе свои, и то, что подходит для Сочи, не может быть применено к Анадырю.

В-третьих, собираем информацию о составе и высоте наружных стен и материалах, из которых изготовлены пол (от помещения до земли) и потолок (от комнат и наружу).

После сбора всех данных можно приступать к работе. Расчет тепла на отопление можно выполнить по формулам за один-два часа. Можно, конечно, воспользоваться специальной программой от компании Valtec.

Для расчёта теплопотерь отапливаемых помещений, нагрузки на систему отопления и теплоотдачи от отопительных приборов в программу достаточно внести только исходные данные. Огромное количество функций делают её незаменимым помощником и прораба, и частного застройщика

Она значительно всё упрощает и позволяет получить все данные по тепловым потерям и гидравлическому расчету системы отопления.

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

Мк=1,2* Тп , где:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах - всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления. При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах. В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:

  • До -10С – 0,7;
  • -10С – 0,8;
  • -15C - 0,90;
  • -20C - 1,00;
  • -25C - 1,10;
  • -30C - 1,20;
  • -35C - 1,30.

Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:

  • четыре стены – 1,33;%
  • три стены – 1,22;
  • две стены – 1,2;
  • одна стена – 1.

Хорошо, если к нему пристроен гараж, баня или что-то ещё. А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.

Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.

Что касается высоты стен, то значения будут такими:

  • 4,5 м – 1,2;
  • 4,0 м – 1,15;
  • 3,5 м – 1,1;
  • 3,0 м – 1,05;
  • 2,5 м – 1.

Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).

Итоговая формула для расчёта коэффициента тепловых потерь:

Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7 .

Коэффициент УДтп равен 100 Ватт/м2.

Разбор расчетов на конкретном примере

Дом, для которого будем определять нагрузку на систему отопления, имеет двойные стеклопакеты (К1 =1), пенобетонные стены с повышенной теплоизоляцией (К2= 1), три из которых выходят наружу (К5=1,22). Площадь окон составляет 23% от площади пола (К3=1,1), на улице около 15С мороза (К4=0,9). Чердак дома холодный (К6=1), высота помещений 3 метра (К7=1,05). Общая площадь составляет 135м2.

Пт = 135*100*1*1*1,1*0,9*1,22*1*1,05=17120,565 (Ватт) или Пт=17,1206 кВт

Мк=1,2*17,1206=20,54472 (кВт).

Расчёт нагрузки и теплопотерь можно выполнить самостоятельно и достаточно быстро. Нужно всего потратить пару часов на приведение в порядок исходных данных, а потом просто подставить значения в формулы. Цифры, которые вы в результате получите помогут определиться с выбором котла и радиаторов.

Что это такое — удельный расход тепловой энергии на отопление здания? Можно ли своими руками подсчитать часовой расход тепла на отопление в коттедже? Эту статью мы посвятим терминологии и общим принципам расчета потребности в тепловой энергии.

Основа новых проектов зданий — энергоэффективность.

Терминология

Что это такое — удельный расход тепла на отопление?

Речь идет о количестве тепловой энергии, которую необходимо подвести внутрь здания в пересчете на каждый квадратный или кубический метр для поддержания в нем нормированных параметров, комфортных для работы и проживания.

Обычно проводится предварительный расчет потерь тепла по укрупненным измерителям, то есть исходя из усредненного теплового сопротивления стен, ориентировочной температуры в здании и его общего объема.

Факторы

Что влияет на годовой расход тепла на отопление?

Полезно: на практике при планировании запуска и остановки отопления учитывается прогноз погоды. Длительные оттепели бывают и зимой, а заморозки могут ударить уже в сентябре.

  • Средние температуры зимних месяцев. Обычно при проектировании отопительной системы в качестве ориентира берется среднемесячная температура самого холодного месяца — января. Понятно, что чем холоднее на улице — тем больше тепла здание теряет через ограждающие конструкции.

  • Степень теплоизоляции здания очень сильно влияет на то, какой будет норма тепловой мощности для него. Утепленный фасад способен снизить потребность в тепле вдвое относительно стены из бетонных плит или кирпича.
  • Коэффициент остекления здания. Даже при использовании многокамерных стеклопакетов и энергосберегающего напыления через окна теряется заметно больше тепла, чем через стены. Чем большая часть фасада остеклена — тем больше потребность в тепле.
  • Степень освещенности здания. В солнечный день поверхность, сориентированная перпендикулярно солнечным лучам, способна поглощать до киловатта тепла на квадратный метр.

Уточнение: на практике точный расчет количества поглощаемого солнечного тепла будет крайне сложным. Те самые стеклянные фасады, которые в пасмурную погоду теряют тепло, в солнечную послужат обогреву. Ориентация здания, наклон кровли и даже цвет стен — все эти факторы повлияют на способность к поглощению солнечного тепла.

Расчеты

Теория теорией, но как на практике рассчитываются расходы на отопление загородного дома? Можно ли оценить предполагаемые затраты, не погружаясь в пучину сложных формул теплотехники?

Расход необходимого количества тепловой энергии

Инструкция по подсчету ориентировочного количества необходимого тепла сравнительно проста. Ключевое словосочетание — ориентировочное количество: мы ради упрощения расчетов жертвуем точностью, игнорируя ряд факторов.

  • Базовое значение количества тепловой энергии — 40 ватт на кубометр объема коттеджа.
  • К базовому значению добавляется 100 ватт на каждое окно и 200 ватт на каждую дверь в наружных стенах.

  • Далее полученное значение умножается на коэффициент, который определяется усредненным количеством потерь тепла через внешний контур здания. Для квартир в центре многоквартирного дома берется коэффициент, равный единице: заметны лишь потери через фасад. Три из четырех стен контура квартиры граничат с теплыми помещениями.

Для угловых и торцевых квартир берется коэффициент 1,2 — 1,3 в зависимости от материала стен. Причины очевидны: внешними становятся две или даже три стены.

Наконец, в частном доме улица не только по периметру, но и снизу, и сверху. В этом случае применяется коэффициент 1,5.

Обратите внимание: для квартир крайних этажей в том случае, если подвал и чердак не утеплены, тоже вполне логично использовать коэффициент 1,3 в середине дома и 1,4 — в торце.

  • Наконец, полученная тепловая мощность умножается на региональный коэффициент: 0,7 для Анапы или Краснодара, 1,3 для Питера, 1,5 для Хабаровска и 2,0 для Якутии.

В холодной климатической зоне — особые требования к отоплению.

Давайте посчитаем, сколько тепла нужно коттеджу размером 10х10х3 метра в городе Комсомольск-на-Амуре Хабаровского края.

Объем здания равен 10*10*3=300 м3.

Умножение объема на 40 ватт/куб даст 300*40=12000 ватт.

Шесть окон и одна дверь — это еще 6*100+200=800 ватт. 1200+800=12800.

Частный дом. Коэффициент 1,5. 12800*1,5=19200.

Хабаровский край. Умножаем потребность в тепле еще в полтора раза: 19200*1,5=28800. Итого — в пик морозов нам потребуется примерно 30-киловаттный котел.

Расчет затрат на отопление

Проще всего рассчитывается расход электроэнергии на отопление: при использовании электрокотла он в точности равен затратам тепловой мощности. При непрерывном потреблении 30 киловатт в час мы будем тратить 30*4 рубля(примерная текущая цена киловатт-часа электричества)=120 рублей.

К счастью, реальность не столь кошмарна: как показывает практика, усредненная потребность в тепле примерно вдвое меньше расчетной.

  • Дрова — 0,4 кг/КВт/ч. Таким образом, ориентировочные нормы расхода дров на отопление будут в нашем случае равными 30/2(номинальную мощность, как мы помним, можно делить пополам)*0,4=6 килограмм в час.
  • Расход бурого угля в пересчете на киловатт тепла — 0,2 кг. Нормы расхода угля на отопление вычисляются в нашем случае как 30/2*0,2=3 кг/час.

Бурый уголь — сравнительно недорогой источник тепла.

  • Для дров — 3 рубля (стоимость килограмма)*720(часов в месяце)*6(ежечасный расход)=12960 рублей.
  • Для угля — 2 рубля*720*3=4320 рублей (читайте и другие ).

Заключение

Дополнительную информацию о и методиках расчетов затрат вы сможете, как обычно, найти в прикрепленном к статье видео. Теплых зим!

При определении тепловой нагрузки системы отопления учитыва­ются особенности теплового режима помещений. В помещениях с пос­тоянным тепловым режимом, к которым относятся промышленные здания с непрерывным технологическим процессом, сельскохозяйственные помещения и общественные здания, тепловая нагрузка системы отопле­ния определяется из теплового баланса помещения. Тепловой баланс устанавливает равновесие между тепловыми потерями здания и теплопритоком, откуда расход тепла на отопление будет равен

Q о = Q т +Q м – Q вн (1.1)

где Q о - расход теплоты на отопление, кВт;

Q т - тепловые потери здания теплопередачей через наруж­ные ограждающие конструкции и инфильтрацией из-за поступления в помещение холодного воздуха через неплотности, кВт

Q м - расход теплоты на обогрев материалов, поступающих в помещение, кВт;

Q вн - внутренние тепловыделения, кВт.

Расчетные (максимальные) потери теплоты промышленными здани­ями через наружные ограждения и инфильтрацией определяются по формуле

Q т max = (1+μ)(t в – t но) q o V 10 -3 (1.2)

где μ - коэффициент инфильтрации;

t но - расчетная температура наружного воздуха для расчета отопления, принимается в зависимости от климатического района (приложение В), °С;

t в - усредненная температура внутреннего воздуха отдельных помещений здания, принимается в зависимости от назначения помещения (приложение Д), С;

q o - удельная отопительная характеристика здания, завися­щая от строительного объема здания и его назначения (приложение Г), Дж/(с.м 3 .К);

V - строительный объем отдельного здания по наружному обмеру, м 3 .

При выборе температуры внутреннего воздуха для производствен­ных зданий следует учитывать интенсивность труда. По интенсивности труда все виды работ делятся на три категории: легкие, средней тяжести и тяжелые. К легким относятся работы, выполняемые сидя и стоя, не требующие систематического физического напряжения (про­цессы точного приборостроения, конторские работы и др.) К кате­гории работ средней тяжести относятся работы, связанные с посто­янной ходьбой, переносом тяжестей до 10 кг (механосборочные це­ха, обработка древесины, текстильное производство и др.). К ка­тегории тяжелых работ относятся работы с систематическим физичес­ким напряжением (кузнечные, литейные цеха и др).

Коэффициент инфильтрации определяется по выражению

где b - постоянная инфильтрации, для отдельно стоящих про­мышленных зданий принимается b =0,035 - 0,040 c/m,

g - ускорение свободного падения, м/с;

L - свободная высота здания, м. Для общественных и адми­нистративных зданий принимается равной высоте этажа. Для промышленных зданий можно принимать значения L = 5-25 м.

w в - средняя скорость ветра для наиболее холодного месяца (приложение В), м/с.

Расход теплоты на обогрев разнородных материалов, поступаю­щих в производственное помещение в холодное время года, кВт

Q м max = ∑G м i · c i (t в – t м), (1.4)

где і - количество наименований материалов;

с і - удельная теплоёмкость материала (таблица I), қДж/(кг.град)

t м - температура материала, о С. Ориентировочно принимает­ся; для металлов и металлических изделий t м =t но, для других несыпучих материалов t м =t но +10 о С для сыпучих материалов t м =t но +20 о С

G мi - масса однородного материала, поступающего в цех, кг/с.

Общий расход материала промышленным предприятием, заданий в приложении Б, необходимо распределить по цехам, в соответствии с назначением цехов. Список рекомендуемых материалов приведен в таблице I.

Таблица 1 - Удельная теплоёмкость некоторых материалов



Внутренние тепловыделения промышленных предприятий довольно устойчивы и составляют существенную долю расчетной отопительной нагрузки, поэтому их необходимо учитывать при разработке режима теплоснабжения. Источниками внутренних тепловыделений в производ­ственных помещениях являются; механическое и электрическое обо­рудование, нагретые поверхности аппаратов, установок и трубопро­водов, поверхности нагретых ванн, электроосвещение, работающие люди, остывающие материалы и продукты сгорания и т.д. Ниже при­ведена методика ориентировочного расчёта тепловыделений от тех­нологического оборудования, электроосвещения и работающих людей.

Общее количество внутренних тепловыделений в отдельных промышленных зданиях, кВт

В том случае, если отсутствуют фактические данные или про­екты технологических процессов, внутренние тепловыделения от обо­рудования вычисляются по аналогам. Для горячих цехов тепловыде­ления от производственного оборудования и технологическах процес­сов, кВт

где q n - удельная теплонапряженность помещения (таблица 2), кВт/м 3 ;

V - строительный объем помещения, м 3 .

Таблица 2 - Удельная теплонапряженностъ горячих цехов /18/, кВт/м 3



В цехах не относящихся к горячим, одним из основных видов внутренних тепловыделений, будет теплота от технологического оборудования, снабженного электроприводом. Поступление теплоты от электродвигателей механического оборудования и приводимых ими в действие машин, кВт .

где k сп - коэффициент спроса на электроэнергию (таблица 3);

k п - коэффициент, учитывавший полноту загрузки электро­двигателей k п =0,9-1;

k Т - коэффициент перехода теплоты в помещение, Для метал­лорежущих станков k Т = 0,9-1; для вентиляторов и насосов

η - к.п.д электродвигателя при полной его загрузке η=0,85-0,9;

q эл - удельная плотность электрической силовой нагрузки (таблица 4), кВт/м 2 ;

F - площадь пола помещения цеха, м 2 .

Таблица 3 - Коэффициент cпроса на электроэнергию

Таблица 4 - Удельные плотности электрических нагрузок на 1м 2 полезной площади производственных зданий

Количество теплоты, поступающей в помещение от источников искусственного освещения, вычисляют по удельным показателям


где F - площадь пола помещения, м 2 ;

q ос - удельная плотность электрической осветительной нагрузки (таблица 4), кВт/м 2 .
Тепловыделения от людей определяются в зависимости от зат­рат ими энергии и температуры воздуха в помещении. Полное коли­чество теплоты, кВт

где m" - количество людей в помещении;

q л -удельное количество полной теплоты, выделяемой од­ним работающим (таблица 5), кВт.

Таблица 5- Удельное полное количество теплоты, выделяемое взрослыми людьми /1/, кВт

Для расчета количества работающих в здании можно воспользо­ваться приближенными формулами. Для производственных цехов коли­чество работающих в одну смену, приближенно равно

для административных зданий

где V - строительный объем цеха или здания, м 3 .

Расчетный расход теплоты на отопление жилого района, при отсутствии данных о типе застройки и наружном объеме жилых и общественных зданий, согласно СНиП П-З6-73 рекомендуется определять по формуле

где q ж - укрупненный показатель максимального расхода теп­лоты на отопление 1 м 2 жилой площади (таблица 6), кДж/(с.м 2);

F ж - жилая площадь, определяется исходя из 12 м 2 на од­ного жителя района, м 2 ;

k 0 - коэффициент, учитывающий расход теплоты на отопле­ние общественных зданий, при отсутствии фактических данных рекомендуется принимать k 0 =0,25

Таблица 6 - Укрупненный показатель максимального расхода теплоты на отопление жилых зданий

Расчет расхода теплоты на отопление . Показатель зависит от времени суток, назначения помещения и типа здания, температуры наружного воздуха, продолжительности отопительного периода, наличия в помещении нагретых поверхностей и пр.

Расход теплоты в рабочее время (МДж/ч) рассчитывают по удельным тепловым характеристикам:

В зависимости от времени суток расход теплоты на отопление (МДж/ч) промышленных предприятий определяют по формуле

Температура воздуха в помещении в рабочее время должна соответствовать рекомендациям по эксплуатации вентиляционных установок.

Часовой расход теплоты в нерабочее время определяют по формуле, используемой при расчете расхода теплоты в рабочее время, с учетом снижения температуры воздуха в помещении в нерабочее время до 5 °С.

Удельная тепловая характеристика зависит от назначения помещения и типа здания. Например, для производственных помещений, расположенных в одноэтажном корпусе, q 0 составляет 0,75—2,1 МДж/(м 3 . ч. К); для производственных помещений, расположенных в многоэтажном здании, — 0,20 — 1,05 кДжДм 3 . ч. К); для бытовых и вспомогательных помещений — 1,4 —2,5 кДжДм 3 -ч-К); для складов — 2,50 — 3,35 кДжДм 3 -ч. К); для административных зданий — 1,7 — 2,6 кДжДм 3 . ч. К).

Поправочный коэффициент а зависит от температуры наружного воздуха. Так, для общественных зданий при t H 0 = -10° С а = = 1,45; при t H 0 = -20 °С а = 1,17 и т.д.

в нерабочее время

В зависимости от наличия в помещении нагретых поверхностей поступление теплоты (МДж) рассчитывают по следующим формулам:

от нагретых поверхностей оборудования

от нагретого материала

от электропривода

В зависимости от отопительного периода расход теплоты (МДж) рассчитывают по следующим формулам: в рабочее время

Система отопления промышленных предприятий должна обеспечивать тепловой баланс между количеством теплоты, покупаемой от нагретых поверхностей технологического оборудования, нагретого материала, людей и т.д., и количеством тепловых потерь через наружные ограждения зданий.

от работающих людей

Тепловые потери через строительные ограждения помещений складываются из тепловых потерь через стены здания, покрытие, дверные и оконные проемы.

Перенос теплоты Q через стены здания и оконные проемы протекает в три стадии: от воздуха в помещении к внутренней поверхности стен зданий Q h через стены здания Q 2 и от наружной поверхности стен в окружающую среду Q 3 .

Количество теплоты, теряемой через стены здания, рассчитывают по формуле

Приближенно тепловые потери (кДж/ч) помещений определяют по формуле

Если производственный корпус имеет много окон, то целесообразно учитывать дополнительный расход теплоты на отопление исходя из тепловых потерь оконных проемов в отопительный период.

Расчет проводят по формуле

В случае если стена не аккумулирует теплоту, можно считать, что

где К — коэффициент теплопередачи, зависящий от типа остекления; F 0 K — площадь окон, м 2 ; п 0 — число дней отопительного периода; т — время работы, ч; / вн р — температура внутри здания в рабочее время, °С; *н.ср — средняя температура отопительного периода, °С.

В зависимости от типа остекления зданий коэффициент теплопередачи может иметь следующие значения, кДж/(м 2 - К): однослойное остекление — 4,5; двухслойное остекление с деревянными спаренными оконными переплетами — 2,9; двухслойное остекление с металлическими спаренными переплетами — 3,25; двухслойное остекление с деревянными раздельными переплетами — 2,67; двухслойное остекление с металлическими раздельными переплетами — 3,02.

На начальном этапе обустройства системы теплоснабжения любого из объектов недвижимости выполняется проектирование отопительной конструкции и соответствующие вычисления. Обязательно следует произвести расчет тепловых нагрузок, чтобы узнать объемы потребления топлива и тепла, необходимые для обогрева здания. Эти данные требуются, чтобы определиться с покупкой современного отопительного оборудования.

Тепловые нагрузки систем теплоснабжения

Понятие тепловая нагрузка определяет количество теплоты, которое отдают приборы обогрева, смонтированные в жилом доме или на объекте другого назначения. До того, как установить оборудование, данный расчет выполняют, чтобы избежать излишних финансовых расходов и других проблем, которые могут возникнуть в процессе эксплуатации отопительной системы.

Зная основные рабочие параметры конструкции теплоснабжения можно организовать эффективное функционирование обогревательных приборов. Расчет способствует реализации задач, стоящих перед отопительной системой, и соответствие ее элементов нормам и требованиям, прописанным в СНиПе.

Когда вычисляется тепловая нагрузка на отопление, даже малейшая ошибка может привести к большим проблемам, поскольку на основании полученных данных в местном отделении ЖКХ утверждают лимиты и другие расходные параметры, которые станут основанием для определения стоимости услуг.



Общая величина тепловой нагрузки на современную отопительную систему включает в себя несколько основных параметров:

  • нагрузку на конструкцию теплоснабжения;
  • нагрузку на систему обогрева пола, если она планируется к установке в доме;
  • нагрузку на систему естественной и/или принудительной вентиляции;
  • нагрузку на систему горячего водоснабжения;
  • нагрузку, связанную с различными технологическими нуждами.

Характеристики объекта для расчета тепловых нагрузок

Правильно расчетная тепловая нагрузка на отопление может быть определена при условии, что в процессе вычислений будут учтены абсолютно все, даже малейшие нюансы.



Перечень деталей и параметров довольно обширен:

  • назначение и тип объекта недвижимости . Для расчета важно знать, какое здание будет обогреваться - жилой или нежилой дом, квартира (прочитайте также: " "). От типа постройки зависит норма нагрузки, определяемая компаниями, поставляющими тепло, а, соответственно, расходы на теплоснабжение;
  • архитектурные особенности . Во внимание принимаются габариты таких наружных ограждений, как стены, кровля, напольное покрытие и размеры оконных, дверных и балконных проемов. Немаловажными считаются этажность здания, а также наличие подвалов, чердаков и присущие им характеристики;
  • норма температурного режима для каждого помещения в доме . Подразумевается температура для комфортного пребывания людей в жилой комнате или зоне административной постройки (прочитайте: " ");
  • особенности конструкции наружных ограждений , включая толщину и тип стройматериалов, наличие теплоизоляционного слоя и используемая для этого продукция;
  • назначение помещений . Эта характеристика особо важна для производственных зданий, в которых для каждого цеха или участка необходимо создать определенные условия относительно обеспечения температурного режима;
  • наличие специальных помещений и их особенности. Это касается, например, бассейнов, оранжерей, бань и т.д.;
  • степень техобслуживания . Наличие/отсутствие горячего водоснабжения, централизованного отопления, системы кондиционирования и прочего;
  • количество точек для забора подогретого теплоносителя . Чем их больше, тем значительнее тепловая нагрузка, оказываемая на всю отопительную конструкцию;
  • количество людей, находящихся в здании или проживающих в доме . От данного значения напрямую зависят влажность и температура, которые учитываются в формуле вычисления тепловой нагрузки;
  • прочие особенности объекта . Если это промышленное здание, то ими могут быть, количество рабочих дней на протяжении календарного года, число рабочих в смену. Для частного дома учитывают, сколько проживает в нем людей, какое количество комнат, санузлов и т.д.

Расчет нагрузок тепла

Выполняется расчет тепловой нагрузки здания относительно отопления на этапе, когда проектируется объект недвижимости любого назначения. Это требуется для того, чтобы не допустить лишние денежные траты и правильно выбрать отопительное оборудование.

При проведении расчетов учитывают нормы и стандарты, а также ГОСТы, ТКП, СНБ.

В ходе определения величины тепловой мощности во внимание принимают ряд факторов:

Расчет тепловых нагрузок здания с определенной степенью запаса необходимо, чтобы не допустить в дальнейшем лишних финансовых расходов.

Наиболее необходимость таких действий важна при обустройстве теплоснабжения загородного коттеджа. В таком объекте недвижимости монтаж дополнительного оборудования и других элементов отопительной конструкции обойдется невероятно дорого.

Особенности расчета тепловых нагрузок

Расчетные величины температуры и влажности воздуха в помещениях и коэффициенты теплопередачи можно узнать из специальной литературы или из технической документации, прилагаемой производителями к своей продукции, в том числе и к теплоагрегатам.

Стандартная методика расчета тепловой нагрузки здания для обеспечения его эффективного обогрева включает последовательное определение максимального потока тепла от обогревательных приборов (радиаторов отопления), максимального расхода тепловой энергии в час (прочитайте: " "). Также требуется знать общий расход тепловой мощности в течение определенного периода времени, например, за отопительный сезон.

Расчет тепловых нагрузок, в котором учитывается площадь поверхности приборов, участвующих в тепловом обмене, применяют для разных объектов недвижимости. Такой вариант вычислений позволяет максимально правильно рассчитать параметры системы, которая обеспечит эффективный обогрев, а также произвести энергетическое обследование домов и зданий. Это идеальный способ определить параметры дежурного теплоснабжения промышленного объекта, подразумевающего снижение температуры в нерабочие часы.



Методы вычисления тепловых нагрузок

На сегодняшний день расчет тепловых нагрузок производится при помощи нескольких основных способов, среди которых:

  • вычисление теплопотерь с использованием укрупненных показателей;
  • определение теплоотдачи установленного в здании отопительно-вентиляционного оборудования;
  • вычисление значений с учетом различных элементов ограждающих конструкций, а также добавочных потерь, связанных с нагревом воздуха.

Укрупненный расчет тепловой нагрузки

Укрупненный расчет тепловой нагрузки здания используется в тех случаях, когда информации о проектируемом объекте недостаточно или требуемые данные не соответствуют действительным характеристикам.

Для проведения подобных вычислений отопления используется несложная формула:

Qmax от.=αхVхq0х(tв-tн.р.) х10-6, где:

  • α – поправочный коэффициент, учитывающий климатические особенности конкретного региона, где строится здание (применяется в том случае, когда расчетная температура отличается от 30 градусов мороза);
  • q0 - удельная характеристика теплоснабжения, которую выбирают, исходя из температуры самой холодной недели на протяжении года (так называемой «пятидневки»). Читайте также: "Как рассчитывается удельная отопительная характеристика здания – теория и практика ";
  • V – наружный объем постройки.

Исходя из вышеприведенных данных, выполняют укрупненный расчет тепловой нагрузки.

Виды тепловых нагрузок для расчетов

При осуществлении расчетов и выборе оборудования во внимание принимают разные тепловые нагрузки:

  1. Сезонные нагрузки , имеющие следующие особенности:

    Им присущи изменения в зависимости от температуры окружающего воздуха на улице;
    - наличие отличий в величине расхода тепловой энергии в соответствии с климатическими особенностями региона местонахождения дома;
    - изменение нагрузки на отопительную систему в зависимости от времени суток. Поскольку наружные ограждения имеют теплостойкость, данный параметр считается незначительным;
    - расходы тепла вентиляционной системы в зависимости от времени суток.

  2. Постоянные тепловые нагрузки . В большинстве объектов системы теплоснабжения и горячего водоснабжения они используются на протяжении года. Например, в теплое время года расходы тепловой энергии в сравнении с зимним периодом снижаются где-то на 30-35%.
  3. Сухое тепло . Представляет собой тепловое излучение и конвекционный теплообмен за счет иных подобных устройств. Определяют данный параметр при помощи температуры сухого термометра. Он зависит от многих факторов, среди которых окна и двери, системы вентиляции, различное оборудование, воздухообмен, происходящий за счет наличия щелей в стенах и перекрытиях. Также учитывают количество людей, присутствующих в помещении.
  4. Скрытое тепло . Образуется в результате процесса испарения и конденсации. Температура определяется при помощи влажного термометра. В любом по назначению помещении на уровень влажности влияют:

    Численность людей, одновременно находящихся в помещении;
    - наличие технологического или другого оборудования;
    - потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.



Регуляторы тепловых нагрузок

В комплект современных котлов промышленного и бытового назначения входят РТН (регуляторы тепловых нагрузок). Эти устройства (см. фото) предназначаются для поддержки мощности теплоагрегата на определенном уровне и не допускают скачков и провалов во время их работы.

РТН позволяют экономить на оплате за отопление, поскольку в большинстве случаев существуют определенные лимиты и их нельзя превышать. Особенно это касается промпредприятий. Дело в том, что за превышение лимита тепловых нагрузок следует наложение штрафных санкций.

Самостоятельно сделать проект и произвести расчеты нагрузки на системы, обеспечивающие отопление, вентиляцию и кондиционирование в здании, довольно сложно, поэтому данный этап работ, как правило, доверяют специалистам. Правда, при желании можно выполнить вычисления самостоятельно.

Gср - средний расход горячей воды.

Комплексный расчет тепловой нагрузки

Помимо теоретического решения вопросов, касающихся тепловых нагрузок, при проектировании выполняется ряд практических мероприятий. В состав комплексных теплотехнических обследований входит термографирование всех конструкций здания, включая перекрытия, стены, двери, окна. Благодаря данной работе удается определить и зафиксировать различные факторы, оказывающие влияния на потери тепла дома или промышленной постройки.

Тепловизионная диагностика наглядно показывает, каким будет реальный перепад температур при прохождении конкретного количества теплоты через один «квадрат» площади ограждающих конструкций. Также термографирование помогает определить

Благодаря теплотехническим обследованиям получают самые достоверные данные, касающиеся тепловых нагрузок и потерь тепла для конкретного здания в течение определенного временного периода. Практические мероприятия позволяют наглядно продемонстрировать то, что теоретические расчеты не могут показать – проблемные места будущего сооружения.

Из всего вышеизложенного можно сделать вывод, что расчеты тепловых нагрузок на ГВС, отопление и вентиляцию, аналогично гидравлическому расчету системы отопления, очень важны и их непременно следует выполнить до начала обустройства системы теплоснабжения в собственном доме или на объекте другого назначения. Когда подход к работе выполнен грамотно, безотказное функционирование отопительной конструкции будет обеспечено, причем без лишних затрат.

Видео пример расчета тепловой нагрузки на систему отопления здания: