Максимальный поток в сети с. Максимальные потоки

22.09.2019

Идея этого алгоритма состоит в поиске сквозных путей с положительными потоками от источника к стоку.

Рассмотрим ребро (i, j) с (начальной) пропускной способностью. В процессе выполнения алгоритма части этих пропускных способностей «забираются» потоками, проходящими через данное ребро, в результате каждое ребро будет иметь остаточную пропускную способность. Запись - остаточная пропускная способность. Сеть в которой все ребра имеют остаточную пропускную способность, назовем остаточной.

Для произвольного узла j, получающего поток из узла i, определим метку, где - величина потока, протекающего от j узла к узлу i. Чтобы найти максимальный поток, выполняем следующие действия.

Для всех ребер положим остаточную пропускную способность равной первоначальной пропускной способности, т.е. приравняем =. Назначим и пометим узел 1 меткой. Полагаем i=1.

Множество узлов j, в которые можно перейти из узла I по ребру с положительной остаточной пропускной способностью >0 для всех j. Если, выполняем 3 этап, в противном случае переходим к 4.

В находим узел k, такой, что. Положим и пометим узел k меткой. Если k=n, сквозной путь найден, и переходим к 5 этапу, в противном случае полагаем i=k и возвращаемся к 2 этапу.

Откат назад. Если i=1, сквозной путь не возможен, и переходим к 6. Если, находим помеченный узел r, непосредственно предшествующий узлу i, и удаляем его из множества узлов, смежных с узлом r. Полагаем i=r и возвращаемся ко 2 этапу.

Определение остаточной сети. Обозначим через множество узлов, через которые проходит p_й найденный сквозной путь от узла источника (узел 1) до узла стока (узел n).тогда максимальный поток, проходящий по этому пути

Остаточные пропускные способности ребер, составляющих сквозной путь, уменьшаются на величину в направлении движения потока и увеличиваются на эту же величину в противоположном направлении.

Т.о. для ребра (i, j), входящего в сквозной путь, текущие остаточные пропускные способности изменяются:

1) , если поток идет от узла i к j,

2) , если поток идет от узла j к i.

а) при m найденных сквозных путях максимальный поток выражается

б) Имея значения начальных и конечных пропускных способностей ребра (i, j), можно вычислить оптимальный поток через это ребро следующим образом. Положим. Если >0, поток, проходящий через ребро (i, j) равен. Если >0, тогда поток равен. (случай, когда одновременно >0 и >0, невозможен).

Пример 1. Найти максимальный поток в сети рис. 1

Итерация 1. =

3) k=3, так как. Назначаем и помечаем узел 3 меткой. i=3 и возвращаемся к 2)

5) k=5 и. Помечаем узел 5 меткой. Получаем сквозной путь.

6) сквозной путь определяем по меткам, начиная с узла 5 и заканчивая узлом 1: . и. Вычисляем остаточные пропускные способности вдоль пути:

Итерация 2.

1) и помечаем узел 1 меткой. i=1

2») (, поэтому узел 5 не включается в

3») k=4, и помечаем узел 4 меткой. i=4 и возвращаемся к 2)

2""") (так как узлы 1 и 3 помечены, они не включаются в)

3""") k=5 и. Помечаем узел 5 меткой. Получен сквозной путь. Переходим к 5)

Итерация 3.

1) и помечаем узел 1 меткой. i=1

3) k=2, и помечаем узел 2 меткой. i=2 и возвращаемся к 2)

3") k=3 и. Помечаем узел 3 меткой. i=3 и возвращаемся к 2)

2») (так как) переходим к 4)

4) метка узла 3 показывает номер предшествующего узла. На этой итерации узел 3 в дальнейшем во внимание не принимается, его метку вычеркиваем. и возвращаемся к 2)

2""") (так как узел 3 удален из возможного сквозного пути)

3""") и. Помечаем узел 5 меткой. Получен сквозной путь. Переходим к 5)

5) и. Вычисляем остаточные пропускные способности вдоль пути:

Итерация 4. на этой итерации получен путь с

Итерация 5. на этой итерации получен путь с

Итерация 6. новые сквозные пути невозможны, поскольку все ребра, исходящие из узла 1, имеют нулевые остаточные пропускные способности. Переходим к 6) для определения решения

6) максимальный объем потока в сети равен единиц.

Значения потоков по различным ребрам вычисляются путем вычитания последних значений остаточных пропускных способностей из первоначальных значений пропускных способностей.

Результаты вычислений: табл. 1

Величина потока

направление

(20,0) - (0,20)=(20, - 20)

(30,0) - (0,30)=(30, - 30)

(10,0) - (0,10)=(10, - 10)

(40,0) - (40,0)=(0,0)

(30,0) - (10,20)=(20, - 20)

(10,5) - (0,15)=(10, - 10)

(20,0) - (0,20)=(20, - 20)

(20,0) - (0,20)=(20, - 20)

Графическое последовательное выполнение алгоритма нахождения максимального потока (пример 1)







д) е) Сквозных путей нет


Рис.

Исходные данные о транспортной системе, например, внутризаводской, приведенные на рис. 2, можно также задать таблицей (табл. 2).

Табл.2. Исходные данные к задаче о максимальном потоке

Очевидно, максимальная пропускная способность транспортной системы не превышает 6, поскольку не более 6 единиц грузов можно направить из начального пункта 0, а именно, 2 единицы в пункт 1, 3 единицы в пункт 2 и 1 единицу в пункт 3. Далее надо добиться, чтобы все 6 вышедших из пункта 0 единиц груза достигли конечного пункта 4. Очевидно, 2 единицы груза, пришедшие в пункт 1, можно непосредственно направить в пункт 4. Пришедшие в пункт 2 грузы придется разделить: 2 единицы сразу направить в пункт 4, а 1 единицу - в промежуточный пункт 3 (из-за ограниченной пропускной способности участка между пунктами 2 и 4). В пункт 3 доставлены такие грузы: 1 единица из пункта 0 и 1 единица из пункта 3. Их направляем в пункт 4. Итак, максимальная пропускная способность рассматриваемой транспортной системы - 6 единиц груза. При этом не используются внутренние участки (ветки) между пунктами 1 и 2, а также между пунктами 1 и 3. Не догружена ветка между пунктами 1 и 4 - по ней направлены 2 единицы груза при пропускной способности в 3 единицы. Решение можно представить в виде таблицы (табл. 3)

Табл.3. Решение задачи о максимальном потоке

Пункт отправления

Пункт назначения

План перевозок

Пропускная способность

Задача линейного программирования при максимизации потока. Дадим формулировку задачи о максимальном потоке в терминах линейного программирования. Пусть Х KM - объем перевозок из пункта К в пункт М. Согласно рис. 2 К = 0,1,2,3, М = 1,2,3,4, причем перевозки возможны лишь в пункт с большим номером. Значит, всего имеется 9 переменных Х KM, а именно, Х 01, Х 02, Х 03, Х 12, Х 13, Х 14, Х 23, Х 24, Х 34. Задача линейного программирования, нацеленная на максимизацию потока, имеет вид:

Х 01 + Х 02 + Х 03 = F (0)

Х 01 + Х 12 + Х 13 + Х 14 = 0 (1)

Х 02 - Х 12 + Х 23 + Х 24 = 0 (2)

Х 03 - Х 13 - Х 23 + Х 34 = 0 (3)

Х 14 - Х 24 - Х 34 = - F (4)

Х КМ? 0, К, М = 0, 1, 2, 3, 4

Здесь F - целевая функция, условие (0) описывает вхождение грузов в транспортную систему. Условия (1) - (3) задают балансовые соотношения для узлов 1- 3 системы. Другими словами, для каждого из внутренних узлов входящий поток грузов равен выходящему потоку, грузы не скапливаются внутри и системы и не «рождаются» в ней. Условие (4) - это условие «выхода» грузов из системы. Вместе с условием (0) оно составляет балансовое соотношение для системы в целом («вход» равен «выходу»). Следующие девять неравенств задают ограничения на пропускную способность отдельных «веток» транспортной системы. Затем указана неотрицательность объемов перевозок и целевой функции. Ясно, что последнее неравенство вытекает из вида целевой функции (соотношения (0) или (4)) и неотрицательности объемов перевозок. Однако последнее неравенство несет некоторую общую информацию - через систему может быть пропущен либо положительный объем грузов, либо нулевой (например, если внутри системы происходит движение по кругу), но не отрицательный (он не имеет экономического смысла, но формальная математическая модель об этом «не знает»).

Это пособие предназначено для студентов, изучающих курс дискретной математики и (или) теории графов. С его помощью Вы освоите тему "Максимальный поток и минимальный разрез в сети". Прямо из этого пособия Вы можете посчитать своё ИДЗ, даже если у Вас нет на компьютере MATLAB. Если же у Вас есть MATLAB, перейдите на эту страницу : там у Вас есть возможность вмешаться в сценарий (программу) вычислений. Здесь же задача о максимальном потоке в сети решается путём сведения к задаче линейного программирования.

Введём обозначения:

  • n =|V | − размер графа (количество вершин);
  • m =|E | − мощность графа (количество рёбер);
  • A − матрица инцидентности орграфа сети размером n ×m ; каждый её элемент a ik =1, если из i -й вершины выходит k -я дуга; a ik =−1, если в i -ю вершину входит k -я дуга; и a ik =0 в остальных случаях; в каждом столбце такой матрицы ровно одна единица, одна минус единица, а остальные нули;
  • s − номер вершины-источника сети; из этой вершины должны только выходить дуги, и любая другая вершина должна быть достижима из источника;
  • t − номер вершины-стока сети; в эту вершину должны только входить дуги, и из любой другой вершины должен быть достижим сток;
  • a s s A ; в ней должны быть только единицы, т.к. из источника должны только выходить дуги;
  • a t t -я строка матрицы инцидентности орграфа сети A ; в ней должны быть только минус единицы, т.к. в сток должны только входить дуги;
  • A st − матрица инцидентности орграфа сети A с выброшенными из неё s -й и t -й строками;
  • e − вектор-столбец длины m ; в каждом его элементе e k будет величина потока в k -й дуге;
  • c − вектор-столбец длины m ; в каждом его элементе c k ≥0 задаётся пропускная способность k -й дуги.

Тогда задача о максимальном потоке в сети может быть сформулирована как задача линейного программирования:

Максимизируется общий поток, выходящий из источника (1). При этом в любой промежуточной вершине входящий поток равен выходящему (2), а пропускные способности дуг ограничены (3).

Задача, двойственная к задаче о максимальном потоке − это задача о минимальном разрезе. Для построения минимального разреза можно воспользоваться теоремами двойственности. Нужно:

  • удалить из орграфа сети все пустые (e k = 0) и насыщенные (e k = c k ) дуги;
  • найти компоненты связности оставшегося графа;
  • если таких компонент две, то выброшенные дуги дают минимальный разрез;
  • если появится больше двух компонент связности, то у орграфа сети есть несколько минимальных разрезов (соответствующая задача линейного программирования вырожденная).

Для вырожденной задачи на данной странице строится первый, ближайщий к источнику минимальный разрез.

Для правильной работы с этой страницей Ваш браузер должен поддерживать сценарии Java Script . Включите их.

Введите исходные данные в находящиеся ниже области ввода. В первой области нужно (точнее, можно) ввести координаты вершин для рисования орграфа сети. Они задаются в виде матрицы n ×2: в первом столбце − x -е координаты, во втором − y -е. Числа можно задавать целые, с десятичной точкой или в экспоненциальной форме. Числа разделяйте пробелами. Общее количество строк в этой области ввода определяет размер орграфа n − количество вершин. Эти исходные данные (координаты вершин) не являются обязательными: если их не задать, то орграф сети будет рисоваться в виде правильного n -угольника, а количество вершин будет определяться максимальным номером вершины в следующей области ввода.

В следующей области ввода левая часть − обязательная для заполнения. В ней определяется структура орграфа сети. Каждая дуга в орграфе соединяет две вершины. Номера этих вершин задаются в виде матрицы m ×2 в левой части второй области ввода. На каждой строке вначале задаётся 1-я вершина (хвост, источник) дуги, а затем через пробел 2-я (остриё, сток) дуги. В этих столбцах должны быть натуральные числа от 1 до n включительно. Числа разделяйте пробелами. В правой части задаются пропускные способности дуг − положительные действительные числа. Если этот столбец не задан, все пропускные способности считаются одинаковыми (единичными). Общее количество чисел в каждом из этих столбцов определяет мощность орграфа m − количество дуг.



Посчитать

Алгоритм расчета максимального потока в сетях

ШАГ 1. Начальные присваивания. Текущему значению А т максимального потока в сети присваиваем значение 0. ШАГ 2. Выбор независимых маршрутов в сети и определение потоков в них. Из всего множества возможных маршрутов в сети от источника к стоку выбираем независимые маршруты М 1 , … , М k , не имеющие общих вершин, кроме начальной (источника v и ) и конечной (стока v с ). Для каждого выбранного маршрута М i (1£ i £ k ) определяем максимальный поток А (М i ).ШАГ 3. Коррекция текущего значения максимального потока в сети. Прибавляем найденные на ШАГе 2 значения максимальных потоков в независимых маршрутах М 1 , … , М k к текущему общему максимальному потоку в сети: А т := А т + А (М 1)+ А (М 2)+…+ А (М k ).ШАГ 4. Коррекция сети. Найденные на ШАГе 2 максимальные потоки А (М 1), … , А (М k )вычитаем из пропускной способности соответствующих дуг сети. Дуги с нулевой остаточной пропускной способностью удаляем.ШАГ 5. Проверка завершения работы алгоритма. Если после коррекции в сети не осталось маршрутов из источника v и в сток v с , то искомый максимальный поток в сети равен найденному текущему А := А т , алгоритм завершает свою работу, поскольку все пропускные возможности сети исчерпаны. Если же в корректированной сети существуют маршруты из источника v и в сток v с , то переход на ШАГ 2 и продолжение выполнения алгоритма. Пример 2. Найти максимальный поток в сети на рис.1.15 по данному алгоритму. Решение.ШАГ 1. Начальные присваивания. А т : = 0.

I итерация. ШАГ 2. Выбор независимых маршрутов в сети и определение потоков в них. В качестве М 1 возьмем маршрут(v и =V 1 , V 2 , V 5 , v с =V 7), рассмотренный в примере 1. Для него А (М 1) = 10.

Также несложно выделить независимый от М 1 маршрут М 2 = (v и =V 1 , V 3 , V 6 , v с =V 7). Выполним для него расчет максимальной пропускной способности и скорректируем пропускную способность дуг: А (М 2)= min {d 13 , d 36 , d 67 }= min {45, 40, 30}= 30. d 13 ¢= d 13 - 30 = 15, d 36 ¢= d 36 - 30 = 10, d 67 ¢= d 67 - 30 = 0.

ШАГ 3. Коррекция текущего значения максимального потока в сети. А т := А т + А (М 1)+ А (М 2) = 0 + 10+ 30 = 40.ШАГ 4. Коррекция сети. Найденные на ШАГе 2 максимальные потоки А (М 1), А (М 2) в маршрутах М 1 , М 2 вычитаем из пропускной способности их дуг. Дуги с нулевой остаточной пропускной способностью удаляем. Результат дан на рис.1.16 а. а) б)Рис.1.16. Результат коррекции сети после итераций I и IIШАГ 5. Проверка завершения работы алгоритма. В корректированной сети (рис.1.16 а) существуют маршруты из источника v и в сток v с , например М 3 = (v и =V 1 , V 4 , V 2 , V 5 , v с =V 7). Продолжение выполнения алгоритма.

II итерация. ШАГ 2. В качестве единственного независимого маршрута примем М 3 = (v и =V 1 , V 4 , V 2 , V 5 , v с =V 7). Для него:

А (М 3)= min {d 14 , d 42 , d 25 , d 57 }= min {15, 10, 10, 15}= 10.

d 14 ¢= d 14 - 10 = 5, d 42 ¢= d 42 - 10 = 0, d 25 ¢= d 25 - 10 = 0, d 57 ¢= d 57 - 10 = 5.

ШАГ 3. А т := А т + А (М 3) = 40 + 10= 50.

ШАГ 4. Коррекция сети. Максимальный поток А (М 3)вычитаем из дуг маршрута М 13 . Результат дан на рис.1.16 б.

ШАГ 5. В корректированной сети не осталось маршрутов из источникав сток. А := А т := 50, завершение работы алгоритма.Ответ: максимальный поток в сети на рис.1.15 равен 50.

Еслив сети задано несколькоисточников, ее достраивают, вводя новый общий источник, который соединяют с исходными источниками дугами, имеющими неограниченную пропускную способность. Затем задачу решают по обычному алгоритму. Искомыми потоками через исходные источники будут потоки по вновь добавленным дугам, входящим в них из нового общего источника. Аналогично поступают при наличии в сети нескольких стоков.

Сетевое планирование

Любую задачу по проектированию либо построению достаточно сложного объекта (проект ) можно разбить на ряд более мелких составляющих шагов. От правильного выбора последовательности выполнения данных шагов зависят сроки выполнения всего проекта.

Весь комплекс действий по выполнению проекта представляют в виде совокупности событий и работ . Событиями называют отдельные этапы проекта. Работами называют процесс их выполнения. Весь комплекс событий и работ, необходимых для выполнения проекта, может быть представлен в виде двухполюсной сети Г = ({v и, v з }, V, X ), в которой:

а) все события обозначены множеством вершин V, среди них выделено исходное событие v и (начало работ) и завершающее событие v з (завершение выполнения всего проекта), внутренние вершины сети задают промежуточные события - этапы, которые необходимо выполнить в процессе реализации проекта,

б) все работы обозначены дугами, соединяющими между собой пары событий - вершин.

Графическое изображение данной сети называют сетевым графиком. Для обозначения последовательности действий в сетевой график вводят также фиктивные работы , которые не связаны с выполнением каких-либо действий. Соответствующие работы обозначают штриховыми дугами.

В качестве примера рассмотрим организацию некоторого производства. Проект требует выполнения следующих работ:

I) маркетинговые исследования, II) предпроектные исследования по оборудованию, III) организация сети сбыта, IV) проведение рекламной кампании, V) разработка технического задания на производственное оборудование, VI) разработка технической документации на производственные помещения и коммуникации, VII) закупка стандартного оборудования, VIII) проектирование и изготовление нестандартного оборудования, IX)строительство производственных помещений и монтаж коммуникаций, X) монтаж стандартного оборудования, XI) монтаж нестандартного оборудования, XII) пусконаладочные работы.

Данные работы обозначим в сетевом графике дугами с соответствующими номерами.

Событиями в данном проекте будут следующие:

1) начало работ (исходное событие), 2) завершение маркетинговых исследований, 3) завершение предпроектных исследований, 4) организация сети сбыта, 5) организация рекламной кампании, 6) подготовка технического задания на производственное оборудование, 7) завершение разработки технической документации на производственные помещения и коммуникации, 8) завершение закупки стандартного оборудования, 9) завершение проектирования и изготовления нестандартного оборудования, 10) завершение строительства производственных помещений и монтажа коммуникаций, 11) завершение установки оборудования и пуско-наладочных работ,

12) завершение проекта (завершающее событие).

Событиям сопоставляем вершины с соответствующими номерами. Сетевой график выполнения проекта дан на рис. 1.17:



Рис.1.17. Сетевой график выполнения проекта

При планировании рационального распределения продукции в сети распределения необходимо согласовывать пропускную способность каналов с потребностями клиентов и с мощностью производственного предприятия. Данный класс задач решается методом нахождения максимального потока.

Рассмотрим сеть распределения (рис. 4.21), в которой выделены пункты 0 (вход, например, склад готовой продукции производителя) и п (выход, распределительные центры, склады оптовых и розничных организаций, потребитель) и каждой дуге (отрезку), связывающей пункты i и j, сопоставлено число dij > 0, называемое пропускной способностью дуги. Величина пропускной способности характеризует максимальное допустимое количество материального потока, которое может проходить по соответствующей дуге в единицу времени.

Рис. 4.21.

Количество продукции, проходящее по дуге от i до j , будем называть потоком по дуге (i ,j ) и обозначать через . Очевидно, что

Если учесть, что весь материальный поток, вошедший в промежуточный пункт сети, должен полностью выйти из него, получим

Из естественного требования равенства потоков на входе и на выходе имеем

Величину Z назовем величиной потока в сети и поставим задачу максимизации Z при соблюдении обозначенных выше условий.

Поиск максимального потока сводится к поиску пропускной способности минимального разреза.

Рассмотрим универсальный алгоритм поиска в матричной форме.

Начальный этап алгоритма состоит в построении матрицы D 0, в которую заносятся значения пропускных способностей (для неориентированной дуги берем симметричные значения элементов матрицы ).

Основные шаги алгоритма состоят в поиске некоторого пути и коррекции потока на этом пути.

При поиске пути используем процесс отмечаний. Метим символом * нулевые строку и столбец матрицы (вход сети). В 0-й строке отыскиваем , метим соответствующие столбцы индексами

и переносим метки столбцов на строки. Затем берем ί-ю отмеченную строку, ищем в ней непомеченный столбец с , которому сопоставляем метки-индексы

Метки столбцов переносим на строки, и этот процесс продолжаем до тех пор, пока не будет отмечен п-й столбец.

Затем "обратным ходом" по индексам выясняем путь, приведший к η-й вершине, уменьшаем пропускные способности дуг пути (элементы матрицы) на V n и увеличиваем симметричные элементы на эту же величину.

Такая процедура продолжается до тех пор, пока отмечание n -й вершины не станет невозможным.

Максимальный поток может быть найден вычитанием из исходной матрицы D 0, получаемой после приведенной выше корректуры матрицы пропускных способностей:

Пример 4.4

Производство размещено в Москве. Для распределения продукции предприятие привлекает посредников, которые работают с предприятием через распределительные центры различных уровней. В европейской части России работает оптовое предприятие 1, обслуживаемое центральным распределительным центром. Оптовое предприятие 2 работает в ближайшем зарубежье (Украина, Белоруссия) и обслуживается региональным распределительным центром. Есть у предприятия на местном рынке (Москва и Московская область) свои клиенты – ритейлеры, которые получают продукцию с городского распределительного центра. Запасы регионального и городского распределительных центров пополняются с центрального распределительного центра.

Выделим фрагмент распределительной сети:

  • склад готовой продукции производственного предприятия;
  • центральный распределительный центр;
  • региональный распределительный центр;
  • городской распределительный центр;
  • два оптовых предприятия;
  • розничная точка, принадлежащая компании;
  • потребители.

Рис. 4.22.

Каждое звено сети распределения обозначим цифрой, а над дугами проставим пропускную способность. Пропускная способность в зависимости от вида звена может быть выражена через объем производственной мощности, плановую потребность (спрос) потребителей и емкость рынка.

Граф сети распределения продукции представлен на рис. 4.23. Построим матрицу D 0, в которую занесем значения пропускных способностей звеньев распределительной сети (рис. 4.24).

Рис. 4.23.

Рис. 4.24.

Из нулевой строки отметим вершины (строки-столбцы) 1, 2 и 3 индексами μ = 0 и V, равными 30,10 и 10.

Из помеченной строки 1 отметим вершины 4 и 5 индексами μ = 1 и V4 = min (30,15) = 15, V5 = min (30,10) = 10.

Из строки 3 отметим вершину 6 и, наконец, из строки 4 – вершину 7 (рис. 4.25).

Рис. 4.25.

Обратным ходом по μ обнаруживаем путь: к вершине 7 от 4, к вершине 4 от 1, к вершине 1 от 0; корректируем элементы D 0 на величину потока V7 = 15.

Очередной шаг дает путь с потоком 5 (рис. 4.26).

Рис. 4.26.

Последующий шаг дает результат, представленный на рис. 4.27.

Рис. 4.27.

Дальнейшее отмечание невозможно. Отсюда получаем матрицу максимального потока (рис. 4.28).

Рис. 4.28.

В результате применения алгоритма нахождения максимального потока в сети получены результаты, представленные на рис. 4.29. Пары цифр в скобках, показанные на дугах графа, означают максимальную пропускную способность дуги и рекомендуемый объем поставки товаров в сеть.

Потоки в сетях

Задача о максимальном потоке

Пусть задана сеть, состоящая из множества вершин Е и множества дуг, соединяющих некоторые упорядоченные пары вершин, взятых из Е. Будем предполагать, что она является симметрическим графом, т. е. если дуга () входит в сеть, то в нее входит и симметричная дуга (), хотя реально такой дуги может и не быть. Для определенности присвоим вершинам сети следующие номера: . Каждая вершина характеризуется интенсивностью . Вершины, для которых , назовем источниками, вершины, для которых , - стоками, а остальные - промежуточными. По путям сети направляются некоторые потоки - однородное вещество (газ, жидкость) или транспорт - из источников в стоки. Каждой дуге () сети поставлено в соответствие число , называемое пропускной способностью дуги. Под пропускной способностью дуги понимается максимальный поток, который она может пропустить за единицу времени. Пусть , и для остальных вершин, тогда - единственный источник, - единственный сток, а - промежуточные вершины сети.

Ставится задача определить для заданной сети максимальную величину потока из источника в сток . Под потоком в сети из источника в сток будем понимать совокупность потоков {} по всем дугам сети, где - поток по дуге (), , равный количеству перемещаемой по ней субстанции в единицу времени. Математически задача о максимальном потоке формулируется следующим образом: найти неотрицательные значения для всех , максимизирующие

(3.9)

при ограничениях:

(3.11)

Условие (3.9) отражает величину максимального потока, который равен количеству вещества, вытекающего из источника, или притекающего в сток. Условия (3.10) означают, что поток по каждой дуге должен быть неотрицательным и не превышать ее пропускной способности; из условия (3.11) следует, что количество вещества, притекающего в любую промежуточную вершину, равно количеству вещества, вытекающего из нее.

До сих пор мы рассматривали сети с единственным источником и стоком. На практике, однако, число источников и стоков может быть произвольным. Покажем, что с помощью незначительных изменений топологии задачи такого типа могут быть сведены к уже рассмотренным.

Проиллюстрируем это на примере.

Рассмотрим сеть, состоящую из трех источников и двух стоков (Рис. 3.10). Пусть, для определенности, данная сеть описывает следующую задачу.

Места добычи нефти расположены в географических пунктах . Из мест добычи нефть транспортируется на нефтеперерабатывающие заводы через некоторые промежуточные пункты . Совокупность пунктов с соединяющими их транспортными магистралями изобразим в виде сети на Рис. 3.10, дуги соответствуют транспортным магистралям, а вершины - отдельным пунктам (местам добычи, заводам, станциям перекачки или железнодорожным станциям). Пропускные способности транспортных магистралей приписаны дугам сети. Чтобы определить, какое максимальное количество нефти можно транспортировать из мест добычи на нефтеперерабатывающие заводы, необходимо расширить сеть, добавив один фиктивный источник и один фиктивный сток (фиктивные дуги на рисунке нанесены штриховыми линиями).

Очевидно, что величину потока как в исходной сети, так и в расширенной сети определяют пропускные способности дуг исходной сети. Таким образом, задача о максимальном потоке из множества источников во множество стоков равносильна задаче о максимальном потоке из единственного источника в единственный сток.


Рис. 3.10. Введение фиктивного источника и стока

Пример 3.

Приведем пример решения задачи о максимальном потоке в Excel. Рассмотрим некоторую транспортную сеть (Рис. 3.11.). Предположим также, что транспортные потоки могут идти в обоих направлениях некоторых дуг (очевидно, данный случай является более общим и сложным для решения, чем случай односторонних транспортных потоков). На рисунке обозначены максимальные пропускные способности в обоих направлениях: например из пункта 3 в пункт 6 может быть транспортирован поток интенсивностью 4 единицы, и такой же поток – из пункта 6 в пункт 3 (нули у окончаний некоторых дуг означают невозможность транспортировки в соответствующем направлении). Требуется определить максимальную пропускную способность сети в целом, т.е. максимальное значение потока .

Рис. 3.11. Сетевой график примера 3.

Решение.

Так как предполагается, что для каждого промежуточного узла сети полный входящий поток должен быть равен полному выходящему потоку, то задача может быть сформулирована следующим образом:

Максимизировать при ограничениях:

Введем данные на рабочий лист в соответствии с Рис. 3.12.

Рис. 3.12. Данные для решения задачи о максимальном потоке

Диапазон ячеек A6:Q6 отведем под расчетные значения переменных. В ячейки A8:A14, а также в целевую ячейку F13 введем следующие формулы

C6+D6+I6-E6-H6-J6

G6+N6+H6+K6-L6-I6-M6-P6

F13 (целевая)

После запуска Поиска решения введем следующие ограничения:

В окне диалога Поиска решения в для диапазона изменяемых ячеек укажем A6:Q6.

В результате решения получим ответ: ; потоки в дугах представлены ниже

Пункты (узлы)

Пункты (узлы)

Следует отметить, что данная задача имеет неединственное оптимальное решение, то есть при максимальном потоке в 17 единиц может иметь место различное распределение потоков по дугам.