Как посчитать трубу на теплый пол улиткой. Как рассчитать водяной теплый пол? Расчет длины трубы для теплого водяного пола

25.06.2019

Вы наверняка задумывались о создании комфортной температуры воздуха в помещении, а так же и о том, как сделать пол теплым, чтобы ходить по нему босиком. Вы только представьте, что Ваш ребенок будет ходить по холодному полу, этого нельзя допускать, обязательно делайте теплый пол, тем более если на пол уложена кафельная плитка.


Задача оказывается не простая, но решаемая. Вам придется выбрать между электрическим и водяным теплым полом. В первом случае вы будете платить за киловатты, а в случае с водяным теплым полом, при условии что у вас частный дом и отапливается он мощным котлом — вы сможете легко подключить к этому котлу систему теплого пола. Как смонтировать теплый пол вы можете узнать в статье — . Задавайте вопросы в комментариях к статье.

Для монтажа теплого пола вам понадобится труба. Чаще всего используют металлопластиковую трубу 16 диаметра. С помощью калькулятора вы сможете быстро подсчитать сколько погонных метров трубы вам понадобится под теплый пол любого помещения.Для расчетов вам понадобятся такие данные как площадь дома или помещения, а так же на какой шаг вы собираетесь прокладывать трубу.

Шаг трубы теплого пола

Шаг трубы — это расстояние между трубами.

Шаг трубы зависит от того, как утеплен пол, и какие цели вы преследуете монтируя теплый пол. Чем меньше шаг тем теплее будет пол. И если задуматься, то чем чаще шаг трубы, тем эффективнее теплый пол.

Площадь теплого пол

Площадь теплого пола — здесь необходимо посчитать полезную площадь помещения, непосредственно те участки, по которым вы ходите и хотите чтобы там было тепло. К примеру, нам не нужен теплый пол под шкафом, который мы никогда не будем двигать, а значит вычитаем площадь под шкафом.

Калькулятор расчета трубы теплого пола

Расход трубы теплого пола в зависимости от площади помещения*

*Подводящие трубопроводы не учитываются.

Мало рассчитать длину трубы, при монтаже теплого пола важно учитывать необходимость регулировать нагрев. Как вы знаете, при превышении температуры выше 28 градусов, такие покрытия как паркетная доска и ламинат начинают коробиться. Поэтому, установите регулятор температуры подачи воды в теплый пол.

Если вы рассчитываете расход трубы на теплый пол по другому, поделитесь с нами в комментариях, мы обязательно обсудим ваш вариант.

Сегодня система теплого пола стала очень популярной. Такое дополнительное оборудование позволяет повысить комфортабельность проживания и снизить расходы на отопление. Существует несколько разновидностей подобных систем, это и водяное отопление, и электрические нагревательные элементы, и инфракрасные излучатели. При монтаже каждой разновидности могут возникнуть свои специфические вопросы. Например, при создании водяного теплого пола стоит заранее узнать количество труб, которые потребуются для монтажа. В этой статье и пойдет речь о том, как рассчитать трубу для теплого пола.

Выбор материала

Первым делом стоит выбрать подходящие именно для ваших условий трубы. В продаже есть несколько вариантов таких конструкций. А именно трубы из:

  • меди;
  • металлопластика;
  • полипропилена;
  • сшитого полиэтилена.

У каждого материала есть свои преимущества и недостатки. Наиболее дорогим вариантом установки являются трубы из меди. Это, пожалуй, самый существенный их недостаток. В остальном медные трубы отвечают самым завышенным требованиям. Именно их чаще всего используют в системах теплого пола в Западной Европе. Медь обладает долгим сроком службы и прекрасной теплопроводностью. При покупке таких труб стоит помнить, что для монтажа требуется большой опыт и наличие специального оборудования.

Металлопластиковые изделия стоят гораздо дешевле. При этом у таких труб также высокий показатель теплопроводности и прочности. Благодаря наличию алюминиевого слоя, они способны выдержать большие механические нагрузки.

Обратите внимание! Полипропиленовые трубы редко используют для монтажа системы теплого пола. Они, хотя и обладают хорошей теплопроводностью и стоят недорого, плохо гнутся. Поэтому сделать эффективную систему из таких изделий весьма проблематично.

Сшитый полиэтилен тоже можно часто встретить при монтаже теплых полов. Такие трубы стоят недорого, прекрасно проводят тепло и долговечны. Единственным недостатком является необходимость их прочной фиксации на месте. Если этого не сделать, то труба может выгнуться до своего первоначального состояния.

Производим расчеты

Первый вариант может иметь две разновидности. В первом случае труба укладывается змейкой.

Обратите внимание! «Змейка» позволяет немного сэкономить на трубах, но при этом нагрев комнаты будет неравномерным. Сначала нагреется пол с одной стороны, и постепенно тепло будет продвигаться дальше. К тому же вода, продвигаясь по трубам, будет остывать. Это значит, что с одной стороны пол будет всегда чуть прохладнее.

Более эффективная укладка – это двойная спираль. В этом случае трубы укладываются парой, та по которой поступает горячая вода, и та по которой будет отводиться остывший теплоноситель. Такой способ позволяет нагревать пол по всей комнате до одинаковых температур.

Обратите внимание! При укладке труб по системе «спираль» нагрев комнаты будет происходить с ее краев к середине. Такой метод считается наиболее эффективным.

Какой бы способ не был выбран, чтобы правильно рассчитать метраж необходимых труб, нужно начертить схему. На бумаге в масштабе рисуется будущая система. Наносятся контуры комнаты и линии, по которым в дальнейшем будут укладываться трубы. При этом нужно учитывать расположение крупных элементов мебели, под ними укладывать теплый пол не рекомендуется. Также стоит учесть, что укладывать трубы нужно с отступом от стен не менее 20 см.

Для правильного расчета необходимо знать еще один параметр – это расстояние между трубами или шаг. Этот параметр будет зависеть от диаметра и теплопроводности труб, а также от температуры подаваемого теплоносителя. Первые два показателя можно узнать в магазине, где будут приобретаться трубы. Второй показатель будет зависеть от используемого котла. Также выбор шага определяется от необходимой температуры в комнате. Если нужно чтобы было значительно теплее, то шаг делается меньше, и наоборот.

Делая расчеты, нельзя забывать о том, что длина одного контура не должна превышать 60‒70 метров. В противном случае эффективность системы значительно снизится.

Обратите внимание! Если площадь комнаты довольно большая, и метраж труб будет больше 70 метров, то требуется создать дополнительные контуры (один или два, в зависимости от площади). Лучше, чтобы они были одинаковой длины.

Сделав правильный чертеж будущей системы (с учетом отступа от стен и будущей расстановки крупных элементов мебели), можно точно рассчитать необходимое количество труб. Но всегда стоит брать с запасом. При любой работе неизбежны небольшие недочеты и огрехи. Лучше сделать десятипроцентный запас, чем затем бегать по магазинам в поисках подходящей трубы.

Видео

Дополнительные технологические нюансы рассмотрены ниже:

1. Какой температуры должен быть теплоноситель в теплом полу и как можно контролировать его температуру?

Температура должна быть не выше 55 о С, а в некоторых случаях не выше 45 о С.

Если сказать еще точнее: температура должна быть в соответствии с температурой, рассчитанной в проекте, который учитывает необходимость конкретного помещения в тепле и материал, из которого сделано напольное чистовое покрытие.

Контролировать температуру можно с помощью вот такого термометра, а лучше двух.

Один термометр показывает температуру теплоносителя на подаче теплого пола (температуру смешанной воды), а другой - температуру обратки.

Если разница между показаниями двух термометров составляет 5 - 10 о С, значит система теплых полов у вас работает правильно.

2. Какой должна быть температура на поверхности теплого пола?

Температура поверхности работающего теплого пола на должна превышать следующие значения:

    29 о С - в помещениях длительного нахождения людей;

    35 о С - в граничных зонах;

    33 о С - в санузлах, ванных комнатых.

3. Какие формы укладки трубы используют для теплого пола?

Для укладки труб напольного отопления используют разные формы: змейку, угловую змейку, улитку, двойную змейку (меандр).

Также при укладке одного контура можно комбинировать эти формы.

К примеру, краевую зону можно расположить змейкой, а дальше основную часть пройти улиткой.

4. Какую укладку лучше всего использовать для теплого пола?

Для больших помещений квадратной, прямоугольной или круглой формы без геометрического эксклюзива лучше использовать улитку.

Для маленьких помещений, помещений со сложными формами или длинных помещений используйте змейку.

5. Какой должен быть шаг укладки?

Шаг укладки должен быть проектным в согласии с расчетами.

Для краевых зон используется шаг, равный 10 см. Для остальных зон с разностью в 5 см - 15 см, 20 см, 25 см. Но не больше 30 см.

Это ограничение связано с чувствительностью ступни человека.
При большем шаге труб нога начинает чувствовать разницу температуры участков пола.

Для этого можно воспользоваться очень простой формулой: L = S / N * 1,1 , где

S - площадь помещения или контура, для которого рассчитывается длина трубы (м 2);
N - шаг укладки;
1,1 - запас трубы в 10% на повороты.

К полученному результату не забудьте добавить длину трубы от коллектора до теплого пола, включая подачу и обратку.

Для примера рассмотрим задачу, в которой нужно подсчитать длину трубы для комнаты, в которой пол занимает полезную площадь 12 м 2 . Расстояние от коллектора до теплого пола - 7 м. Шаг укладки трубы 15 см (не забудьте перевести в м).

Решение: 12 / 0,15 * 1,1 + (7 * 2) = 102 м.

7. Какова максимальная длина одного контура?

Все зависит от гидравлического сопротивления или потерь давления в конкретном контуре, которые, в свою очередь, напрямую зависят как от диаметра используемых труб, так и от объема теплоносителя, который подается через сечение этих труб в единицу времени.

В случае с теплым полом, (если не учитывать вышеизложенные факторы) можно получить эффект так называемой запертой петли. Ситуация, при которой сколь мощный бы по напору насос вы не ставили, циркуляция через эту петлю будет невозможна.

На практике установлено, что потери давления, равные 20 кПа или 0,2 бара как раз приводят к такому эффекту.

Для того, чтобы не вдаваться в расчеты, приведем некоторые рекомендации, используемые нами на практике.
Для металлопластиковой трубы диаметром 16 мм мы делаем контур не больше 100 м. Обычно придерживаемся 80 м.
То же самое касается и труб из полиэтилена. Для 18 трубы из сшитого полиэтилена максимальная длина контура 120 м. На практике придерживаемся 80 - 100 м. Для 20 металлопластиковой трубы максимальная длина контура составляет 120 - 125 м.

8. Могут ли быть контура теплого пола разной длины?

Идеальная ситуация, когда все петли одинаковой длины. Не нужно ничего балансировать, настраивать.

На практике это достичь можно, но чаще всего не целесообразно.

К примеру, на объекте есть группа помещений, где нужно сделать теплый пол. Среди них также есть санузел, полезная площадь теплого пола в котором 4 м 2 . Соответственно длина трубопровода этого контура вместе с длиной труб до коллектора составляет всего лишь 40 м.
Неужели все помещения нужно обязательно подстраивать под эту длину, дробя полезную площадь оставшихся помещений по 4 м 2 ?

Конечно же нет. Это не целесообразно. И потом для чего балансировочная арматура, которая как раз и призвана для того, чтобы помочь уравнять потерю давления по контурам?

Опять же можно воспользоваться расчетами, через которые можно увидеть, до какого максимального предела можно допустить разброс длин труб отдельных контуров на конкретном объекте при данном оборудовании.

Но опять же, не погружая вас в сложные скучные расчеты, скажем, что мы на своих объектах допускаем разброс по длинам труб отдельных контуров в 30 - 40%. Также, при необходимости можно "играть" диаметрами труб, шагом укладки и "резать" площади больших помещений не на мелкие или крупные, а на средние куски.

9. Сколько контуров можно подключить к одному узлу смешения с одним насосом?

Этот вопрос по физическому смыслу похож на вопрос: "Сколько груза можно увезти на машине?"

Что вы еще хотели бы узнать, если бы кто-то задал вам этот вопрос?

Абсолютно правильно. Вы спросили бы: "О какой машине идет речь?"

Поэтому в вопросе: "Сколько петель можно подключать к коллектору теплого пола?", нужно учитывать диаметр коллектора и какой объем теплоносителя способен пропускать через себя узел смешения за единицу времени (принято считать м 3 /час). Или, что также равноценно, какую тепловую нагрузку способен нести выбранный вами узел смешения?

Как это узнать? Очень просто.

Для наглядности покажем на примере.

Предположим, в качестве узла смешения вы взяли Combimix компании Valtec. На какую тепловую нагрузку он рассчитан? Берем его паспорт. Смотри вырезку из паспорта.

Что мы видим?

Его максимальный коэффициент пропускной способности составляет 2,38 м 3 /час. Если ставим насос Grundfos UPS 25 60, то на третьей скорости при данном коэффициенте этот узел способен "утащить" нагрузку в 17000 Вт или 17 кВт.

Что это означает на практике? 17 кВт это сколько контуров?

Представим, что у нас есть дом, в котором есть сколько-то (неизвестно) помещений по 12 м 2 полезной площади теплого пола в каждом помещении. Трубы у нас уложены с шагом 20 см, что приводит к длине каждого контура, учитывая длину труб от самого теплого пола до коллектора, 86 м. В согласии с проектными расчетами мы также получили, что теплосъем с каждого м 2 этого теплого пола дает 80 Вт, что приводит нас соответственно к тепловой нагрузке каждого контура

12 * 80 = 960 Вт .

Какое кол-во помещений или подобных контуров способен обеспечить теплом наш узел смешения?

17000 / 960 = 17,7 подобных контуров или помещений.

Но это максимально!

На практике же в большинстве случаев не нужно делать расчет на максимальные показатели. Поэтому остановимся на цифре 15.

У самой же компании Valtec к этому узлу есть коллектор с максимальным количеством выходов - 12.

10. Нужно ли делать несколько контуров теплого пола в больших помещениях?

В больших помещениях конструкцию теплого пола нужно делить на меньшие площади и делать несколько контуров.

Эта необходимость возникает как минимум по двум причинам:

    ограничение длины трубы контура необходимо, чтобы не получить эффект "запертой петли", при котором через нее не будет циркуляции теплоносителя;

    правильная работа самой цементной заливной плиты, площадь которой не должна превышать 30 м 2 . С оотношение длин ее сторон должно быть 1/2 и длина одного из краев не должна превышать 8 м.

11. Как узнать, сколько контуров теплого пола понадобится для моего дома?

Для того чтобы понять какое количество петель теплого пола понадобится и на основании этого подобрать подходящий коллектор с таким же количеством выходов, нужно отталкиваться от площади самих помещений, в которых планируется эта система.

После этого вы вычисляете полезную площадь теплого пола. Как это сделать описано в 12 вопросе "Как подсчитать полезную площадь теплого пола? ".

Затем, воспользуйтесь следующим способом: отталкиваясь от шага теплого пола, разбейте полезную площадь теплого пола в каждом помещении на следующие размеры:

  • шаг 15 см - не более 12 м 2 ;
  • шаг 20 см - не более 16 м 2 ;
  • шаг 25 см - не более 20 м 2 ;
  • шаг 30 см - не более 24 м 2 .

Если площадь пола в помещении меньше указанных размеров, то ее разбивать не нужно.
Рекомендуем уменьшить эти значения на 2 м 2 , если длина присоединения труб от теплого пола до коллектора превышает 15 м.
Разбивая полезную площадь пола в помещениях, старайтесь также достичь того, чтобы длина труб в этих контурах была либо одинаковой, либо разница между отдельными контурами не превышала 30 - 40 %. Как узнать длину труб в каждом контуре, читайте в 6 вопросе "Как подсчитать длину трубы? ".

От каждой из стен помещения отступите по 30 см. Заштрихуйте получившееся пространство. Отметьте на плане участки, где будет постоянно стоять мебель: холодильник, мебельная стенка, диван, большой шкаф и т.д. Эти участки также заштрихуйте. Незаштрихованная часть плана помещения и будет той полезной площадью теплого пола, которую вы ищете.

Для наглядности давайте подсчитаем полезную площадь столовой, где будет теплый пол. Общая площадь столовой 20 м 2 , длина стен соответственно 4 м и 5 м. На кухне будет стоять кухонный гарнитур, холодильник и диван, которые отметим на плане. Не забудем отступить от стен по 30 см. Заштрихуем занятые участки. Смотрите рисунок.

А теперь подсчитаем полезную площадь теплого пола.

13. Какой общей толщины получается пирог теплого пола?

Все зависит от толщины утеплителя, так как остальные величины известны.

При следующей толщине утеплителя у вас получатся такие значения (толщина отделочного покрытия не учитывается):

      • 3 см - 9,5 см;
      • 8 см - 14,5 см;
      • 9 см - 15,5 см.

14. Чем пользуетесь вы для расчета системы водяного теплого пола?

Для расчета как систем радиаторного отопления, так и для систем теплого пола мы используем программу Audytor CO компании .

Ниже мы выкладываем скриншот модуля этой программы по предварительному расчету теплого пола и скриншот модуля по расчету слоев пирога теплого пола.

При внимательном рассмотрении этих скриншотов можно понять насколько серьезным является правильный расчет теплого пола.

Также можно увидеть работу самой программы, которая делает возможным проведение визуального контроля над такими важными параметрами как длина трубы, потери давления, температура на поверхности пола, тепло, уходящее бесполезно вниз, полезный тепловой поток и т.д.

15. Как определить габариты коллекторного шкафа, чтобы разместить в нем все необходимые узлы?

Определить габариты коллекторного шкафа не сложно. Мы вновь предлагаем воспользоваться продукцией компании Valtec и их готовыми рекомендациями, представленными в таблице, при условии, что вы пользуетесь уже готовыми узлами для теплого пола, выпускаемыми этим производителем.

Линейные размеры коллекторного шкафа

(ШРН - наружный; ШРВ - внутренний)

Модель Длина, мм Глубина, мм Высота, мм
ШРВ1 670 125 494
ШРВ2 670 125 594
ШРВ3 670 125 744
ШРВ4 670 125 894
ШРВ5 670 125 1044
ШРВ6 670 125 1150
ШРВ7 670 125 1344
ШРН1 651 120 453
ШРН2 651 120 553
ШРН3 651 120 703
ШРН4 651 120 853
ШРН5 651 120 1003
ШРН7 658 121 1309


Подбор коллекторного шкафа

Коллекторные группы 1
(VT.594, VT59)

Модель шкафа
ШРН/ШРВ +
Combimix +
шаровый кран

Модель шкафа
ШРН/ШРВ +
Dualmix +
шаровый кран
Модель шкафа
ШРН/ШРВ + кран
Коллектор 1*3вых ШРН3/ШРВ3 ШРН4/ШРВ4 ШРН1/ШРВ1
Коллектор 1*4вых ШРН3/ШРВ3 ШРН4/ШРВ4 ШРН2/ШРВ2
Коллектор 1*5вых ШРН4/ШРВ3 ШРН5/ШРВ4 ШРН2/ШРВ2
Коллектор 1*6вых ШРН4/ШРВ4 ШРН5/ШРВ5 ШРН3/ШРВ3
Коллектор 1*7вых ШРН4/ШРВ4 ШРН5/ШРВ5 ШРН3/ШРВ3
Коллектор 1*8вых ШРН5/ШРВ4 ШРН6/ШРВ5 ШРН3/ШРВ3
Коллектор 1*9вых ШРН5/ШРВ5 ШРН6/ШРВ6 ШРН4/ШРВ4
Коллектор 1*10вых ШРН5/ШРВ5 ШРН6/ШРВ6 ШРН4/ШРВ4
Коллектор 1*11вых ШРН6/ШРВ5 ШРН7/ШРВ6 ШРН4/ШРВ4
Коллектор 1*12вых ШРН6/ШРВ6 ШРН7/ШРВ7 ШРН5/ШРВ5

16. На какой высоте нужно устанавливать коллекторный шкаф?

На этот счет нет никаких конкретных правил, но есть рекомендации.

С одной стороны, понятно, что монтируя коллекторный шкаф, нужно учитывать высоту будущей стяжки и отделки, чтобы не получилась ситуация, когда невозможно будет открыть даже дверцу шкафа.

С другой стороны, нужно учитывать удобство обслуживания и необходимость возможной замены отдельных элементов системы с вероятностью отсоединения трубопровода.

Чем короче отрезок трубы, тем больше его жесткость и наоборот.

Учитывая этот фактор, можно сделать подъем коллекторного шкафа на 20 - 25 см от уровня чистого пола.

Однако, нельзя забывать об очень важном дизайнерском элементе. Если подъем шкафа приводит к недопустимому нарушению дизайна и невозможно решить эту задачу другим способом, опускайте шкаф к уровню пола, но с тем расчетом, чтобы он мог открываться.

Несмотря на сложность монтажа, напольный подогрев с помощью водяного контура считается одним из наиболее рентабельных методов отопления помещения. Чтобы система функционировала максимально эффективно и не давала сбоев, надо правильно выполнить расчет труб для теплого пола – определить длину, шаг петли и схему укладки контура.

От этих показателей во многом зависит комфортность пользования водяным обогревом. Именно эти вопросы мы будем разбирать в нашей статье – расскажем, как подобрать оптимальный вариант труб, учитывая технические характеристики каждой разновидности. Также после прочтения этой статьи вы сможете правильно выбрать шаг укладки и рассчитать необходимый диаметр и длину контура теплого пола для конкретного помещения.

На стадии проектирования необходимо решить ряд вопросов, определяющих теплого пола и режим эксплуатации – подобрать толщину стяжки, насос и другое необходимое оборудование.

Технические аспекты организации отопительной ветки во многом зависят от ее назначения. Помимо назначения, для точного расчета метража водяного контура понадобится ряд показателей: площадь покрытия, плотность теплового потока, температура теплоносителя, вид напольного покрытия.

Площадь покрытия трубами

При определении габаритов основания под укладку труб в учет берется пространство, не загроможденное крупной техникой и встроенной мебелью. Необходимо заранее продумать компоновку предметов в помещении.

Если водяной пол используется как основной поставщик тепла, то его мощности должно хватать для возмещения 100% тепловых потерь. Если змеевик – дополнение к радиаторной системе, то он обязан покрывать 30-60% издержек теплоэнергии помещения

Тепловой поток и температура теплоносителя

Плотность теплового потока – это расчетный показатель, характеризующий оптимальное количество теплоэнергии для отопления комнаты. Величина зависит от ряда факторов: теплопроводности стен, перекрытий, площади остекления, наличия утепления и интенсивности воздухообмена. Исходя из теплового потока, определяется шаг укладки петли.

Максимальный показатель температуры теплоносителя – 60 °С. Однако толщина стяжки и напольное покрытие сбивают температуру – по факту на поверхности пола наблюдается около 30-35 °С. Разница между термопоказателями на входе и выходе контура не должна превышать 5 °С.

Вид напольного покрытия

Финишная отделка влияет на эффективность системы. Оптимальная теплопроводность у кафеля и керамогранита – поверхность быстро нагревается. Хороший показатель КПД водяного контура при использовании ламината и линолеума без теплоизоляционной прослойки. Наименьшая теплопроводность у деревянного покрытия.

Степень теплоотдачи зависит и от материала заливки. Максимально эффективна система при использовании тяжелого бетона с природным заполнителем, например, морской галькой мелкой фракции.

Цементно-песчаный раствор обеспечивает средний уровень теплоотдачи при разогреве теплоносителя до 45 °С. КПД контура существенно падает при устройстве полусухой стяжки

При расчете труб для теплого пола следует учесть установленные нормы температурного режима покрытия:

  • 29 °С – жилая комната;
  • 33 °С – помещения повышенной влажности;
  • 35 °С – проходные зоны и пояса холода – участки вдоль торцевых стен.

Немаловажное значение для определения плотности укладки водяного контура отыграют климатические особенности региона. При расчете теплопотерь надо учитывать минимальную температуру зимой.

Как показывает практика, сократить нагрузку поможет предварительное утепление всего дома. Есть смысл сначала теплоизолировать помещение, а после приступать к расчету теплопотерь и параметров трубного контура.

Оценка технических свойств при выборе труб

Ввиду нестандартных условий эксплуатации к материалу и типоразмеру змеевика водяного пола предъявляются высокие требования:

  • химическая инертность , стойкость к коррозийным процессам;
  • наличие абсолютно гладкого внутреннего покрытия , не склонного к образованию известковых наростов;
  • прочность – изнутри на стенки постоянно воздействует теплоноситель, а снаружи – стяжка; труба должна выдерживать напор до 10 Бар.

Желательно, чтоб отопительная ветвь имела небольшой удельный вес. Пирог водяного пола и без того оказывает существенную нагрузку на перекрытие, а тяжелый трубопровод только усугубит ситуацию.

Согласно СНиП в закрытых отопительных системах запрещено применение сварных труб независимо от вида шва: спирального или прямого

К перечисленным требованиям в той или иной мере соответствуют три категории трубного проката: сшитый полиэтилен, металлопластик, медь.

Вариант #1 – сшитый полиэтилен (PEX)

Материал имеет сетчатую широкоячеистую структуру молекулярных связей. От обычного полиэтилена модифицированный отличается наличием как продольных, так и поперечных связок. Такое строение повышает удельный вес, механическую прочность и химическую стойкость.

Водяной контур из PEX-труб обладает рядом преимуществ:

  • высокая эластичность , позволяющая укладывать змеевик с малым радиусом загиба;
  • безопасность – при нагреве материал не выделяет вредных компонентов;
  • термостойкость : размягчение – от 150 °С, плавление – 200 °С, горение – 400 °С;
  • сохраняет структуру при температурных колебаниях;
  • устойчивость к повреждениям – биологическим разрушителям и химическим реагентам.

Трубопровод сохраняет первоначальную пропускную способность – на стенках не откладывается осадок. Ориентировочный срок службы PEX-контура – 50 лет.

К недостаткам сшитого полиэтилена можно отнести: боязнь солнечных лучей, негативное воздействие кислорода при его проникновении вовнутрь структуры, необходимость жесткой фиксации змеевика при укладке

Различают четыре группы изделий:

  1. PEX-a – пероксидная сшивка . Достигается наиболее прочная и равномерная структура с плотностью связей до 75%.
  2. PEX-b – силановая сшивка . В технологии используются силаниды – токсичные вещества, недопустимые к бытовому использованию. Производители водопроводной продукции заменяют его безопасным реагентом. К установке допустимы трубы с гигиеническим сертификатом. Плотность сшивки – 65-70%.
  3. PEX-c – радиационный метод . Полиэтилен подвергается облучению потоком гамма-лучей или электроном. В результате связи уплотняются до 60%. Недостатки PEX-с: небезопасность применения, неравномерность сшивки.
  4. PEX-d – азотирование . Реакция по созданию сетки протекает за счет радикалов азота. На выходе получается материал с плотностью сшивки порядка 60-70%.

Прочностные характеристики PEX-труб зависят от метода сшивки полиэтилена.

Если вы остановились на трубах из сшитого полиэтилена, рекомендуем ознакомиться с системы теплого пола из них.

Вариант #2 – металлопластик

Лидер трубного проката для обустройства теплых полов – металлопластик. Конструктивно материал включает пять слоев.

Внутреннее покрытие и внешняя оболочка – полиэтилен высокой плотности, придающей трубе необходимую гладкость и термостойкость. Промежуточный слой – алюминиевая прокладка

Металл увеличивает прочность магистрали, снижает показатель температурного расширения и выступает антидиффузным барьером – перекрывает поступление кислорода к теплоносителю.

Особенности металлопластиковых труб:

  • хорошая теплопроводность;
  • способность удерживать заданную конфигурацию;
  • рабочая температура с сохранением свойств – 110 °С;
  • малый удельный вес;
  • бесшумность перемещения теплоносителя;
  • безопасность применения;
  • коррозийная стойкость;
  • длительность эксплуатации – до 50 лет.

Недостаток композитных труб – недопустимость изгибания касательно оси. При многократном скручивании есть риск повреждения алюминиевой прослойки. Рекомендуем ознакомиться с металлопластиковых труб, что поможет избежать повреждений.

Вариант #3 – трубы из меди

По технико-эксплуатационным характеристикам желтый металл станет лучшим выбором. Однако его востребованность ограничивается высокой стоимостью.

По сравнению с синтетическими трубопроводами медный контур выигрывает по нескольким пунктам: теплопроводность, термическая и физическая прочность, неограниченная вариативность изгиба, абсолютная непроницаемость для газов

Кроме дороговизны, медному пайпингу присущ дополнительный минус – сложность . Для сгибания контура понадобится пресс-машина или .

Вариант #4 – полипропилен и нержавейка

Иногда отопительную ветку создают из полипропиленовых или нержавеющих гофрированных труб. Первый вариант доступен по цене, но довольно жесткий на изгиб – минимальный радиус от восьми диаметров изделия.

Это значит, что трубы типоразмером в 23 мм придется располагать друг от друга на дистанции 368 мм - увеличенный шаг укладки не обеспечит равномерность обогрева.

Нержавеющие трубы отличаются высокой теплопроводностью и хорошей гибкостью. Минусы: недолговечность уплотнительных резинок, создание гофрой сильного гидравлического сопротивления

Возможные способы укладки контура

Для того чтобы определить расход трубы на обустройство теплого пола, следует определиться со схемой размещения водного контура. Основная задача планирования раскладки – обеспечение равномерного обогрева с учетом холодных и неотапливаемых зон помещения.

Возможны следующие варианты раскладки: змейкой, двойной змейкой и улиткой. При выборе схемы надо учитывать размеры, конфигурацию помещения и расположение наружных стен

Способ #1 – змейка

Теплоноситель подается к системе вдоль стены, проходит по змеевику и возвращается к . В этом случае половина помещения прогревается горячей водой, а остаток – охлажденной.

При укладке змейкой невозможно добиться равномерности обогрева – разница температур может достигать 10 °С. Метод применим в узких помещениях.

Схема угловой змейки оптимально подходит, если необходимо максимально утеплить холодную зону у торцевой стены или в прихожей

Двойная змейка позволяет достичь более мягкого перехода температур. Прямой и обратный контур идет параллельно друг другу.

Способ #2 – улитка или спираль

Это считается оптимальной схемой, обеспечивающей равномерность нагрева напольного покрытия. Прямые и обратные ветки укладываются попеременно.

Дополнительный плюс «ракушки» – монтаж нагревательного контура с плавным поворотом загиба. Этот способ актуален при работе с трубами недостаточной гибкости

На больших площадях реализуют комбинированную схему. Поверхность делят на секторы и под каждый разрабатывают отдельный контур, идущий к общему коллектору. По центру помещения трубопровод выкладывается улиткой, а вдоль наружных стен – змейкой.

У нас на сайте есть другая статья, в которой мы детально рассмотрели теплого пола и привели рекомендации по выбору оптимального варианта в зависимости от особенностей конкретного помещения.

Методика расчета труб

Чтобы не запутаться в вычислениях, предлагаем разделить решение вопроса на несколько этапов. Прежде всего, надо оценить теплопотери помещения, определить шаг укладки, а потом и рассчитать длину отопительного контура.

Принципы построения схемы

Приступая к расчетам и созданию эскиза, следует ознакомиться с базовыми правилами расположения водного контура:

  1. Желательно укладывать трубы вдоль оконного проема – это значительно снизит теплопотери здания.
  2. Рекомендованная площадь покрытия одним водным контуром – 20 кв. м. В больших помещениях необходимо делить пространство на зоны и для каждой прокладывать отдельную отопительную ветку.
  3. Дистанция от стены к первой ветке – 25 см. Допустимый шаг витков труб в центре помещения – до 30 см, по краям и в холодных зонах – 10-15 см.
  4. Определение максимальной длины трубы для теплого пола должно основываться на диаметре змеевика.

Для контура сечением 16 мм допустимо не больше 90 м, ограничение для трубопровода толщиной 20 мм – 120 м. Соблюдение норм обеспечит нормальное гидравлическое давление в системе.

В таблице приведен ориентировочный расход трубы, зависимо от шага петли. Для получения уточненных данных следует учесть запас на повороты и расстояние до коллектора

Базовая формула с пояснениями

Расчет длины контура теплого пола выполняется по формуле:

L=S/n*1,1+k ,

  • L – искомая протяженность отопительной магистрали;
  • S – покрываемая площадь пола;
  • n – шаг укладки;
  • 1,1 – стандартный коэффициент десятипроцентного запаса на изгибы;
  • k – удаленность коллектора от пола – учитываются расстояние до разводки контура на подаче и обратке.

Решающее значение отыграет площадь покрытия и шаг витков.

Для наглядности на бумаге надо составить план помещения с указанием точных размеров и обозначить прохождение водного контура

Следует помнить, что размещение отопительных труб не рекомендовано под крупной бытовой техникой и встроенной мебелью. Параметры обозначенных предметов надо вычесть из общей площади.

Чтобы подобрать оптимальную дистанцию между ветками необходимо провести более сложные математические манипуляции, оперируя теплопотерями помещения.

Теплотехнический расчет с определением шага контура

Плотность размещения труб напрямую влияет на величину теплопотока, исходящего от отопительной системы. Для определения требуемой нагрузки необходимо рассчитать издержки тепла зимой.

Тепловые издержки через конструктивные элементы здания и вентиляцию должны полностью компенсироваться выработанной теплоэнергией водяного контура

Мощность отопительной системы определяется формулой:

M=1,2*Q ,

  • М – производительность контура;
  • Q – общие теплопотери помещения.

Величину Q можно разложить на составляющие: расход энергии через ограждающие конструкции и издержки, обусловленные работой вентсистемы. Разберемся, как рассчитать каждый из показателей.

Теплопотери через элементы здания

Необходимо определить расход теплоэнергии для всех ограждающих конструкций: стен, потолка, окон, дверей и т. д. Расчетная формула:

Q1=(S/R)*Δt ,

При определении Δt используется показатель для наиболее холодного времени года.

Термическое сопротивление высчитывается следующим образом:

R=A/Кт ,

  • А – толщина слоя, м;
  • Кт – коэффициент теплопроводности, Вт/м*К.

Для комбинированных элементов сооружения сопротивление всех слоев надо просуммировать.

Коэффициент теплопроводности стройматериалов и утеплителей можно взять из справочника или посмотреть в сопроводительной документации к конкретному изделию

Больше значений коэффициента теплопроводности для самых популярных стройматериалов мы привели в таблице, содержащейся .

Вентиляционные теплопотери

Для расчета показателя используется формула:

Q2=(V*K/3600)*C*P*Δt ,

  • V – объем помещения, куб. м;
  • K – кратность воздухообмена;
  • C – удельная теплоемкость воздуха, Дж/кг*К;
  • P – плотность воздуха при нормальной комнатной температуре – 20 °С.

Кратность воздухообмена большинства помещений приравнивается единице. Исключение составляют дома с внутренней пароизоляцией – для поддержания нормального микроклимата воздух должен обновляться дважды в час.

Удельная теплоемкость – справочный показатель. При стандартной температуре без давления величина составляет 1005 Дж/кг*К.

В таблице приведена зависимость плотности воздуха от окружающей температуры в условиях атмосферного давления – 1,0132 бара (1 Атм)

Суммарные теплопотери

Итоговое количество теплопотерь помещения будет равно: Q=Q1*1,1+Q2 . Коэффициент 1,1 – увеличение энергозатрат на 10% в связи с инфильтрацией воздуха через щели, неплотности строительных конструкций.

Умножив полученное значение на 1,2, получим требуемую мощность теплого пола для возмещения теплопотерь. Используя график зависимости теплового потока от температуры теплоносителя можно определить подходящий шаг и диаметр трубы.

Вертикальная шкала – средний температурный режим водяного контура, горизонтальная – показатель выработки теплоэнергии отопительной системой из расчета на 1 кв. м

Данные актуальны для теплых полов на песчано-цементной стяжке толщиной 7 мм, материал покрытия – керамическая плитка. Для других условий требуется корректировка значений с учетом теплопроводности финишной отделки.

Например, при настиле ковролина значение температуры теплоносителя следует повысить на 4-5 °C. Каждый дополнительный сантиметр стяжки понижает отдачу тепла на 5-8%.

Окончательный выбор длины контура

Зная шаг укладки витков и покрываемую площадь несложно определить расход труб. Если полученная величина больше допустимого значения, то необходимо обустраивать несколько контуров.

Оптимально, если петли имеют одинаковую длину – не надо ничего настраивать и балансировать. Однако на практике чаще возникает необходимость разрыва отопительной магистрали на разные участки.

Разброс длин контуров должен оставаться в пределах 30-40%. Зависимо от назначения, формы помещения можно «играть» шагом петли и диаметрами труб

Конкретный пример расчета отопительной ветки

Предположим, что требуется определить параметры теплового контура для дома площадью 60 квадратных метров.

Для расчета понадобятся следующие данные и характеристики:

  • габариты помещения: высота – 2,7 м, длина и ширина – 10 и 6 м соответственно;
  • в доме 5 металлопластиковых окна по 2 кв. м;
  • внешние стены – газобетон, толщина – 50 см, Кт=0,20 Вт/мК;
  • дополнительное утепление стен – пеноплистирол 5 см, Кт=0,041 Вт/мК;
  • материал потолочного перекрытия – ж/б плита, толщина – 20 см, Кт=1,69 Вт/мК;
  • утепление чердака – плиты пенополистирола толщиной 5 см;
  • габариты входной двери – 0,9*2,05 м, теплоизоляция – пенополиуретан, слой – 10 см, Кт=0,035 Вт/мК.

Шаг 1 - расчет теплопотерь через конструктивные элементы

Термическое сопротивление стеновых материалов:

  • газобетон: R1=0,5/0,20=2,5 кв.м*К/Вт;
  • пенополистирол: R2=0.05/0.041=1.22 кв.м*К/Вт.

Термосопротивление стены в целом составляет: 2,5+1,22=3,57 кв. м*К/Вт. Среднюю температуру в доме принимаем за +23 °C, минимальную на улице 25 °C со знаком минус. Разница показателей – 48 °C.

Вычисление общей площади стены: S1=2,7*10*2+2,7*6*2=86,4 кв. м. От полученного показателя необходимо отнять величину окон и двери: S2=86,4-10-1,85=74,55 кв. м.

Подставляя полученные показатели в формулу, получим стеновые теплопотери: Qc=74,55/3,57*48=1002 Вт

По аналогии рассчитываются тепловые издержки через окна, дверь и потолок. Для оценки энергетических потерь через чердак учитывают теплопроводность материала перекрытия и утеплителя

Итоговое термическое сопротивление потолка равно: 0,2/1,69+0,05/0,041=0,118+1,22=1,338 кв. м*К/Вт. Теплопотери составят: Qп=60/1,338*48=2152 Вт.

Rо=0,56*0,1+0,5*0,9=0,56 кв.м*К/Вт. Здесь 0,1 и 0,9 – доля каждого материала в оконной конструкции.

Теплопотери окна: Qо=10/0,56*48=857 Вт.

С учетом теплоизоляции двери ее тепловое сопротивление составит: Rд=0,1/0,035=2,86 кв. м*К/Вт. Qд=(0,9*2,05)/2,86*48=31 Вт.

Итого теплопотери через ограждающие элементы равны: 1002+2152+857+31=4042 Вт. Результат надо увеличить на 10%: 4042*1,1=4446 Вт.

Шаг 2 - тепло на обогрев + общие теплопотери

Сначала вычислим расход тепла на обогрев поступающего воздуха. Объем помещения: 2,7*10*6=162 куб. м. Соответственно вентиляционные теплопотери составят: (162*1/3600)*1005*1,19*48=2583 Вт.

По данным параметрам помещения, суммарные тепловые издержки составят: Q=4446+2583=7029 Вт.

Шаг 3 - необходимая мощность теплового контура

Рассчитываем оптимальную мощность контура, необходимую для возмещения теплопотерь: N=1.2*7029=8435 Вт.

Исходя из требуемой производительности системы отопления и активной площади помещения, можно определить плотность потока тепла на 1 кв. м

Шаг 4 - определение шага укладки и длины контура

Полученное значение сравниваем с графиком зависимости. Если температура теплоносителя в системе составляет 40 °C, то подойдет контур с параметрами: шаг – 100 мм, диаметр – 20 мм.

Если в магистрали циркулирует вода, разогретая до 50 °C, то интервал между ветками можно увеличить до 15 см и использовать трубу сечением 16 мм.

Считаем длину контура: L=60/0,15*1,1=440 м.

Отдельно необходимо учесть расстояние от коллекторов до тепловой системы.

Выводы и полезное видео по теме

Наглядные видеообзоры помогут сделать предварительный расчет длины и шага теплового контура.

Выбор наиболее эффективного расстояния между ветками напольной системы отопления:

Пособие о том, как узнать длину петли эксплуатируемого теплого пола:

Методику расчета нельзя назвать простой. Одновременно следует учитывать множество факторов, влияющих на параметры контура. Если водяной пол планируется использовать как единственный источник тепла, то эту работу лучше доверить профессионалам – ошибки на этапе планирования могут дорого обойтись .

Подсчитываете необходимый метраж труб для теплого пола и их оптимальный диаметр самостоятельно? Может у вас остались вопросы, которые мы не затронули в этом материале? Задавайте их нашим экспертам в блоке комментариев.

Если вы специализируетесь на расчете труб для обустройства водяного теплого пола и у вас есть, что добавить к изложенному выше материалу, пишите, пожалуйста, свои замечания ниже под статьей.

Без предварительных расчетов неосуществима. Чтобы получить длину труб, мощность всей отопительной системы и других нужных значений, потребуется в онлайн-калькулятор вводить только точные данные. О правилах и нюансах расчета можно узнать далее.

Общие данные для расчета

Первым параметром, который нужно учесть перед расчетами, является выбор варианта отопительной системы: будет ли она основной или вспомогательной. В первом случае она должна обладать большей мощностью, чтобы самостоятельно обогреть весь дом. Второй вариант применим для комнат с малой теплоотдачей радиаторов.

Температурный режим пола выбирается согласно строительным нормам:

  • Поверхность пола жилого помещения должна нагреваться до 29 градусов.
  • По краям комнаты пол может нагреваться до 35 градусов, чтобы компенсировать потери тепла сквозь холодные стены и от сквозняка, исходившего сквозь открывающиеся двери.
  • В ванных комнатах и зонах с высокой влажностью оптимальная температура – 33 градуса.

Если обустройство теплого пола осуществляется под низом паркетной доски, то нужно учесть, что температура не должна превышать 27 градусов, иначе напольное покрытие быстро испортиться.


В качестве вспомогательных параметров используется:
  • Общая длина труб и их шаг (монтажное расстояние между трубами) . Рассчитывается благодаря вспомогательному параметру в виде конфигурации и площади комнаты.
  • Тепловые потери . Такой параметр учитывает теплопроводность материала, из которого построен дом, а также его степень изношенности.
  • Напольное покрытие . Выбор напольного покрытия влияет на теплопроводящую способность пола. Оптимальным является использование кафеля и керамогранита, поскольку они имеют высокую теплопроводность и быстро прогреваются. При выборе линолеума или ламината стоит приобрести материал, не имеющий теплоизоляционной прослойки. От деревянного покрытия стоит отказаться, поскольку такой пол практически не будет нагреваться.
  • Климат местности , в котором стоит постройка с системой теплого пола. Нужно учесть сезонную смену температур в этом крае и самую низкую температуру в зимний период.

Большая часть тепла жилья уходит через его тонкие стены и некачественные материалы оконной конструкции. Перед тем как выполнить рассматриваемую систему отопления, есть смысл утеплить сам дом, а затем уже рассчитывать его теплопотери. Это существенно снизит энергозатраты его владельца.

Расчет трубы для теплого пола

Водяной теплый пол – соединение труб, которые подключаются к коллектору. Он может быть выполнен из металлопластиковых, медных или гофрированных труб. В любом случае, необходимо правильно определить его протяжность. Для этого предлагается использовать графический метод.

На миллиметровой бумаге в масштабе или в натуральную величину прочерчивают будущий контур «нагревательного элемента», предварительно выбрав тип укладки труб. Как правило, выбор делается в пользу одного из двух вариантов:

  • Змейка . Выбирается для небольших жилых помещений, имеющих низкие тепловые потери. Труба располагается как вытянутая синусоида и вытягивается вдоль стены к коллектору. Минус такой укладки в том, что теплоноситель в трубе постепенно остывает, поэтому температура в начале и конце комнаты может сильно отличаться. Например, если длина трубы составляет 70 м, то разница может составить 10 градусов.
  • Улитка . Такая схема предполагает, что труба изначально укладывается вдоль стенок, а затем изгибается на 90 градусов и закручивается. Благодаря такой укладке удается чередовать холодные и горячие трубы, получая равномерно прогревающуюся поверхность.


Выбрав тип укладки, при реализации схемы на бумаге учитываются следующие показатели:
  • Шаг труб, допустимый в спирали, варьируется от 10 до 15 см.
  • Длина труб в контуре не превышает 120 м. Чтобы определить точную длину (L), можно использовать формулу:

    L = S/N * 1,1 , где


    S – площадь, покрываемая контуром (м?);
    N – шаг (м);
    1,1 – коэффициент запаса на изгибы.

    Стоит понимать, что труба должна располагаться цельным отрезком от выхода напорного коллектора и до «обратки».

  • Диаметр прокладываемых труб – 16 мм, а толщина стяжки не превышает 6 см. Встречаются также диаметры 20 и 25. В идеале, чем больше этот параметр, тем выше теплоотдача системы.
Температура теплоносителя и его скорость определяется исходя из усредненных значений:
  • Расход воды в час при пропускном диаметре труб в 16 см может достигать от 27 до 30 л в час.
  • Чтобы прогреть помещение до температуры от 25 до 37 градусов, нужно чтобы система сама нагревалась до 40-55 °С.
  • Снизить температуру в контуре до 15 градусов поможет потеря давления в корпусе 13-15 кПа.
В результате применения графического метода будет известен вход и выход отопительной системы.

Расчет мощности водяного теплого пола

Его начинают так же, как и в предыдущей методике – с подготовки миллиметровой бумаги, только в этом случае на нее необходимо нанести не только контуры, но и расположение окон и дверей. Масштабирование прорисовки: 0,5 метра = 1 см.

Для этого стоит учесть несколько условий:

  • Трубы должны обязательно располагаться вдоль окон, чтобы предупредить существенные теплопотери сквозь них.
  • Максимальная площадь для обустройства теплого пола не должна превышать 20 м2. Если помещение больше, тогда его разбивают на 2 и более частей, и для каждой из них рассчитывают отдельный контур.
  • Необходимо выдержать обязательную величину от стен к первой ветке контура в 25 см.
На выбор диметра труб будет влиять их расположение друг относительно друга, причем оно не должно превышать 50 см. Величина теплоотдачи на 1 м2 равная 50 Вт достигается при шаге труб в 30 см, если при расчете она получается больше, то необходимо уменьшать шаг труб.

Определить количество труб достаточно просто: предварительно измерить их протяженность, а затем умножить ее на масштабный коэффициент, к полученной длине добавить 2 м для подвода контура к стояку. Учитывая, что допустимая длина труб находится в пределах от 100 до 120 м, нужно общую длину разделить на выбранную протяженность одной трубы.

Параметр подложки под теплый пол определяется исходя из площади комнаты, которая получается после умножения длины и ширины помещения. В случае если комната имеет сложную конфигурацию для получения точного результата, его необходимо разбить на сегменты и рассчитать площадь каждого из них.

Примеры расчета водяного теплого пола

Далее вы сможете ознакомиться с двумя примерами расчета водяного теплого пола:

Пример 1

В комнате с длиной стен 4?6 м, мебель в которой занимает практически четвертую ее часть, теплый пол должен занимать не менее 17 м2. Для его выполнения применяются трубы диаметром 20 мм, которые укладываются как змейка. Между ними выдерживается шаг в 30 см. Укладка выполняется вдоль короткой стены.

Перед прокладкой труб необходимо прочертить схему их расположения на полу в наиболее подходящем масштабе. Всего в такой комнате поместиться 11 рядов труб, каждая из которых будет длиной в 5 м, всего получиться 55 м трубопровода. К полученной длине труб добавляется еще 2 м. Именно такое расстояние нужно выдержать до подсоединения к стояку. Общая длина труб будет составлять 57 м.

Если помещение очень холодное, то может потребоваться проложить двухконтурное отопление. Тогда следует запастись не менее 140 м труб, такая протяженность трубопровода поможет компенсировать сильное падение давления на выходе и на входе системы. Можно делать каждый контур разной длины, но отличие между ними не должно быть больше 15 метров. К примеру, один контур выполняется протяженностью 76 м, а второй – 64 м.

Расчет теплого пола можно проводить двумя методами:

  • Для первого способа применяется формула:

    L = S ? 1,1 / B , где


    L – длина трубопровода;
    B – шаг укладки, измеряемый в метрах;
    S – площадь отопления, в м2.
  • Во втором варианте применяются табличные данные, приведенные ниже. Их умножают на площадь контура.

Пример 2

Требуется провести теплый пол в комнате с длиной стен 5х6 м, общая площадь которой составляет 30 м2. Чтобы система эффективно работала, она должна отапливать не менее 70% пространства, что составляет 21 м2. Будем считать, что средние теплопотери – около 80 Вт/м2. Так, удельными будут теплопотери 1680 Вт/м2 (21х80). Желательная температура в комнате – 20 градусов, при этом будут использоваться трубы с диаметром 20 мм. На них ложится 7 см стяжка и плитка. Зависимость между шагом, теплотой теплоносителя, плотностью теплового потока и диаметром труб представлена на схеме:


Так, если имеется 20 мм труба, для компенсации теплопотери 80 Вт/м2 потребуется 31,5 градусов при шаге 10 см и 33,5 градусов при шаге в 15 см.

Температура на поверхности пола на 6 градусов меньше, нежели температура воды в трубах, что обусловлено наличием стяжки и покрытия.

Видео: Расчет теплого водяного пола

Из видео можно будет узнать теорию гидравлики, связанную с обустройством теплых полов, ее применение к вычислениям, пример расчета водяного теплого пола в специальной программе онлайн. Вначале будут рассмотрены простые цепи подключения труб для такого пола, а затем более сложные их варианты, при которых будет производиться расчет всех узлов системы отопления теплого пола:



При самостоятельном вычислении могут возникнуть погрешности. Чтобы избежать их и проверить правильность расчетов, следует воспользоваться компьютерными программами, в которых заложены поправочные коэффициенты. Для вычисления теплого пола нужно выбрать интервал прокладки труб, их диаметр, а также материал. Погрешность вычислений онлайн-программой не превышает 15%.