Температура вспышки, воспламенения, самовоспламенения, застыва­ния, плавления, размягчения. Определение температуры вспышки нефтепродуктов

23.02.2019

Владимир Хомутко

Время на чтение: 4 минуты

А А

Какова температура вспышки нефтепродуктов?

Температура вспышки нефтепродуктов (ТВНП) представляет собой такое значение, при котором из вещества, нагреваемого при стандартных условиях, выделяется количество паров, достаточное для образования в окружающем его воздухе горючей смеси, которая вспыхивает при контакте с огнем.

ТВНП и температура кипения нефтепродуктов, характеризующая степень их испаряемости, находятся в тесной взаимосвязи. Другими словами, чем нефтяная фракция легче, тем выше его испаряемость, а значит – ниже этот важный показатель.

К примеру, ТВНП бензиновых нефтяных фракций находится в отрицательном диапазоне значений (вплоть до минус 40 градусов Цельсия). Керосины образуют горючие воздушные смеси в диапазоне от 28-ми до 60-ти градусов, а различные виды дизельного топлива – от 50-ти до 80-ти градусов. Тяжелые масляные фракции вспыхивают в диапазоне от 130-ти до 325-ти °С. Если говорить о самой сырой нефти, то дня различных видов нефтей ТВНП может быть как отрицательной, так и положительной.

Также ТВНП сильно зависит от присутствия в конкретном продукте влаги, присутствие которой её снижает. Поэтому, для точного определения ТВНП в условиях измерительной лаборатории исследуемое вещество предварительно обезвоживают.

В настоящее время используют два основных метода определения ТВНП, имеющих государственные стандарты:

  • в открытом тигле (по ГОСТ-у 4333-87);
  • в закрытом тигле (по ГОСТ-у 6356-75).

Разница в результатах, получаемых этими методами, может составлять от 20-ти до 30-ти градусов. Это связано с тем, что в открытом тигле часть выделяемых продуктом паров улетучивается в атмосферу, поэтому накопление их количества, достаточного для возникновения горючей смеси, происходит несколько дольше, чем при использовании закрытого тигля. Соответственно, ТВНП, полученная с использованием открытого тигля, будет выше, чем при использовании тигля закрытого типа.

В основном открытый тигль используют для определения этого значения у тех нефтяных фракций, которых относятся к высококипящим. К таким продуктам относятся разные виды нефтяных масел и мазутов. ТВНП считается такая, при которой первое синее пламя на поверхности исследуемого вещества появляется – и сразу исчезает.

По значению этого параметра все нефтепродукты делят на две категории:

  • легковоспламеняющиеся;
  • горючие.

К первой категории относят все нефтяные вещества, у которых этот ТВНП составляет меньше 61-го градуса Цельсия при проверке в закрытом тигле, и не большее 66-ти – в открытом. Горючими считаются вещества, у которых ТВНП больше 61-го и 66-ти градусов соответственно методу исследования.

ТВНП является важнейшим показателем, по которому определяется взрывоопасность (другими словами, при каких условиях пары нефтяного вещества образуют с атмосферным воздухом взрывчатую смесь).

Взрываемость имеет два показателя – нижний предел и верхний предел.

Их суть заключается в том, что при концентрации выделяемых продуктом паров в паровоздушной смеси ниже, чем нижний предел, или выше, чем верхний предел – взрыва не будет. В первом случает это связано с тем, что выделяющееся тепло поглощается избытком воздуха, что не позволяет загореться остальным частям горючего. Во втором случае для взрыва в паровоздушной смеси просто недостаточно кислорода.

Другие показатели, важные для нефтепродуктов

К таким показателям относят температуры воспламенения, самовоспламенения и застывания.

Температура воспламенения нефтепродукта

Эта температура нефтепродуктов всегда выше описанной в первой части статьи. Если для определения значения вспышки появления первого пламени с последующим его затуханием, то для этого показателя необходим такой нагрев, при котором вещество будет гореть постоянно. Разница между этими двумя характеристиками при измерении может составлять от 30-ти до 50-ти градусов.

За температуру воспламенения берется минимальная, при которой вспышка вещества приводит не к моментальному затуханию пламени, а к процессу постоянного горения исследуемого продукта.

Если продолжить нагрев исследуемого нефтяного вещества, избегая его контакта с атмосферным воздухом, а при достижении высоких температурных значений создать такой контакт, то вещество способно самопроизвольно загореться. Минимальные показания прибора, при котором это происходит, и являются температурой его самовоспламенения.

Анализатор температуры вспышки по Пенски-Мартенсу PMA 5

Она находится в прямой зависимости от химического состава нефтепродукта. Самые высокие значения этого показателя характерны для углеводородов ароматической группы, за ними идут нафтеновые и парафиновые вещества.

Зависимость проста – чем легче нефтяная фракция, тем выше значение t самовоспламенения. Например, самовоспламенение бензиновых фракции может происходит в диапазоне от 400 до 450 градусов, а у газойлей – от 320-ти до 360-ти.

Знание этого значения очень важно, поскольку самовоспламенение является достаточно частой причиной возникновения пожаров на предприятиях нефтепереработки, когда любое нарушение герметичности в теплообменниках, трубопроводах или в ректификационных колоннах (например, из-за разгерметизации фланцевых соединений) приводит к самовозгоранию.

Следует помнить, что если на изоляционный материал попадает нефтепродукт, его нужно как можно быстрее заменить, так как каталитическое действие продукта способно вызвать самовозгорание при более низких t, чем температура самовоспламенения.

Определение температуры застывания необходимо для обеспечения нормальной транспортировки с помощью трубопроводов, а также при использовании нефтяных производных в условиях сильных морозов (например, в авиации, где использование быстро застывающего топлива невозможно). В этих сферах крайне важна такая характеристика, как подвижность нефтяных продуктов, от которой зависит степень их прокачиваемости.

ТВО-ЛАБ-11 Автоматический аппарат для определения температуры вспышки в открытом тигле

Температурой застывания считается та, при которой вещество, исследуемое в стандартных условиях, теряет свою подвижность.

Снижение подвижности и полная её потеря может объясняться следующими факторами.

ГОСТ ISO 2719-2013

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ

Методы определения температуры вспышки в закрытом тигле Пенски-Мартенса

Petroleum products. Methods for determination of flash point in Pensky-Martens closed cup


МКС 75.080

Дата введения 2015-01-01

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ" (ФГУП "ВНИЦСМВ") на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4 стандарта, который выполнен ОАО "ВНИИ НП"

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 5 ноября 2013 г. N 61-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

Азстандарт

Казахстан

Госстандарт Республики Казахстан

Киргизия

Кыргызстандарт

Молдова

Молдова-Стандарт

Россия

Росстандарт

Украина

Минэкономразвития Украины

4 Настоящий стандарт идентичен международному стандарту ISO 2719:2002* Determination of flash point - Pensky-Martens closed cup method (Определение температуры вспышки. Метод Пенски-Мартенса в закрытом тигле).
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru . - Примечание изготовителя базы данных.

Настоящий стандарт разработан на основе ГОСТ Р ЕН ИСО 2719-2002 "Нефтепродукты. Методы определения температуры вспышки в закрытом тигле Пенски-Мартенса".

Стандарт ISO 2719:2002 разработан Комитетом ISO/TC 28 "Нефтепродукты и смазочные материалы".

Перевод с английского языка (en).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном информационном фонде технических регламентов и стандартов.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия - идентичная (IDT)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 724-ст межгосударственный стандарт ГОСТ ISO 2719-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Июнь 2014 г.


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет


Предупреждение - В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

1 Область применения

1 Область применения

1.1 Настоящий стандарт устанавливает два метода (А и В) определения температуры вспышки горючих жидкостей, жидкостей, содержащих суспендированные твердые вещества, жидкостей, склонных к образованию пленки на поверхности в условиях испытания, и других жидкостей в аппарате Пенски-Мартенса с закрытым тиглем. Методы распространяются на жидкости, температура вспышки которых выше 40 °С.

Примечание 1 - Обычно испытание технических керосинов с температурой вспышки выше 40 °С проводят по стандарту , но можно провести их испытания и по настоящему стандарту. Испытания неиспользованных смазочных масел обычно проводят по стандарту .

1.2 Метод А применяют для определения температуры вспышки лаков и красок, которые не образуют пленку на поверхности, товарных смазочных масел и других нефтепродуктов, для которых не пригоден метод В.

1.3 Метод В применяют для определения температуры вспышки остаточных жидких топлив, разжиженных битумов, отработанных смазочных масел, жидкостей, склонных к образованию пленки на поверхности; жидкостей, содержащих суспендированные твердые вещества, и высоковязких жидких продуктов, таких как растворы полимеров и клейкие вещества.

Примечание 2 - Для сравнения температур вспышки неиспользованных и отработанных смазочных масел в рамках программы исследований смазочных материалов можно провести испытания отработанных смазочных масел по методу А. Однако данные по прецизионности для таких продуктов установлены только для метода В.

1.4 Настоящий стандарт не распространяется на лаки на водной основе и жидкости, содержащие следы низкокипящих веществ.

Примечание 3 - Испытания лаков на водной основе проводят по стандарту . Жидкости, содержащие следы низкокипящих веществ, можно испытать по стандарту или стандарту .

Примечание 4 - Данные по прецизионности действительны только для интервалов температур вспышки, приведенных в разделе 13.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы*. Для датированных ссылок применяют только указанное издание ссылочного документа, для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения).
_______________
* Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.

ISO 1513:1992 Paints and varnishes - Examination and preparation of samples for testing (Лаки и краски. Проверка и приготовление образцов для испытания)

ISO 3170:2004 Petroleum liquids - Manual sampling (Нефтепродукты жидкие. Ручной отбор проб)

ISO 3171:1988 Petroleum liquids - Automatic pipeline sampling (Нефтепродукты жидкие. Автоматический отбор проб из трубопровода)

ISO 15528:2000 Paints, varnishes and raw materials for paints and varnishes - Sampling (Лаки, краски и сырье для лаков и красок. Отбор проб)

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 температура вспышки (flash point): Минимальная температура, при которой происходит воспламенение паров образца от пламени в установленных условиях испытания при барометрическом давлении 101,3 кПа, при этом пламя распространяется по всей поверхности образца.

4 Сущность метода

В испытательный тигель аппарата Пенски-Мартенса помещают испытуемый образец и нагревают таким образом, чтобы при непрерывном перемешивании происходило постоянное повышение температуры. Источник зажигания опускают через равномерные интервалы времени через отверстие в крышке тигля, одновременно с этим перемешивание прекращают. Самую низкую температуру, при которой источник зажигания вызывает возгорание паров испытуемого образца нефтепродукта, а пламя распространяется по поверхности жидкости, регистрируют как температуру вспышки при фактическом барометрическом давлении. Эту температуру с помощью уравнения приводят к стандартному атмосферному давлению.

5 Реактивы и материалы

5.1 Растворитель для удаления остатков образца из тигля и с крышки.

Примечание - Выбор растворителя зависит от растворимости остатка предварительно испытанного нефтепродукта. Для удаления маслянистых остатков можно использовать низкокипящие ароматические растворители (не содержащие бензол); для смолообразных остатков эффективными могут быть смеси растворителей, например толуол-ацетон-метанол.

5.2 Жидкости для проверки - см. приложение А.

6 Аппаратура

6.1 Аппарат Пенски-Мартенса для определения температуры вспышки в закрытом тигле (приложение В).

Если для испытания применяют автоматическое оборудование, следует убедиться, что полученные результаты находятся в пределах прецизионности настоящего метода и размеры испытательного тигля и крышки соответствуют техническим требованиям, приведенным в приложении В. Кроме того, следует убедиться, что выполнены все инструкции изготовителя по регулировке и эксплуатации при применении автоматического испытательного оборудования.

Примечание - В некоторых случаях при использовании электрического источника зажигания результаты могут отличаться от полученных при использовании запальника в качестве источника зажигания. Кроме того, применение электрических источников зажигания может привести к нестабильным результатам.


В спорных случаях арбитражным является ручное определение температуры вспышки с применением пламенного запала в качестве источника зажигания.

6.2 Термометры для низких, средних и высоких диапазонов температур, характеристики которых приведены в приложении С. Перед началом измерений выбирают термометр в соответствии с предполагаемой температурой вспышки.

Примечание - Можно использовать другие устройства для измерения температуры при условии, что они соответствуют требованиям точности и дают такие же показания, что и термометры, приведенные в приложении С.

6.3 Барометры с погрешностью до 0,1 кПа. Не следует применять барометры, предварительно откорректированные на давление над уровнем моря, которые используют на метеорологических станциях и в аэропортах.

6.4 Нагревательная баня или термостат, обеспечивающий поддержание температуры при нагревании образца с точностью ±5 °С. Термостат должен быть оснащен системой вентиляции и сконструирован таким образом, чтобы не вызывать воспламенение огнеопасных паров, которые могут образовываться при нагревании образца.

Рекомендуется конструкция термостата во взрывобезопасном исполнении.

7 Подготовка аппарата

7.1 Установка аппарата

Аппарат для определения температуры вспышки (6.1) устанавливают на ровной, устойчивой поверхности в помещении без сквозняка.

Примечание 1 - Если сквозняка невозможно избежать, аппарат защищают экраном со всех сторон.

Примечание 2 - Если испытуемые образцы выделяют ядовитые пары, испытательный аппарат должен быть установлен в вытяжном шкафу с регулируемым потоком отходящего воздуха. Поток отходящего воздуха регулируют таким образом, чтобы пары отводились, не создавая вихревых потоков воздуха над тиглем.

7.2 Очистка испытательного тигля

Испытательный тигель и крышку, включая комплектующие, моют соответствующим растворителем (5.1) для удаления любых следов смолы или остаточных продуктов, оставшихся от предыдущего испытания. Затем тигель сушат потоком чистого воздуха для полного удаления используемого растворителя.

7.3 Сборка испытательного аппарата

Тигель, крышку и другие детали проверяют на наличие повреждений или отложений. Аппарат собирают в соответствии с приложением В.

7.4 Проверка испытательного аппарата

7.4.1 Правильность работы испытательного аппарата проверяют не реже одного раза в год испытанием сертифицированного стандартного материала (CRM) по методу А. Полученный результат должен быть равен или отличаться от значения CRM не более чем , где - воспроизводимость метода (таблица 3).

Рекомендуется проводить более частые проверки, используя вторичные рабочие стандарты (SWS) (5.2).

В приложении А приведена рекомендуемая процедура для проверки испытательного аппарата с использованием CRM и SWS, а также приготовление SWS.

7.4.2 Значения, полученные во время проверки, не могут быть использованы ни для определения отклонения (смещения), ни для любой корректировки температур вспышки, впоследствии определяемых с использованием испытательного аппарата.

8 Отбор проб

8.1 Если не установлено иное, отбор проб проводят по ISO 15528, ISO 3170, ISO 3171 или эквивалентным национальным стандартам.

8.2 Пробу помещают в герметичные контейнеры, подходящие для отбираемого материала. Для обеспечения безопасности следует убедиться, что контейнер для пробы заполнен только на 85%-95% вместимости.

8.3 Пробы хранят в условиях, при которых потери от испарения и повышение давления минимальны. Следует избегать хранения проб при температуре выше 30 °С.

9 Подготовка образцов

9.1 Нефтепродукты

9.1.1 Отбор проб для испытания

Отбор проб для испытания проводят при температуре не менее чем на 28 °С ниже ожидаемой температуры вспышки. Если до испытания образец должен находиться на хранении, следует убедиться, что контейнер заполнен более чем на 50% его вместимости (примечание к 10.1).

9.1.2 Пробы, содержащие нерастворенную воду

Если проба содержит нерастворенную воду, перед перемешиванием ее следует отделить от воды.

Присутствие воды может влиять на результаты определения температуры вспышки. Для некоторых жидких топлив и смазочных масел пробу не всегда можно отделить от свободной воды. В таких случаях вода должна быть физически отделена от пробы нефтепродукта или, если это невозможно, испытание пробы проводят по стандарту .

9.1.3 Пробы жидкие при температуре окружающей среды

Перед отбором пробы для испытания образец перемешивают вручную осторожным встряхиванием, следя за тем, чтобы минимизировать потери низкокипящих компонентов, а далее действуют в соответствии с разделом 10.

9.1.4 Пробы полутвердые или твердые при температуре окружающей среды

Контейнер с пробой нагревают в нагревательной бане или термостате (6.4) в течение 30 мин при температуре (30±5) °С или при более высокой температуре, не превышающей ожидаемую температуру вспышки на 28 °С. Если проба не становится полностью жидкой через 30 мин, то ее предварительное нагревание продолжают по мере необходимости дополнительными периодами по 30 мин. Следует избегать перегрева пробы, что может привести к потере низкокипящих компонентов. Далее после осторожного перемешивания поступают в соответствии с разделом 10.

9.2 Краски и лаки

Подготовку проб проводят по ISO 1513.

10 Проведение испытания

10.1 Общие положения

Примечание - Результаты определения температуры вспышки могут быть искажены, если контейнер заполнен пробой менее чем на 50% его вместимости.


Следует быть внимательным при испытании образцов мазута, содержащих значительное количество воды, так как нагревание таких образцов может вызвать их вспенивание и выброс из испытательного тигля.

10.2 Метод А

10.2.1 По барометру (6.3) записывают давление окружающей среды около аппарата во время испытания.

Примечание - Нет необходимости корректировать давление окружающей среды на 0 °С, хотя некоторые барометры выполняют эту корректировку автоматически.

10.2.2 Испытательный тигель заполняют образцом (7.3) до метки. Тигель закрывают крышкой и помещают в нагревательную камеру. Убеждаются, что он расположен нормально и запирающий механизм зафиксирован, затем помещают термометр (6.2). Зажигают запальное пламя и регулируют, чтобы его диаметр был в пределах от 3 до 4 мм, или включают альтернативный источник запального пламени. Зажигают нагревательное пламя (нагревательную горелку) или включают электрический нагреватель и нагревают с такой скоростью, чтобы температура испытуемого образца, фиксируемая термометром, повышалась на 5 °С - 6 °С в минуту; эту скорость нагревания поддерживают в течение всего испытания.

Перемешивают испытуемый образец сверху вниз со скоростью от 90 до 120 об/мин.

10.2.3 Если ожидаемая температура вспышки испытуемого образца не выше 110 °С, первое испытание пламенем проводят при достижении температуры испытуемой пробы на (23±5) °С ниже ожидаемой температуры вспышки и далее с интервалами 1 °С. Перемешивание прерывают и проводят зажигание, запуская механизм, расположенный на крышке, который управляет заслонкой и запальным устройством таким образом, что пламя опускается в паровое пространство тигля в течение 0,5 с, остается в нижнем положении 1 с и быстро возвращается в верхнее положение.

10.2.4 Если ожидаемая температура вспышки выше 110 °С, первое испытание пламенем проводят при достижении температуры испытуемого образца на (23±5) °С ниже ожидаемой температуры вспышки и далее с интервалами 2 °С. Перемешивание прерывают и проводят зажигание, запуская расположенный на крышке механизм, который управляет заслонкой и зажигательным устройством таким образом, что пламя опускается в паровое пространство тигля в течение 0,5 с, остается в нижнем положении 1 с и быстро возвращается в верхнее положение.

10.2.5 Если температура вспышки испытуемого продукта неизвестна, то проводят предварительное испытание при подходящей исходной температуре. Первое поджигание проводят при температуре на 5 °С выше исходной температуры, затем действуют в соответствии с процедурой, приведенной в 10.2.3 или 10.2.4.

10.2.6 В качестве наблюдаемой температуры вспышки записывают температуру испытуемого образца по показанию термометра в то время, когда пламя запального устройства вызывает четко выраженную вспышку внутри испытательного тигля.

Температуру вспышки не следует путать с голубоватым ореолом, который иногда окружает источник зажигания перед тем, как он вызывает вспышку.

10.2.7 Если температура, при которой наблюдается вспышка, отличается менее чем на 18 °С и более чем на 28 °С от температуры, при которой было проведено первое применение источника зажигания, результат считают недействительным. В этом случае испытание повторяют с другой порцией образца, а температуру, при которой зажигательное устройство вводят впервые, подбирают таким образом, чтобы был получен достоверный результат, следовательно, температура вспышки должна быть на18 °С - 28 °С выше температуры, при которой проводилось первое испытание пламенем.

10.3 Метод В

10.3.1 Записывают давление окружающей среды по барометру (6.3) вблизи аппарата во время испытания (см. примечание к 10.2.1).

10.3.2 Помещают испытуемый образец в испытательный тигель (7.3) до метки. Тигель закрывают крышкой и помещают в нагревательную камеру. Убеждаются, что он расположен нормально и зафиксирован, и затем вставляют термометр (6.2). Зажигают пламя и устанавливают диаметр запального пламени в пределах от 3 до 4 мм либо включают альтернативный источник зажигания. Затем осуществляют нагревание, поджигая нагревательное пламя или включая электрический нагреватель, чтобы температура испытуемого образца, фиксируемая термометром, поднималась со скоростью от 1 °С до 1,5 °С в минуту; эту скорость нагревания сохраняют во время всего испытания. Испытуемый образец перемешивают сверху вниз со скоростью (250±10) об./мин.

10.3.3 Выполняют испытание согласно 10.2.3-10.2.7, за исключением требований по скорости нагревания и скорости перемешивания, приведенных в 10.3.2.

11 Вычисления

11.1 Пересчет показаний барометрического давления

Если барометрическое давление измерено в единицах, отличных от килопаскалей, то его пересчитывают по одному из следующих выражений:

значение в гектопаскалях0,1 = значение в килопаскалях;

значение в миллибарах0,1 = значение в килопаскалях;

значение в миллиметрах ртутного столба1,333 = значение в килопаскалях.

11.2 Пересчет наблюдаемой температуры вспышки на стандартное атмосферное давление

Температуру вспышки , с поправкой на стандартное атмосферное давление 101,3 кПа, рассчитывают по формуле

где - температура вспышки при барометрическом давлении окружающей среды, °С;

- барометрическое давление окружающей среды, кПа.

Примечание - Эта формула действительна только для барометрического давления в диапазоне от 98,0 до 104,7 кПа.

12 Обработка результатов

Записывают температуру вспышки с поправкой на стандартное атмосферное давление, округляя до 0,5 °С.

13 Прецизионность

13.1 Общие положения

Прецизионность, определенная статистической оценкой результатов межлабораторных испытаний по стандарту , приведена в 13.2 и 13.3.

13.2 Повторяемость (сходимость)

Расхождение между двумя результатами испытаний, полученными одним оператором на одной и той же аппаратуре при постоянных условиях на идентичном испытуемом материале при нормальном и правильном выполнении метода испытания в течение длительного времени, может превышать значения, приведенные в таблицах 1 и 2, только в одном случае из двадцати.

Таблица 1 - Повторяемость для метода А

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Повторяемость

Краски и лаки

От 40 до 250 включ.



Таблица 2 - Повторяемость для метода В

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Повторяемость

От 40 до 110

Отработанные смазочные масла

От 170 до 210

Жидкости, склонные к образованию пленки на поверхности; жидкости с суспендированными твердыми материалами; высоковязкие продукты

Данные, полученные для одного образца дизельного моторного топлива, испытанного в 20 лабораториях.

Данные по прецизионности были определены Комитетом ASTM D-1.

13.3 Воспроизводимость

Расхождение между двумя независимыми результатами испытаний, полученными разными операторами, работающими в разных лабораториях, на идентичном испытуемом материале при нормальном и правильном выполнении метода испытаний в течение длительного времени, может превышать значения, приведенные в таблицах 3 и 4, только в одном случае из двадцати.

Таблица 3 - Воспроизводимость для метода А

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Воспроизводимость

Краски и лаки

Дистилляты и свежие смазочные масла

От 40 до 250

Среднеарифметическое значение сравниваемых результатов испытания.


Таблица 4 - Воспроизводимость для метода В

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Воспроизводимость

Остаточные топлива и разжиженные битумы

От 40 до 110

Отработанные смазочные масла

От 170 до 210

Жидкости, склонные к образованию поверхностной пленки; жидкости с суспендированными твердыми веществами; высоковязкие продукты

Данные получены для одного образца дизельного моторного топлива, испытанного в 20 лабораториях.

Прецизионность установлена Комитетом ASTM D-1.

14 Протокол испытаний

Протокол испытаний должен содержать:

а) обозначение настоящего стандарта и примененную процедуру;

b) тип и полную идентификацию испытуемого образца;

c) температуру предварительного подогрева и время подогрева, если он применялся (9.1.4);

d) барометрическое давление вблизи испытательного аппарата (10.2.1 и 10.3.1);

e) результат испытания (раздел 12);

f) любое отклонение от установленной процедуры испытания;

g) дату проведения испытания.

Приложение А (справочное). Проверка аппарата

Приложение А
(справочное)

А.1 Общие положения

В настоящем приложении изложены процедура приготовления вторичных рабочих стандартов (SWS) и метод для контрольной проверки с использованием SWS и сертифицированного стандартного материала (CRM).

Функционирование аппарата (ручного или автоматического) следует регулярно проверять с использованием CRM, приготовленного по стандартам и , или SWS, приготовленных в соответствии с одной из процедур, приведенных в А.2.2. Функционирование аппарата должно быть оценено по стандартам и .

Оценка результата испытания проводится с 95%-ной доверительной вероятностью.

А.2 Стандарты для контрольной проверки

А.2.1 CRM - стабильный индивидуальный углеводород или другое стабильное вещество, температура вспышки которого определена по стандартам и в ходе специальных межлабораторных испытаний по определению сертифицированного значения, характерного для настоящего метода.

А.2.2 SWS - стабильный нефтепродукт или индивидуальный углеводород, или другое стабильное вещество, температура вспышки которого была определена:

а) испытанием представительных образцов не менее трех раз, с использованием аппаратуры, которая предварительно была проверена с использованием CRM, с последующим статистическим анализом полученных результатов, исключая любые выпадающие из них результаты и вычисляя среднеарифметическое значение полученных результатов;

b) проведением межлабораторной программы испытаний по настоящему методу, в которой принимают участие не менее трех лабораторий, выполняющих параллельные испытания представительных образцов. Окончательное значение температуры вспышки должно быть вычислено после проведения статистического анализа результатов, полученных при межлабораторных испытаниях.

SWS хранят в контейнерах, позволяющих сохранить их чистоту, защищенных от прямых солнечных лучей, при температуре не выше 10 °С.

А.3 Проведение испытаний

А.3.1 Выбирают CRM или SWS, температура вспышки которых попадает в диапазон температур, определенный с использованием рассматриваемого аппарата.

CRM и SWS выбирают таким образом, чтобы их температура вспышки находилась в пределах интервала, измеренного с помощью прибора. Приблизительные значения температуры вспышки приведены в таблице А.1.


Таблица А.1 - Приблизительные значения температуры вспышки углеводородов в закрытом тигле

Углеводород

Номинальная температура вспышки, °С

Ундекан

Додекан

Тетрадекан

Гексадекан


Для того чтобы охватить по возможности большую часть используемого диапазона температур, рекомендуется применять два CRM или SWS. Кроме того, рекомендуется провести повторные испытания с применением аликвот CRM или SWS.

А.3.2 Для новой аппаратуры и не менее одного раза в год для работающей аппаратуры выполняют контрольные проверки по 10.2 с использованием CRM (А.2.1).

А.3.3 При промежуточной проверке по 10.2 для контроля используют SWS (А.2.2).

А.3.4 Полученные результаты корректируют на барометрическое давление в соответствии с 11.2. В окончательный отчет записывают откорректированный результат с точностью до 0,1 °С.

А.4 Обработка результатов испытаний

А.4.1 Общая информация

Сравнивают откорректированный результат с сертифицированным значением температуры вспышки CRM или известной температурой вспышки SWS.

В формулах, приведенных в А.4.1.1 и А.4.1.2, предусмотрено, что воспроизводимость была оценена по стандарту , а сертифицированное значение температуры вспышки CRM или заданное значение температуры вспышки SWS было определено с использованием процедур по руководству , и его неопределенность мала по сравнению со стандартным отклонением настоящего метода испытания и, следовательно, мала по сравнению со значением воспроизводимости настоящего метода испытания.

А.4.1.1 Единичное испытание

Для единичного испытания, проведенного с использованием CRM или SWS, разность между единичным результатом и сертифицированным значением температуры вспышки CRM или обозначенным значением температуры вспышки SWS должна находиться в пределах следующего допуска

где - результат испытания;



- воспроизводимость настоящего метода испытания.

А.4.1.2 Многократные испытания

Если ряд повторных испытаний проведен с использованием CRM или SWS, разность между средним значением результатов и сертифицированным значением CRM или обозначенным значением SWS должна находиться в пределах следующего допуска

где - среднеарифметическое значение результатов испытания;

Сертифицированное значение температуры вспышки CRM или обозначенное значение температуры вспышки SWS;

- рассчитывают по формуле

где - повторяемость настоящего метода испытания;

Количество повторных испытаний, выполненных с использованием CRM или SWS.

А.4.2 Если результат испытания находится в пределах установленного допуска, это должно быть записано.

А.4.3 Если результат испытания находится вне пределов требуемого допуска, а для контрольной проверки аппаратуры был использован SWS, это записывают и повторяют испытание с использованием CRM. Если в этом случае результат испытания находится в пределах установленного допуска, это также записывают.

А.4.4 Если результат испытания все еще находится вне пределов требуемого допуска, проверяют испытательную аппаратуру и убеждаются в том, что она соответствует требованиям спецификации. Если не установлены очевидные несоответствия, выполняют еще одну контрольную проверку с использованием CRM. Если результат испытания находится в пределах установленного допуска, это записывают. Если результат испытания все еще находится вне пределов требуемого допуска, то аппаратуру отправляют изготовителю для тщательной проверки.

Приложение В (обязательное). Аппарат Пенски-Мартенса с закрытым тиглем

Приложение В
(обязательное)

В.1 Общая информация

В настоящем приложении приведено описание аппарата, работающего в ручном режиме, нагреваемого газом или электронагревателем и оснащенного источником зажигания с применением пламени. Аппарат состоит из испытательного тигля, крышки со вспомогательным приспособлением и нагревательной камеры, представленных в разделах В.2-В.4. На рисунке В.1 приведен типичный аппарат c газовым нагревателем.

1 - ручка (не обязательна); 2 - передняя часть; 3 - запальник; 4 - обогреватель: газовая горелка или электроэлемент (на рисунке приведена горелка); 5 - металлическая стенка воздушной бани, окружающей тигель, толщиной не менее 6,5 мм; 6 - нагревательная камера; 7 - воздушная баня; 8 - колпак; 9 - крышка; 10 - зажигательное устройство; 11 - гибкий вал; 12 - рукоятка, приводящая в движение заслонку; 13 - термометр; 14 - втулка диаметром не более 9,5 мм; 15 - тигель; 16 - заслонка; 17 - воздушный зазор

Примечание - Крышка устанавливается поворотом влево или вправо.

Рисунок В.1 - Аппарат Пенски-Мартенса с закрытым тиглем с газовым нагревателем

В.2 Испытательный тигель

Испытательный тигель из латуни или другого нержавеющего металла с аналогичной теплопроводностью, форма и размеры которого должны соответствовать приведенным на рисунке В.2. Фланец должен быть оснащен приспособлениями для фиксации положения тигля в нагревательной камере. Ручка, прикрепленная к фланцу тигля, является желательным приспособлением. Она не должна быть настолько тяжелой, чтобы опрокидывать тигель.

1 - метка наполнения

Рисунок В.2 - Испытательный тигель

В.3 Крышка с комплектующими

В.3.1 Крышка должна включать нижеперечисленные элементы.

В.3.2 Крышка из латуни или другого нержавеющего металла аналогичной проводимости, имеющая бортик, выступающий вниз почти до фланца тигля, как показано на рисунке В.3. Зазор между бортиком и наружной поверхностью тигля не должен превышать 0,36 мм в диаметре. Необходимо предусмотреть установочное или запорное устройство или и то, и другое, соединяющееся с соответствующим приспособлением на тигле. В крышке имеются три отверстия А, В и С, показанные на рисунке В.3. Верхний край тигля должен плотно соприкасаться с внутренней поверхностью крышки по всей ее окружности.

Рисунок В.3 - Крышка

Рисунок В.3 - Крышка

В.3.3 Заслонка из латуни толщиной приблизительно 2,4 мм, перемещающаяся в плоскости верхней поверхности крышки, как показано на рисунке В.4. Заслонка должна иметь такую форму и быть установлена таким образом, чтобы она поворачивалась в горизонтальной плоскости на оси в центре крышки между двумя упорами, при этом, когда она находится в одном крайнем положении, отверстия в крышке А, В и С должны быть полностью закрыты, а когда она находится в другом крайнем положении, эти отверстия должны быть полностью открыты. Заслонка приводится в действие пружинным механизмом, сконструированным таким образом, что в неработающем состоянии заслонка точно закрывает все три отверстия. Если заслонка переводится в другое крайнее положение, три отверстия в крышке должны быть полностью открыты, а наконечник устройства для зажигания (В.3.4) должен быть полностью опущен.

а - край тигля должен соприкасаться с поверхностью крышки по всей окружности, b - зазор, равный не более 0,36 мм

1 - мешалка; 2 - испытательный тигель; 3 - заслонка; 4 - устройство для поджигания испытуемого образца; 5 - термометр; 6 - адаптер (переходная муфта); 7 - крышка

Рисунок В.4 - Тигель с крышкой

В.3.4 Устройство для зажигания, которое должно иметь наконечник с отверстием диаметром от 0,7 до 0,8 мм (см. рисунок В.4). Наконечник должен быть изготовлен из нержавеющей стали или другого подходящего материала. Устройство для зажигания должно быть оснащено перемещающим механизмом, который при "открытом" положении заслонки опускает наконечник таким образом, что центр его отверстия располагается между плоскостями верхней и нижней поверхностей крышки, в точке на радиусе, проходящем через центр самого большого отверстия А (рисунок В.3).

Примечание - В хорошо просматриваемом месте крышки может быть закреплен изготовленный из подходящего материала шарик-шаблон, размеры которого соответствуют размерам испытательного пламени (от 3 до 4 мм).

В.3.5 Запальник для автоматического зажигания испытательного пламени. Наконечник запальника должен иметь отверстие диаметром от 0,7 до 0,8 мм.

В.3.6 Перемешивающее устройство, смонтированное в центре крышки (рисунок В.4), имеющее две двухлопастные металлические крыльчатки. Нижняя крыльчатка должна иметь приблизительно 38 мм между кончиками лопастей, каждая из двух ее лопастей должна иметь ширину 8 мм и быть установлена под углом 45°. Верхняя крыльчатка должна иметь приблизительно 19 мм между кончиками лопастей, каждая из двух ее лопастей должна иметь ширину 8 мм и быть установлена под углом 45°. Обе крыльчатки располагаются на валу мешалки таким образом, что если смотреть снизу, то лопасти одной крыльчатки располагаются на направлениях 0° и 180°, а лопасти другой - на направлениях 90° и 270°.

Примечание - Вал мешалки соединяют с двигателем с использованием гибкого вала или соответствующего комплекта шкивов, при этом перемешивание должно осуществляться сверху вниз.

В.4 Нагревательная камера и колпак

Тепло подводят к испытательному тиглю с помощью специальной нагревательной камеры, которая эквивалентна воздушной бане. Нагревательная камера должна состоять из воздушной бани и колпака, на который опирается фланец испытательного тигля.

Внутреннее пространство воздушной бани должно иметь цилиндрическую форму и соответствовать размерам, приведенным на рисунке В.1. Металлический корпус воздушной бани должен нагреваться газовым пламенем или наружным электронагревателем, или элементом электросопротивления. В любом случае наружная поверхность корпуса воздушной бани не должна деформироваться при температурах, которым она будет подвергаться во время испытаний.

Если воздушная баня нагревается газовым пламенем или металлическим электрообогревателем, то она должна быть сконструирована таким образом, чтобы температура дна и стенок нагреваемой конструкции была приблизительно одинаковой. Для этого толщина дна и стенок должна быть не менее 6 мм. Если воздушная баня нагревается газовым пламенем, то конструкция корпуса должна быть такой, чтобы продукты сгорания не могли подниматься вверх и контактировать с испытательным тиглем.

Если воздушная баня оснащена элементом электросопротивления, то он должен быть сконструирован таким образом, чтобы все части внутренней поверхности воздушной бани нагревались равномерно. Стенки и дно воздушной бани должны иметь толщину не менее 6 мм.

Верхний металлический колпак должен быть установлен так, чтобы между ним и воздушной баней был воздушный зазор. Колпак должен быть прикреплен к воздушной бане тремя болтами с использованием распорных втулок. Втулки должны быть выполнены так, чтобы обеспечить воздушный зазор (4,8±0,2) мм, а их диаметр не должен быть более 9,5 мм.

Приложение С (обязательное). Требования к термометрам

Приложение С
(обязательное)

Таблица С.1 - Требования к термометрам

Параметр

Низкое значение температуры

Среднее значение температуры

Высокое значение температуры

Диапазон, °С

От -5 до +100

От 20 до 150

От 90 до 370

Глубина погружения, мм

Градуировки:

цена деления, °С

длинная линия у каждого деления, °С

Оцифровка у каждого деления, °С

Погрешность шкалы, °С, не более

1 - до 260 °С

2 - св. 260 °С

Расширительный резервуар допускает нагревание до, °С

Общая длина, мм

От 282 до 295

От 282 до 295

От 282 до 295

Внешний диаметр капилляра, мм

Длина резервуара, мм

Диаметр резервуара, мм

Не менее 5,5 и не более наружного диаметра капилляра

Не менее 5,5 и не более наружного диаметра капилляра

Расстояние от основания резервуара до начала шкалы, мм, при

0 °С: от 85 до 95

20 °С: от 85 до 95

90 °С: от 80 до 90

Длина градуировки, мм

От 140 до 175

От 140 до 180

От 145 до 180

Расширение внешнего диаметра капилляра:

диаметр, мм

От 7,5 до 8,5

От 7,5 до 8,5

От 7,5 до 8,5

длина, мм

От 2,5 до 5,0

От 2,5 до 5,0

От 2,5 до 5,0

расстояние от основания расширения до основания резервуара, мм

Примечания

1 Указанным выше требованиям соответствуют термометры типа IP 15C/ASTM 9С, IP 16C/ASTM 10С, IP 101 С и ASTM 88C.

2 Приложение D содержит описание адаптера для низкотемпературных термометров.

Приложение D (справочное). Адаптеры для низкотемпературных термометров

Приложение D
(справочное)

D.1 Общие положения

Низкотемпературные термометры иногда оснащены металлической манжетой с установочным кольцом для испытательного тигля Тага (стандарт ). Для применения в установочном кольце большего диаметра аппарата Пенски-Мартенса можно использовать адаптер (переходную муфту) (рисунок D.1).

___________________

Или эквивалентный.

В соответствии с диаметром расширения внешнего диаметра капилляра.

Прорезь.

1 - зажимная гайка; 2, 4 - уплотнительные кольца (мягкий алюминий); 3 - манжета; 5 - адаптер (переходная муфта)

Рисунок D.1 - Размеры адаптера (переходной муфты) для термометра, уплотнительных колец и манжеты

D.2 Контрольный шаблон

Длину расширения внешнего диаметра капилляра и расстояние от основания расширения до основания шарика термометра можно измерить контрольным шаблоном, приведенным на рисунке D.2.

Рисунок D.2 - Контрольный шаблон для проверки расширения внешнего диаметра капилляра термометра

Библиография

ISO Guide 33:1989

Uses if certified reference materials
(Руководство по использованию стандартных образцов)

ISO Guide 34:2000

General requirements for the competence of reference material producers
(Общие требования к компетенции изготовителей стандартных образцов)

ISO Guide 35:1989

Certification of reference materials - General and statistical principles
(Руководство сертификации стандартных образцов. Общие и статистические принципы)

Determination of flash point - Closed cup equilibrium method
(Определение температуры вспышки. Метод в закрытом тигле в равновесных условиях)

ISO 2592:2000

Determination of flash and fire points - Cleveland open cup method
(Определение температуры вспышки и воспламенения. Метод Кливленда в закрытом тигле)

Determination of flash point- Rapid equilibrium closed cup method
(Определение температуры вспышки. Экспресс-метод в закрытом тигле)

ISO 4259:1992

Petroleum products - Determination and application of precision data in relation to methods of test
(Нефтепродукты. Определение и применение прецизионности методов испытания)

ISO 13736:1997

Petroleum products and other liquids - Determination of flash point - Abel closed cup method
(Нефтепродукты и другие жидкости. Определение температуры вспышки. Метод Абеля в закрытом тигле)

ASTM D 56-10

Standard test method for flash point by Tag closed tester
(Стандартный метод определения температуры вспышки в закрытом тигле Тага)

Приложение ДА (справочное). Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Приложение ДА
(справочное)

Таблица ДА.1

Обозначение и наименование международного стандарта

Степень соответствия

Обозначение и наименование межгосударственного стандарта

ISO 1513:1992 Лаки и краски. Проверка и приготовление образцов для испытания
ISO 3171:1988 Нефтепродукты жидкие. Автоматический отбор проб из трубопровода* Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

УДК 665.71:006.354 МКС 75.080 IDT

Ключевые слова: нефтепродукты, методы определения, температура вспышки, закрытый тигель Пенски-Мартенса

____________________________________________________________________



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2014

Температурные пределы воспламенения. Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная нижнему концентрационному пределу воспламенения, называется нижним температурным пределом воспламенения (НТПВ).

Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная верхнему концентрационному пределу воспламенения, называется верхним температурным пределом воспламенения (ВТПВ).

Например, для ацетона температурные пределы равны: НТПВ 253 К, ВТПВ 279 К. При этих температурах образуются концентрации паров соответственно 2,6 и 12,6 % (об.).

Температурные пределы воспламенения используют для оценки пожарной опасности жидкостей, при расчете безопасных режимов работы закрытых технологических аппаратов и складских емкостей с жидкостями и летучими твердыми веществами. Для пожаробезопасности технологического процесса, связанного с применением жидкостей, последний ведут при температурах ниже НТПВ на 10 К или выше НТПВ на 15 К. Для многих жидкостей температурные пределы определены и результаты сведены в справочные таблицы.

Температурные пределы могут быть рассчитаны. Расчетный метод применяют для ориентировочного определения температурных пределов воспламенения в целях нахождения предполагаемых температурных пределов перед началом экспериментального их определения, а также для ориентировочного расчета безопасных режимов работы технологической аппаратуры на стадии предпроектной проработки технологического процесса в отсутствие экспериментальных данных. Температурные пределы воспламенения можно вычислить, используя данные о давлении насыщенного пара при различных температурах, по формуле

где Р 1 , Р 2 – ближайшие к Р п меньшее и большее табличные значения давления пара, соответствующие температурам Т 1 и Т 2 .

Температурные пределы воспламенения можно рассчитать по экспериментально определенным концентрационным пределам. Если вычисленная величина не совпадает с экспериментальной, то в качестве действительной принимают более низкое значение для НТПВ и более высокое для ВТПВ. Вычисляют температурные пределы следующим образом.

Определяют давление паров Р н и Р в вещества, соответствующего нижнему и верхнему концентрационным пределам паров в воздухе

Если Р общ = 101080 Па, то Р в =1010 С в и Р н = 1010 С н , где Р н и Р в – экспериментальные значения нижнего и верхнего концентрационных пределов воспламенения паров в воздухе, % (об.).

По найденным значениям Р н и Р в вычисляют температурные пределы воспламенения, используя приведенные выше формулы и табличные данные зависимости давления пара от температуры.

Температура вспышки. Температура вспышки – самая низкая температура (в условиях специальных испытаний) вещества, при которой над поверхностью его образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость образования еще недостаточна для последующего горения.

Этот термин применяют для характеристики горючих жидкостей и он вошел во многие стандарты. Согласно ГОСТ 12.1.004-90 (Пожарная безопасность. Общие требования), жидкости, способные гореть, делятся на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ). ЛВЖ – это жидкости, имеющие температуру вспышки не выше 61 0 С (в закрытом тигле) или 65 0 С (в открытом тигле). ГЖ – это жидкости, имеющие температуру вспышки выше 61 0 С (в закрытом тигле) или 66 0 С (в открытом тигле).

I разряд – особо опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от -18 0 С и ниже в закрытом тигле или от -13 0 С и ниже в открытом тигле;

II разряд – постоянно опасные ЛВЖ, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше -18 0 С до 23 0 С в закрытом тигле или выше -13 0 С до 27 0 С в открытом тигле;

III разряд –ЛВЖ, опасные при повышенной температуре воздуха, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше 23 0 С до 61 0 С в закрытом тигле или выше 27 0 С до 66 0 С в открытом тигле.

В зависимости от температуры вспышки устанавливают безопасные способы хранения, транспортирования и применения жидкостей для различных целей. температура вспышки жидкостей, принадлежащих к одному и тому же классу, закономерно изменяется с изменением физических свойств членов гомологического ряда (табл. 5.2).

Из данных табл. 5.2 видно, что температура вспышки повышается с увеличением молекулярной массы, температуры кипения и плотности. Эти закономерности в гомологическом ряду говорят о том, что температура вспышки связана с физическими свойствами веществ и сама является физическим параметром. Необходимо отметить, что закономерность изменения температуры вспышки в гомологических рядах нельзя распространять на жидкости, принадлежащие к разным классам органических соединений.

Таблица 5.2

Физические свойства спиртов

Молекулярная масса

Плотность, кг/м 3

Температура, К

Метиловый СН 3 ОН

Этиловый С 2 Н 5 ОН

н -Пропиловый С 3 Н 7 ОН

н -Бутиловый С 4 Н 9 ОН

н- Амиловый С 5 Н 11 ОН

При смешении горючих жидкостей с водой или четыреххлористым углеродом давление горючих паров при той же температуре понижается, что приводит к повышению температуры вспышки. Можно разбавить горючую жидкость до такой степени, что получившаяся смесь не будет иметь температуру вспышки:

растворе, % …………………

Температура вспышки, 0 С

метилового спирта …………

этилового спирта …………..

Практика пожаротушения показывает, что горение хорошо растворимых в воде жидкостей прекращается, когда концентрация горючей жидкости достигает 10-25%.

Для бинарных смесей горючих жидкостей, хорошо растворимых друг в друге, температура вспышки находится между температурами вспышки чистых жидкостей и приближается к температуре вспышки одной из них в зависимости от состава смеси.

С повышением температуры жидкости скорость испарения увеличивается и при определенной температуре достигает такой величины, что раз подожженная смесь продолжает гореть после удаления источника воспламенения.


Такую температуру жид-кости принято называть температурой воспламенения. Для ЛВЖ она отличается на 1 – 5 0 С от температуры вспышки, а для ГЖ – на 30 – 35 0 С. При температуре воспламенения жидкостей устанавливается постоянный (стационарный) процесс горения.

5.3. Процесс горения жидкостей. Скорость выгорания

Горение жидкостей сопровождается не только химической реакцией (взаимодействие горючего вещества с кислородом воздуха), но и физическими явлениями, без которых горение невозможно. Взаимодействие горючих паров с кислородом воздуха происходит в зоне горения, в которую непрерывно должны поступать горючие пары и воздух. Это возможно, если жидкость будет получать определенное количество тепла, необходимое для испарения. Тепло в процессе горения поступает только из зоны горения (пламени), где оно непрерывно выделяется. Тепло из зоны горения к поверхности жидкости передается излучением. Передача тепла теплопроводностью невозможна, так как скорость движения паров от поверхности жидкости к зоне горения больше скорости передачи тепла по ним от зоны горения к жидкости. Передача тепла конвекцией также невозможна, так как поток паров в объеме пламени направлен от поверхности менее нагретой (жидкость) к поверхности более нагретой.

Количество тепла, излучаемое пламенем, зависит от его степени черноты и температуры. Степень черноты пламени определяется концентрацией углерода, выделяющегося в пламени жидкости при горении жидкости. Например, степень черноты пламени при горении нефти и нефтепродуктов в больших резервуарах близка к единице.

Количество тепла, поступающее от факела Q р в единицу времени на единицу поверхности жидкости, можно определить по формуле

,

где e – степень черноты; s – постоянная Стефана – Больцмана, равная 2079×10 -7 кДж/(м 2 ×ч×К 4); Т ф – температура пламени факела, К; Т ж – температура поверхности жидкости, К.

Это тепло расходуется на испарение жидкости , ее нагревание от начальной температуры до температуры поверхности , т.е. прогрев жидкости в глубину:

,

где r – теплота испарения, кДж/ч; r – плотность, г/см 3 ; v – линейная скорость горения, мм/ч; u – скорость прогрева жидкости в глубину, мм/ч; Т п – температура поверхности жидкости, К; Т 0 – начальная температура жидкости, К; с – удельная теплоемкость жидкости, Дж/(г×К).

Таким образом,

В установившемся процессе горения (т.е. при постоянной температуре пламени) наблюдается равновесие между количеством сгоревшего в зоне горения (пламени) вещества и массой пара, поступающего в пламя. Это определяет постоянную скорость испарения и, следовательно, выгорание жидкости в течение всего процесса горения.

Скорость горения жидкостей. Различают две скорости горения жидкостей – массовую и линейную. Массовой скоростью G называется масса жидкости (кг), вы-горающей в единицу времени (ч, мин) с единицы поверхности. Под линейной скоростью v горения жидкости понимают высоту ее слоя (мм, см), выгорающего в единицу времени:

где r — плотность жидкости, кг/м 3 ; h – высота слоя сгоревшей жидкости, мм; t — время горения.

Зная или определив линейную скорость выгорания, можно вычислить массовую и наоборот.

Скорость горения жидкостей непостоянна и изменяется в зависимости от начальной температуры, диаметра резервуара, уровня жидкости в резервуаре, скорости ветра и других факторов. Для горелок малых диаметров скорость сгорания сравнительно велика. С увеличением диаметра скорость сгорания сначала уменьшается, а затем возрастает, пока не достигнет определенного постоянного значения для данной жидкости. Такая зависимость обусловлена различными причинами. На скорость горения в малых горелках существенно влияют стенки, так как пламя, соприкасаясь с ними, нагревает верхнюю кромку до высокой температуры. От верхней кромки тепло теплопроводностью распространяется по всей стенке и передается жидкости. Этот дополнительный приток тепла со стороны стенки увеличивает скорость испарения жидкости. Увеличение скорости горения с увеличением диаметра связано с переходом от ламинарного режима горения к турбулентному. Этот переход сопровождается уменьшением полноты сгорания, а большое количество выделяющейся сажи способствует увеличению степени черноты пламени, что приводит к увеличению теплового потока от пламени. При турбулентном горении обеспечивается наиболее быстрый отвод паров от поверхности жидкости, увеличивается скорость испарения.

Скорость горения в больших резервуарах увеличивается с ростом диаметра незначительно. Считают, что скорость горения в резервуарах диаметром больше 2 м практически одинакова.

Сильный ветер способствует смешиванию паров с воздухом, повышению температуры пламени, в результате чего интенсивность горения увеличивается.

По мере снижения уровня жидкости в резервуаре увеличивается расстояние от пламени до поверхности жидкости, поэтому уменьшается приток тепла к жидкости. Скорость сгорания же постепенно уменьшается и при некотором критическом расстоянии поверхности жидкости от кромки борта может наступить самотушение. Это расстояние называется критической высотой ; она увеличивается с увеличением диаметра резервуара. Для больших резервуаров зависимость скорости горения от высоты свободного борта практического значения не имеет, так как высота стандартных резервуаров всегда значительно меньше критической высоты. Так, расчет показывает, что само- тушение в резервуаре диаметром 23 м может наступить при высоте его более 1 км. Действительная высота резервуара 12 м.

Температурой вспышки нефтепродуктов называется температура, при которой пары образца, нагреваясь, вспыхивают при поднесении источника огня, смешиваясь с воздухом. Температура вспышки измеряется в открытом и закрытом тигле, и для первого это значение всегда выше на несколько градусов.

Определение температуры вспышки важно для достоверной информации о свойствах нефтепродукта и оценки его качества. Также этот параметр используется для разделения производственных помещений и оборудования на классы пожароопасности.

Методы определения

ГОСТ предлагает 2 основных метода определения температуры вспышки:

— в закрытом тигле,
— в открытом тигле.

Тигли – химические сосуды, предназначенные для нагревания, плавления, сжигания и других операций с опытными материалами, включая различное топливо.

Исследование в открытом тигле менее точное, потому что пары образца свободно смешиваются с воздухом и их необходимый объем набирается дольше. В паспорте качества нефтепродукта указывается температура вспышки в закрытом тигле (ТВЗ), как наиболее достоверная.

Для ее измерения сосуд наполняют топливом до указанной отметки и нагревают при непрерывном перемешивании. При открывании крышки сосуда над поверхностью смеси автоматически появляется открытый огонь. Измерение проводится через каждый градус нагревания, и во время открытия крышки помешивание останавливается. За температуру вспышки принимается значение, при котором с появлением источника огня возникает синватое пламя.

Существуют также специальные аппараты для определения температуры вспышки. Такое устройство включает следующие элементы:

  • электронагреватель мощностью 600 Вт,
  • стандартный сосуд с внутренним диаметром 50,8 мм и вместимостью около 70 мл,
  • латунная мешалка,
  • воспламенитель (электрический или газовый),
  • термометры с градуировкой в 1⁰С.

Температура вспышки различных нефтепродуктов

По температуре вспышки жидкие нефтепродукты классифицируются на легковоспламеняющиеся жидкости (ЛВЖ) и горючие жидкости (ГЖ) . Температура вспышки горючих жидкостей имеет значение выше 61⁰С для закрытого тигля и выше 65⁰С для открытого. Жидкости, вспыхивающие при температуре, не достигшей этих значений, относят к легковоспламеняющимся. ЛВЖ делятся на 3 разряда:

1. Особо опасные (ТВЗ от -18⁰С и ниже).
2. Постоянно опасные (ТВЗ от -18⁰С до 23⁰С).
3. Опасные при повышении температуры воздуха (ТВЗ от 23⁰С до 61⁰С).

Температура вспышки дизельного топлива – один из важных показателей его качества. Она напрямую зависит от самого вида топлива. Например, современное ДТ ЕВРО вспыхивает при достижении значения в 55⁰С и выше.

Температура вспышки топлива для тепловозов и судовых двигателей выше, чем для дизтоплива общего применения. А летнее топливо, нагреваясь, вспыхивает на 10-15⁰С раньше, чем зимнее и арктическое.

У легких нефтяных фракций низкая ТВЗ, и наоборот. Например:

  • температура вспышки масла моторного (тяжелые масляные фракции) – 130-325⁰С,
  • температура вспышки керосина (средние керосиновые и газойлевые фракции) – 28-60⁰С,
  • температура вспышки бензина (легкие бензиновые фракции) – до -40⁰С, то есть бензин вспыхивает при минусовых значениях температуры.

Температура вспышки нефти определяется фракционным составом , но в основном ее значения отрицательны (как и для бензинов) и колеблются в пределах от -35⁰С до 0⁰С. А температура вспышки газов, как правило, вообще не определяется. Вместо этого используют значения верхнего и нижнего пределов воспламеняемости, которые зависят от содержания паров газа в воздухе.

Cтраница 1


Температура вспышки нефти и нефтепродуктов, зависящая от их испаряемости и упругости паров, колеблется в очень широких пределах: от - 35 до 36 С для сырых нефтей, от - 36 до - 7 С для бензина, от 15 до 60 С для керосина, от 60 до 120 С для мазута, от 130 до 325 С для масла.  

Температуры вспышки нефти и нефтепродуктов чрезвычайно разнообразны; бензиновые фракции имеют отрицательные температуры вспышки от - 10 до - 30 С, керосиновые - от 28 до 60 С, а масляные - от 1 30 до 325 С.  

Температуры вспышки нефти п нефтепродуктов чрезвычайно разнообразны; бензиновые фракции имеют отрицательные температуры вспышки от минус 40 до минус 30 С, керосиновые - от 28 до 60 С, а масляные - от 130 до 325 С.  

Аппарат Абель-Пенского служит для определения температуры вспышки нефтей, керосинов и тому подобных продуктов с температурой вспышки до 50 С. Устройство его показано на рис. VIII. Внутри латунного цилиндрического резервуара 1 имеется один штифт 2 для регулирования высоты налива исследуемого продукта. Резервуар снабжен хорошо пригнанной к нему крышкой, имеющей тубус для термометра 3, зажигательное приспособление 4, часовой механизм 5 с рычажком для пуска 6 и пуговичкой для завода механизма, заслонку 7 и рядом с зажигательным приспособлением белый шарик (на рис. VIII. Весь прибор (с крышкой) устанавливается на водяной бане 8, причем отверстие 9 для, цилиндра сделано в бане таким образом, что между ним и стенками цилиндра остается некоторое воздушное пространство. Благодаря этому достигается равномерность нагрева. Аппарат снабжен двумя термометрами: 3 - для наблюдения за температурой нефтепродукта с шаровидным ртутным резервуаром со шкалой от 10 до 55 С, градуированный через каждые 0 5 С, длиной не более 230 мм т 11 - для наблюдения за температурой воды в бане; этот термометр градуирован от 201 до 105 С через каждые 1 С.  

Методы анализа и измерительные устройстве контроля температуры вспышки нефти и нефтепродуктов.  

В зависимости от протяженности, диаметра труб и температуры вспышки нефти и нефтепродукта различают четыре категории магистральных нефтепроводов.  

Поверочные средства представляет собой комплекты химреэкти-вов для контроля температуры вспышки нефти и нефтепродуктов.  

В настоящее время совместными усилиями специалистов УфНИ, ВНИИ Ш, Ново-Уфимского НПЗ разработаны и начинают внедряться в широком масштабе поверочные средства - стандартные образцы для метрологического обеспечения методов анализа и приборов контроля температур вспышки нефти и нефтепродуктов. В лаборатории Технологические измерения и приборы кафедры автоматизации химико - технологических процессов Уфимского нефтяного института и в Башкирском ОКБ НПО Нефтехимавтоматика выполнен комплекс одновременных испытаний по исследованию точностных характеристик отечественных.  

В области методов испытаний и средств контроля качества нефти и продуктов ее переработки разработаны оригинальные методы анализа состава и свойств нефти и продуктов ее переработки в условиях достижения равновесия фаз - содержания солей, содержания воды в нефти, давления насыщенных паров, температуры вспышки нефти и нефтепродуктов. На основе сформулированных им представлений создан прибор экспрессного анализа давления насыщенных паров нефти и нефтепродуктов и освоено его производство.  

Температура вспышки нефти или нефтепродукта - минимальная температура нагреваемых в стандартных условиях нефти или нефтепродукта, при которой смесь паров нефти или нефтепродукта с воздухом в условиях атмосферного давления при поднесении к ней пламени вспыхивает и сразу затухает. Температура вспышки нефти колеблется в широких пределах (от 35 до 120 С) в зависимости от ее фракционного состава. Температура вспышки нефтепродуктов: легковоспламеняющихся бензинов - ниже 28 С, керосинов - 28 - 45 С; горючих нефтепродуктов (моторное и дизельное топливо, мазуты) 45 - 120 С. Кроме того, пары нефти или нефтепродукта обладают взрыво-опасностью. Взрыв паров нефти или нефтепродуктов при наличии открытого огня или искр возможен при определенном их содержании в воздухе. При этом наименьшее и наибольшее содержание паров нефти или нефтепродуктов в воздухе называют соответственно нижним и верхним пределами взрываемости. При концентрации паров выше верхнего предела взрываемости смесь паров нефти и нефтепродуктов с воздухом горит. Пределы взрываемости нефти или нефтепродуктов зависят от их состава и колеблются в широких пределах.  

Температура вспышки нефти в основном зависит от содержания в ней легких бензиновых фракций и поэтому колеблется в довольно значительных пределах. Большей частью ее значение отрицательно (как и для бензинов); например, температура вспышки ромашкипской нефти около - 38 С (при 24 % фракций до 200 С), но для тяжелой ярегской нефти (Коми АССР), практически не содержащей бензина, она составляет 108 С. Определяют температуру вспышки в закрытом тигле (ГОСТ 6356 - 75); если эта температура отрицательна, то с применением охлаждающей смеси. Температура вспышки нефти и нефтепродуктов характеризует их пожарную опасность. При наличии растворенных газов температура вспышки нефтей значительно понижается.  

Температурой вспышки паров легковоспламеняющейся или горючей жидкости называют наинизшую температуру, при которой посторонний источник зажигания вызывает вспышку ее паров, насыщающих пространство, не сопровождающуюся, однако, воспламенением самой жидкости. Пары легковоспламеняющихся и горючих жидкостей относятся к пожароопасным, если температура вспышки их выше 45 С, и к взрывоопасным, если температура вспышки этих паров 45 С и ниже. Температуры вспышки нефти и нефтепродуктов весьма разнообразны и колеблются в широких пределах. Так, например, бензиновые фракции имеют отрицательные температуры вспышки от - 40 до - 30 С; керосиновые-от 28 до 60 С; масляные от 130 до 325 С.  

Нефть представляет сложную смесь алканов, некоторых циклонов, ароматических углеводородов различной молекуллрной массы, а также кислородных, сернистых и азотистых соединений. В пределах большинства нефтяных залежей нет полного единообразия и в характеристике пластовых нефтей, обнаруживаются признаки дифференциации их по физико-химическим показателям. Температура вспышки нефти колеблется в широких пределах (от ниже минус.