Температура вспышки, воспламенения, самовоспламенения, застыва­ния, плавления, размягчения. Химия нефти

12.03.2019

Температурные пределы воспламенения. Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная нижнему концентрационному пределу воспламенения, называется нижним температурным пределом воспламенения (НТПВ).

Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная верхнему концентрационному пределу воспламенения, называется верхним температурным пределом воспламенения (ВТПВ).

Например, для ацетона температурные пределы равны: НТПВ 253 К, ВТПВ 279 К. При этих температурах образуются концентрации паров соответственно 2,6 и 12,6 % (об.).

Температурные пределы воспламенения используют для оценки пожарной опасности жидкостей, при расчете безопасных режимов работы закрытых технологических аппаратов и складских емкостей с жидкостями и летучими твердыми веществами. Для пожаробезопасности технологического процесса, связанного с применением жидкостей, последний ведут при температурах ниже НТПВ на 10 К или выше НТПВ на 15 К. Для многих жидкостей температурные пределы определены и результаты сведены в справочные таблицы.

Температурные пределы могут быть рассчитаны. Расчетный метод применяют для ориентировочного определения температурных пределов воспламенения в целях нахождения предполагаемых температурных пределов перед началом экспериментального их определения, а также для ориентировочного расчета безопасных режимов работы технологической аппаратуры на стадии предпроектной проработки технологического процесса в отсутствие экспериментальных данных. Температурные пределы воспламенения можно вычислить, используя данные о давлении насыщенного пара при различных температурах, по формуле

где Р 1 , Р 2 – ближайшие к Р п меньшее и большее табличные значения давления пара, соответствующие температурам Т 1 и Т 2 .

Температурные пределы воспламенения можно рассчитать по экспериментально определенным концентрационным пределам. Если вычисленная величина не совпадает с экспериментальной, то в качестве действительной принимают более низкое значение для НТПВ и более высокое для ВТПВ. Вычисляют температурные пределы следующим образом.

Определяют давление паров Р н и Р в вещества, соответствующего нижнему и верхнему концентрационным пределам паров в воздухе

Если Р общ = 101080 Па, то Р в =1010 С в и Р н = 1010 С н , где Р н и Р в – экспериментальные значения нижнего и верхнего концентрационных пределов воспламенения паров в воздухе, % (об.).

По найденным значениям Р н и Р в вычисляют температурные пределы воспламенения, используя приведенные выше формулы и табличные данные зависимости давления пара от температуры.

Температура вспышки. Температура вспышки – самая низкая температура (в условиях специальных испытаний) вещества, при которой над поверхностью его образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость образования еще недостаточна для последующего горения.

Этот термин применяют для характеристики горючих жидкостей и он вошел во многие стандарты. Согласно ГОСТ 12.1.004-90 (Пожарная безопасность. Общие требования), жидкости, способные гореть, делятся на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ). ЛВЖ – это жидкости, имеющие температуру вспышки не выше 61 0 С (в закрытом тигле) или 65 0 С (в открытом тигле). ГЖ – это жидкости, имеющие температуру вспышки выше 61 0 С (в закрытом тигле) или 66 0 С (в открытом тигле).

I разряд – особо опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от -18 0 С и ниже в закрытом тигле или от -13 0 С и ниже в открытом тигле;

II разряд – постоянно опасные ЛВЖ, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше -18 0 С до 23 0 С в закрытом тигле или выше -13 0 С до 27 0 С в открытом тигле;

III разряд –ЛВЖ, опасные при повышенной температуре воздуха, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше 23 0 С до 61 0 С в закрытом тигле или выше 27 0 С до 66 0 С в открытом тигле.

В зависимости от температуры вспышки устанавливают безопасные способы хранения, транспортирования и применения жидкостей для различных целей. температура вспышки жидкостей, принадлежащих к одному и тому же классу, закономерно изменяется с изменением физических свойств членов гомологического ряда (табл. 5.2).

Из данных табл. 5.2 видно, что температура вспышки повышается с увеличением молекулярной массы, температуры кипения и плотности. Эти закономерности в гомологическом ряду говорят о том, что температура вспышки связана с физическими свойствами веществ и сама является физическим параметром. Необходимо отметить, что закономерность изменения температуры вспышки в гомологических рядах нельзя распространять на жидкости, принадлежащие к разным классам органических соединений.

Таблица 5.2

Физические свойства спиртов

Молекулярная масса

Плотность, кг/м 3

Температура, К

Метиловый СН 3 ОН

Этиловый С 2 Н 5 ОН

н -Пропиловый С 3 Н 7 ОН

н -Бутиловый С 4 Н 9 ОН

н- Амиловый С 5 Н 11 ОН

При смешении горючих жидкостей с водой или четыреххлористым углеродом давление горючих паров при той же температуре понижается, что приводит к повышению температуры вспышки. Можно разбавить горючую жидкость до такой степени, что получившаяся смесь не будет иметь температуру вспышки:

растворе, % …………………

Температура вспышки, 0 С

метилового спирта …………

этилового спирта …………..

Практика пожаротушения показывает, что горение хорошо растворимых в воде жидкостей прекращается, когда концентрация горючей жидкости достигает 10-25%.

Для бинарных смесей горючих жидкостей, хорошо растворимых друг в друге, температура вспышки находится между температурами вспышки чистых жидкостей и приближается к температуре вспышки одной из них в зависимости от состава смеси.

С повышением температуры жидкости скорость испарения увеличивается и при определенной температуре достигает такой величины, что раз подожженная смесь продолжает гореть после удаления источника воспламенения.


Такую температуру жид-кости принято называть температурой воспламенения. Для ЛВЖ она отличается на 1 – 5 0 С от температуры вспышки, а для ГЖ – на 30 – 35 0 С. При температуре воспламенения жидкостей устанавливается постоянный (стационарный) процесс горения.

5.3. Процесс горения жидкостей. Скорость выгорания

Горение жидкостей сопровождается не только химической реакцией (взаимодействие горючего вещества с кислородом воздуха), но и физическими явлениями, без которых горение невозможно. Взаимодействие горючих паров с кислородом воздуха происходит в зоне горения, в которую непрерывно должны поступать горючие пары и воздух. Это возможно, если жидкость будет получать определенное количество тепла, необходимое для испарения. Тепло в процессе горения поступает только из зоны горения (пламени), где оно непрерывно выделяется. Тепло из зоны горения к поверхности жидкости передается излучением. Передача тепла теплопроводностью невозможна, так как скорость движения паров от поверхности жидкости к зоне горения больше скорости передачи тепла по ним от зоны горения к жидкости. Передача тепла конвекцией также невозможна, так как поток паров в объеме пламени направлен от поверхности менее нагретой (жидкость) к поверхности более нагретой.

Количество тепла, излучаемое пламенем, зависит от его степени черноты и температуры. Степень черноты пламени определяется концентрацией углерода, выделяющегося в пламени жидкости при горении жидкости. Например, степень черноты пламени при горении нефти и нефтепродуктов в больших резервуарах близка к единице.

Количество тепла, поступающее от факела Q р в единицу времени на единицу поверхности жидкости, можно определить по формуле

,

где e – степень черноты; s – постоянная Стефана – Больцмана, равная 2079×10 -7 кДж/(м 2 ×ч×К 4); Т ф – температура пламени факела, К; Т ж – температура поверхности жидкости, К.

Это тепло расходуется на испарение жидкости , ее нагревание от начальной температуры до температуры поверхности , т.е. прогрев жидкости в глубину:

,

где r – теплота испарения, кДж/ч; r – плотность, г/см 3 ; v – линейная скорость горения, мм/ч; u – скорость прогрева жидкости в глубину, мм/ч; Т п – температура поверхности жидкости, К; Т 0 – начальная температура жидкости, К; с – удельная теплоемкость жидкости, Дж/(г×К).

Таким образом,

В установившемся процессе горения (т.е. при постоянной температуре пламени) наблюдается равновесие между количеством сгоревшего в зоне горения (пламени) вещества и массой пара, поступающего в пламя. Это определяет постоянную скорость испарения и, следовательно, выгорание жидкости в течение всего процесса горения.

Скорость горения жидкостей. Различают две скорости горения жидкостей – массовую и линейную. Массовой скоростью G называется масса жидкости (кг), вы-горающей в единицу времени (ч, мин) с единицы поверхности. Под линейной скоростью v горения жидкости понимают высоту ее слоя (мм, см), выгорающего в единицу времени:

где r — плотность жидкости, кг/м 3 ; h – высота слоя сгоревшей жидкости, мм; t — время горения.

Зная или определив линейную скорость выгорания, можно вычислить массовую и наоборот.

Скорость горения жидкостей непостоянна и изменяется в зависимости от начальной температуры, диаметра резервуара, уровня жидкости в резервуаре, скорости ветра и других факторов. Для горелок малых диаметров скорость сгорания сравнительно велика. С увеличением диаметра скорость сгорания сначала уменьшается, а затем возрастает, пока не достигнет определенного постоянного значения для данной жидкости. Такая зависимость обусловлена различными причинами. На скорость горения в малых горелках существенно влияют стенки, так как пламя, соприкасаясь с ними, нагревает верхнюю кромку до высокой температуры. От верхней кромки тепло теплопроводностью распространяется по всей стенке и передается жидкости. Этот дополнительный приток тепла со стороны стенки увеличивает скорость испарения жидкости. Увеличение скорости горения с увеличением диаметра связано с переходом от ламинарного режима горения к турбулентному. Этот переход сопровождается уменьшением полноты сгорания, а большое количество выделяющейся сажи способствует увеличению степени черноты пламени, что приводит к увеличению теплового потока от пламени. При турбулентном горении обеспечивается наиболее быстрый отвод паров от поверхности жидкости, увеличивается скорость испарения.

Скорость горения в больших резервуарах увеличивается с ростом диаметра незначительно. Считают, что скорость горения в резервуарах диаметром больше 2 м практически одинакова.

Сильный ветер способствует смешиванию паров с воздухом, повышению температуры пламени, в результате чего интенсивность горения увеличивается.

По мере снижения уровня жидкости в резервуаре увеличивается расстояние от пламени до поверхности жидкости, поэтому уменьшается приток тепла к жидкости. Скорость сгорания же постепенно уменьшается и при некотором критическом расстоянии поверхности жидкости от кромки борта может наступить самотушение. Это расстояние называется критической высотой ; она увеличивается с увеличением диаметра резервуара. Для больших резервуаров зависимость скорости горения от высоты свободного борта практического значения не имеет, так как высота стандартных резервуаров всегда значительно меньше критической высоты. Так, расчет показывает, что само- тушение в резервуаре диаметром 23 м может наступить при высоте его более 1 км. Действительная высота резервуара 12 м.

Низкотемпературные свойства

Понятие температуры вспышки

Температурой вспышки называется температура, при которой нефтепродукт, нагреваемый в стандартных условиях, выделяет такое количество паров, которое образует с окружающим воздухом горючую смесь, вспыхивающую при поднесении к ней пламени.

Для индивидуальных углеводородов существует определенная количественная связь температуры вспышки и температуры кипения, выражаемая соотношением:

Для нефтепродуктов, выкипающих в широком интервале температур, такую зависимость установить нельзя. В этом случае температура вспышки нефтепродуктов связана с их средней температурой кипения, т. е. с испаряемостью . Чем легче фракция нефти, тем ниже ее температура вспышки. Так, бензиновые фракции имеют отрицательные (до минус 40°С) температуры вспышки, керосиновые 28-60°С, масляные 130-325°С. Присутствие влаги, продуктов распада в нефтепродукте заметно влияет на величину его температуры вспышки. Этим пользуются в производственных условиях для заключения о чистоте получаемых при перегонке керосиновых и дизельных фракций. Для масляных фракций температура вспышки показывает наличие легкоиспаряющихся углеводородов. Из масляных фракций различного углеводородного состава наиболее высокую температуру вспышки имеют масла из парафинистых малосернистых нефтей. Масла той же вязкости из смолистых нафтено-ароматических нефтей характеризуются более низкой температурой вспышки.

Методы определения температуры вспышки

Стандартизованы два метода определения температуры вспышки нефтепродуктов в открытом (ГОСТ 4333-87) и закрытом (ГОСТ 6356-75) тиглях. Разность температур вспышки одних и тех же нефтепродуктов при определении в открытом и закрытом тиглях весьма велика. В последнем случае требуемое количество нефтяных паров накапливается раньше, чем в приборах открытого типа. Кроме того, в открытом тигле образовавшиеся пары свободно диффундируют в воздух. Указанная разность тем больше, чем выше температура вспышки нефтепродукта. Примесь бензина или других низкокипящих фракций в более тяжелых фракциях (при нечеткой ректификации) резко повышает различие в температурах их вспышки в открытом и закрытом тиглях.

При определении температуры вспышки в открытом тигле нефтепродукт сначала обезвоживают с помощью хлорида натрия, сульфата или хлорида кальция, затем заливают в тигель до определенного уровня, в зависимости от вида нефтепродукта. Нагрев тигля ведут с определенной скоростью, и при температуре на 10°С ниже ожидаемой температуры вспышки медленно проводят по краю тигля над поверхностью нефтепродукта пламенем горелки или другого зажигательного приспособления. Эту операцию повторяют через каждые 2°С. За температуру вспышки принимают ту температуру, при которой появляется синее пламя над поверхностью нефтепродукта. При определении температуры вспышки в закрытом тигле нефтепродукт заливают до определенной метки и в отличие от описанного выше метода нагревание его проводят при непрерывном перемешивании. При открывании крышки тигля в этом приборе автоматически подносится пламя к поверхности нефтепродукта.

Определение температуры вспышки начинают за 10°С до предполагаемой температуры вспышки - если она ниже 50°С, и за 17°С - если она выше 50°С. Определение проводят через каждый градус, причем в момент определения перемешивание прекращают.

Все вещества, имеющие температуру вспышки в закрытом тигле ниже 61°С, относятся к легковоспламеняющимся жидкостям (ЛВЖ), которые, в свою очередь, подразделяются на:

  • особо опасные (T всп ниже минус 18°С);
  • постоянно опасные (T всп от минус 18°С до 23°С);
  • опасные при повышенной температуре (T всп от 23°С до 61°С).

Пределы взрываемости

Температура вспышки нефтепродукта характеризует возможность этого нефтепродукта образовывать с воздухом взрывчатую смесь. Смесь паров с воздухом становится взрывчатой, когда концентрация паров горючего в ней достигает определенных значений. В соответствии с этим различают нижний и верхний пределы взрываемости смеси паров нефтепродукта с воздухом. Если концентрация паров нефтепродукта меньше нижнего предела взрываемости, взрыва не происходит, так как имеющийся избыток воздуха поглощает выделяющееся в исходной точке взрыва тепло и таким образом препятствует возгоранию остальных частей горючего. При концентрации паров горючего в воздухе выше верхнего предела взрыва не происходит из-за недостатка кислорода в смеси. Нижний и верхний пределы взрываемости углеводородов можно определить соответственно по формулам:

В гомологическом ряду парафиновых углеводородов с повышением молекулярной массы как нижний, так и верхний пределы взрываемости понижаются, а интервал взрываемости сужается от 5-15% (об.) для метана до 1,2-7,5% (об.) для гексана. Ацетилен, оксид углерода и водород характеризуются самыми широкими интервалами взрываемости, поэтому они наиболее взрывоопасны.

С повышением температуры смеси интервал ее взрываемости слегка сужается. Так, при 17°С интервал взрываемости пентана равен 1,4-7,8% (об.), а при 100°С составляет 1,44-4,75% (об.). Присутствие в смеси инертных газов (азота, диоксида умерода и др.) также сужает интервал взрываемости. Увеличение давления приводит к повышению верхнего предела взрываемости.

Пределы взрываемости паров бинарных и более сложных смесей углеводородов можно определить по формуле:

Cтраница 1


Температура вспышки нефти и нефтепродуктов, зависящая от их испаряемости и упругости паров, колеблется в очень широких пределах: от - 35 до 36 С для сырых нефтей, от - 36 до - 7 С для бензина, от 15 до 60 С для керосина, от 60 до 120 С для мазута, от 130 до 325 С для масла.  

Температуры вспышки нефти и нефтепродуктов чрезвычайно разнообразны; бензиновые фракции имеют отрицательные температуры вспышки от - 10 до - 30 С, керосиновые - от 28 до 60 С, а масляные - от 1 30 до 325 С.  

Температуры вспышки нефти п нефтепродуктов чрезвычайно разнообразны; бензиновые фракции имеют отрицательные температуры вспышки от минус 40 до минус 30 С, керосиновые - от 28 до 60 С, а масляные - от 130 до 325 С.  

Аппарат Абель-Пенского служит для определения температуры вспышки нефтей, керосинов и тому подобных продуктов с температурой вспышки до 50 С. Устройство его показано на рис. VIII. Внутри латунного цилиндрического резервуара 1 имеется один штифт 2 для регулирования высоты налива исследуемого продукта. Резервуар снабжен хорошо пригнанной к нему крышкой, имеющей тубус для термометра 3, зажигательное приспособление 4, часовой механизм 5 с рычажком для пуска 6 и пуговичкой для завода механизма, заслонку 7 и рядом с зажигательным приспособлением белый шарик (на рис. VIII. Весь прибор (с крышкой) устанавливается на водяной бане 8, причем отверстие 9 для, цилиндра сделано в бане таким образом, что между ним и стенками цилиндра остается некоторое воздушное пространство. Благодаря этому достигается равномерность нагрева. Аппарат снабжен двумя термометрами: 3 - для наблюдения за температурой нефтепродукта с шаровидным ртутным резервуаром со шкалой от 10 до 55 С, градуированный через каждые 0 5 С, длиной не более 230 мм т 11 - для наблюдения за температурой воды в бане; этот термометр градуирован от 201 до 105 С через каждые 1 С.  

Методы анализа и измерительные устройстве контроля температуры вспышки нефти и нефтепродуктов.  

В зависимости от протяженности, диаметра труб и температуры вспышки нефти и нефтепродукта различают четыре категории магистральных нефтепроводов.  

Поверочные средства представляет собой комплекты химреэкти-вов для контроля температуры вспышки нефти и нефтепродуктов.  

В настоящее время совместными усилиями специалистов УфНИ, ВНИИ Ш, Ново-Уфимского НПЗ разработаны и начинают внедряться в широком масштабе поверочные средства - стандартные образцы для метрологического обеспечения методов анализа и приборов контроля температур вспышки нефти и нефтепродуктов. В лаборатории Технологические измерения и приборы кафедры автоматизации химико - технологических процессов Уфимского нефтяного института и в Башкирском ОКБ НПО Нефтехимавтоматика выполнен комплекс одновременных испытаний по исследованию точностных характеристик отечественных.  

В области методов испытаний и средств контроля качества нефти и продуктов ее переработки разработаны оригинальные методы анализа состава и свойств нефти и продуктов ее переработки в условиях достижения равновесия фаз - содержания солей, содержания воды в нефти, давления насыщенных паров, температуры вспышки нефти и нефтепродуктов. На основе сформулированных им представлений создан прибор экспрессного анализа давления насыщенных паров нефти и нефтепродуктов и освоено его производство.  

Температура вспышки нефти или нефтепродукта - минимальная температура нагреваемых в стандартных условиях нефти или нефтепродукта, при которой смесь паров нефти или нефтепродукта с воздухом в условиях атмосферного давления при поднесении к ней пламени вспыхивает и сразу затухает. Температура вспышки нефти колеблется в широких пределах (от 35 до 120 С) в зависимости от ее фракционного состава. Температура вспышки нефтепродуктов: легковоспламеняющихся бензинов - ниже 28 С, керосинов - 28 - 45 С; горючих нефтепродуктов (моторное и дизельное топливо, мазуты) 45 - 120 С. Кроме того, пары нефти или нефтепродукта обладают взрыво-опасностью. Взрыв паров нефти или нефтепродуктов при наличии открытого огня или искр возможен при определенном их содержании в воздухе. При этом наименьшее и наибольшее содержание паров нефти или нефтепродуктов в воздухе называют соответственно нижним и верхним пределами взрываемости. При концентрации паров выше верхнего предела взрываемости смесь паров нефти и нефтепродуктов с воздухом горит. Пределы взрываемости нефти или нефтепродуктов зависят от их состава и колеблются в широких пределах.  

Температура вспышки нефти в основном зависит от содержания в ней легких бензиновых фракций и поэтому колеблется в довольно значительных пределах. Большей частью ее значение отрицательно (как и для бензинов); например, температура вспышки ромашкипской нефти около - 38 С (при 24 % фракций до 200 С), но для тяжелой ярегской нефти (Коми АССР), практически не содержащей бензина, она составляет 108 С. Определяют температуру вспышки в закрытом тигле (ГОСТ 6356 - 75); если эта температура отрицательна, то с применением охлаждающей смеси. Температура вспышки нефти и нефтепродуктов характеризует их пожарную опасность. При наличии растворенных газов температура вспышки нефтей значительно понижается.  

Температурой вспышки паров легковоспламеняющейся или горючей жидкости называют наинизшую температуру, при которой посторонний источник зажигания вызывает вспышку ее паров, насыщающих пространство, не сопровождающуюся, однако, воспламенением самой жидкости. Пары легковоспламеняющихся и горючих жидкостей относятся к пожароопасным, если температура вспышки их выше 45 С, и к взрывоопасным, если температура вспышки этих паров 45 С и ниже. Температуры вспышки нефти и нефтепродуктов весьма разнообразны и колеблются в широких пределах. Так, например, бензиновые фракции имеют отрицательные температуры вспышки от - 40 до - 30 С; керосиновые-от 28 до 60 С; масляные от 130 до 325 С.  

Нефть представляет сложную смесь алканов, некоторых циклонов, ароматических углеводородов различной молекуллрной массы, а также кислородных, сернистых и азотистых соединений. В пределах большинства нефтяных залежей нет полного единообразия и в характеристике пластовых нефтей, обнаруживаются признаки дифференциации их по физико-химическим показателям. Температура вспышки нефти колеблется в широких пределах (от ниже минус.  

Цель лабораторной работы - изучение принципа определения температуры вспышки топлива.

Теория

Определение температуры вспышки используют для оценки качества нефтепродуктов и для классификации производства, помещений и установок по степени пожарной опасности.

Температура вспышки - это минимальная температура, при которой пары топлива, нагреваемые в закрытом тигле, образуют с окружающим воздухом горючую смесь, вспыхивающую при поднесении к ней пламени. Температура вспышки характеризует огнеопасность нефтепродукта при его транспортировании, хранении и заправке. Температура вспышки в закрытом тигле должна быть для дизельного топлива летнего не ниже 40°С, зимнего - не ниже 35°С и арктического - не ниже 30°С. Чем выше температура вспышки, тем меньше пожарная опасность топлива.

Сущность метода заключается в определении самой низкой температуры топлива, при которой в условиях испытания над его поверхностью образуется смесь паров с воздухом, которая вспыхивает при поднесении пламени, но не способна к дальнейшему горению.

Если испытуемый нефтепродукт содержит более 0,05% воды, его обезвоживают. Тигель прибора промывают бензином Б-70 и тщательно высушивают. Испытуемый нефтепродукт и тигель должны иметь температуру не менее чем на 20°С ниже предполагаемой температуры вспышки.

Нефтепродукт наливают в тигель до метки, закрывают крышкой, вставляют термометр и помещают тигель в нагревательную баню. При анализе нефтепродуктов с температурой вспышки до 50° С нагревательная баня должна быть предварительно охлаждена до комнатной температуры (20±5°С).

Прибор помещают в таком месте, где нет заметного движения воздуха и где свет настолько затемнен, что вспышка хорошо видна. Для лучшей защиты от движения воздуха и влияния света прибор окружают щитом из листовой кровельной стали, окрашенным с внутренней стороны черной краской. Перед определением записывают барометрическое давление.

Оборудование и инструменты

Установка

Аппарат для определения температуры вспышки нефтепродуктов в закрытом тигле показан на рис. 3.3. Тигель 5, крышка 3, заслонки 2 и мешалки 4 аппарата изготовлены из латуни. На крышке расположен пружинный механизм 7 перемещения заслонки и термометр 4. В комплект аппарата входят воздушная баня. Тигель из гнезда бани вынимают с помощью ухвата. На внутренней стороне тигля выполнен круговой уступ, указывающий уровень испытуемого дизельного топлива. Три отверстия трапецеидальной формы в крышке закрывают заслонкой 2. При вращении заслонки рукояткой отверстие открывается, к нему подносится лучина. В первоначальное положение заслонка возвращается под действием принудительного механизма, расположенного в рукоятке перемещения заслонки. Дизельное топливо перемешивается мешалкой с лопастями, приводимой во вращение механическим приводом от руки испытателя;

Рисунок 15. Аппарат для определения температуры вспышки
1 - термометр; 2 - заслонка; 3 - крышка - переходная муфта термометра; 4 - мешалка; 5 - тигель; 6 - штифт крышки; 7 - пружинный механизм

частота вращения мешалки 90..120 мин -1 . Аппарат снабжен регулятором скорости нагревания.

Электрическое питание аппарата происходит от сети переменного тока напряжением 220 В, частотой 50 Гц; мощность, потребляемая аппаратом, не более 1000 Вт.

Для контроля вспышки дизельного топлива используют стеклянный термометр типа ТН-1 №1 со шкалой от 0°С до +170 °С.

Приложение 1

Таблица 5 - Характеристики дизельного топлива (ГОСТ 305-82)

Показатели Норма для марок
Л А
Цетановое число, не менее
Фракционный состав: 50% перегоняется при температуре, 0 С, не выше 90% перегоняется при температуре (конец перегонки) 0 С, не выше
Кинематическая вязкость при 20°С, мм 2 /с 3,0-6,0 1,8-5,0 1,5-4,0
Температура застывания, 0С, не выше, для климатической зоны: умеренной холодной -10 - -35 -45 - -55
Температура помутнения, 0 С, не выше, для климатической зоны: умеренной холодной -5 - -25 -35 - -
Температура вспышки в закрытом тигле, °С, не ниже: для тепловозных, судовых дизелей и газовых турбин для дизелей общего назначения
Массовая доля серы, %, не более, в топливе: вида I вида II 0,20 0,50 0,20 0,50 0,20 0,40
Массовая доля меркаптановой серы, %, не более 0,01 0,01 0,01
Содержание фактических смол, мг/100 см топлива, не более
Кислотность, мгКОН/100 см 3 топлива, не более
Плотность при 20°С, кг/м 3 , не более

Примечание. Для топлив марок Л, 3,А: содержание сероводорода, водорастворимых кислот и щелочей, механических примесей и воды отсутствие, испытание на медной пластинке - выдерживают.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Подготовка к исследованиям

1. Откройте шкаф и возьмите одну из канистр с топливом. Топливо для дизелей общего назначения (приложение 1).

2.Часть выбранного топлива залейте в тигель 3. Поместите канистру с топливом обратно в шкаф.

4. Вставьте тигель в аппарат для определения температуры вспышки

5. Закройте тигель крышкой.

6. Подключите газовый шланг к отверстию на крышке тигля.

7. Укрепите на крышке стеклянный термометр.

8. Переведите тумблер в положение "ВКЛ"; регулятор подачи газа - в положение "ОТКРЫТ"; тумблер запальника - на максимум. Можете приступать к исследованиям.

Рисунок.19. Аппарат для определения температуры вспышки

Рисунок. 20. Стеклянный термометр (ТН-1 №1)

Рисунок. 22. Аппарат для определения температуры вспышки в собранном состоянии

Исследование нефтепродуктов

1. Нефтепродукт в собранном приборе нагревают следующим образом: при анализе нефтепродуктов с температурой вспышки до 50°С температуру повышают регулятором нагрева со скоростью 1°С в 1 мин при непрерывном перемешивании с начала и до конца определения. При анализе нефтепродуктов с температурой вспышки от 50°С до 150°С начальный нагрев ведут со скоростью 5-8°С, а при анализе нефтепродуктов с температурой вспышки выше 150°С - со скоростью 10-12°С в 1 мин при периодическом перемешивании.

Когда нефтепродукт нагревается до температуры на 20°С ниже предполагаемой температуры вспышки, нагрев ведут так, чтобы температура повышалась на 1°С в 1 мин.

При температуре на 10°С ниже ожидаемой температуры вспышки начинают проводить испытание на вспышку через 1°С для нефтепродуктов с температурой вспышки до 50°С и через 2°С - для нефтепродуктов с температурой вспышки выше 50°С. При этом нефтепродукт непрерывно перемешивают вращением мешалки (в этой лабораторной работе данное действие происходит автоматически через гибкую передачу от аппарата). Только в момент испытания на вспышку перемешивание прекращают. Поворотом пружинного рычага открывают окно крышки тигля, и подносят зажженную лучину к отверстию (в этой лабораторной работе данное действие происходит автоматически от постоянно горящей газовой горелки, окно крышки тигля открывается пользователем с помощью пружинного механизма). Окно крышки открывают на 1 сек. Если вспышка не произошла, то продукт вновь перемешивают, повторяя операцию через 1-2°С.

За температуру вспышки принимают температуру, показываемую термометром при появлении первого синего пламени над поверхностью нефтепродукта. Расхождение между параллельными определениями температуры вспышки в закрытом тигле не должны превышать следующих величин: при температуре вспышки до 50°±1°С; при температуре вспышки выше 50°С±2°С.

2. Температура нагревания отражается в верхнем углу монитора. Температурный момент вспышки зафиксируйте в таблице 3.1.

3. Выключите прибор тумблером в положение «ВЫКЛ», регулятор нагрева переведите в нулевое положение (в данной лабораторной работе подача газа и запальник отключатся автоматически).

4. Разберите прибор в обратной последовательности.

5. Откройте крышку канистры для отработанного топлива. Слейте топливо, закройте крышку.

6. Приступайте к следующим исследованиям в той же последовательности, указанной в подразделе 4.1.

Рисунок. 23. Канистра для отработанного топлива

Обработка результатов

При давлении выше или ниже 101,325 кПа (760 мм рт. ст.) вводят поправку на стандартное давление. Ее определяют по формуле:

(1)

где и р- фактическое барометрическое давление, соответственно кПа и мм рт. ст.

Можно также воспользоваться поправками, приведенными в табл.3.1.

Температуру вспышки с поправкой вычисляют алгебраическим сложением найденной температуры и поправки. За результат испытаний принимают среднее арифметическое двух последовательных определений.

Отчет

Отчет должен включать в себя:

1. Название лабораторной работы.

2. Цель лабораторной работы (студент должен сформулировать самостоятельно).

3. Приборы и материалы (рисунок, название и описание).

4. Порядок выполнения работы.

Результаты испытания

6. Контрольные вопросы

1. Назначение определения температуры вспышки.

2. Что такое температура вспышки топлива?

3. Что характеризует температура вспышки нефтепродукта?

4. Какая температура вспышки в закрытом тигле характерна для дизельного топлива?

5. В чем заключается сущность метода определения температуры вспышки топлива?

Лабораторная работа № 5

Теоретическая часть.

Дизельные топлива предназначены для быстроходных дизельных и газотурбинных двигателей наземной и судовой техники. Условия смесеобразования и воспламенения в дизелях отличаются от таковых в карбюраторных двигателях. Преимуществом дизелей является возможность осуществления высокой степени сжатия топливо-воздушной смеси, вследствие чего удельный расход топлива в них на 25…30 % ниже, чем в карбюраторных двигателях.

Дизельное топливо – это сложная смесь парафиновых (10…40 %), нафтеновых (20…60 %) и ароматических углеводородов средней молярной массы – 110…230 г/моль , выкипающих в пределах 170…380 о С. Температура вспышки топлива составляет 35…80 о С, застывания – минус 5 о С.

Основные эксплуатационные показатели дизельных топлив:

· цетановое число , характеризующее мощностные и экономические показатели работы двигателя;

· фракционный состав , определяющий полноту сгорания топлива, дымность и токсичность отработанных газов;

· вязкость и плотность , обеспечивающие нормальную подачу топлива, распыление в камере сгорания и работоспособность системы фильтрования;

· низкотемпературные свойства , определяющие функционирование системы топливоподачи при отрицательных температурах окружающей среды и условия хранения топлива;

· степень чистоты , характеризующая надежность работы фильтров грубой и тонкой очистки и цилиндропоршневой группы двигателя;

· температура вспышки , определяющая условия безопасности использования топлива в двигателе;

· наличие сернистых соединений, металлов, непредельных углеводородов, характеризующее нагарообразование, коррозию и износ двигателя.

Дизельное топливо выпускается согласно ГОСТ 305-82 трех марок: Л – летнее, применяемое при температуре окружающей среды ниже 0 о С, З – зимнее до – 30 о С, А – арктическое до – 50 о С. Общее содержание серы в прямогонных фракциях – 0,8…1,0 %, после гидроочистки – 0,08…0,12 % (табл. 1).

Основной показатель дизельного топлива – цетановое число (ЦЧ), который характеризует воспламеняемость топлива, жесткость рабочего хода, определяет запуск двигателя, расход топлива и дымность отработанных газов.

1.1 Цетановое число

ЦЧ указывает на процент содержания хорошо воспламеняющегося цетана С 16 Н 34 в смеси с трудно воспламеняемым a-метилнафталином С 11 Н 10 в эталонном топливе, которое по своим характеристикам соответствует исследуемому дизельному топливу.

Оптимальное ЦЧ дизельного топлива – 40…50 (табл. 10). Применение топлива с ЦЧ < 40 приводит к жесткой работе двигателя, а ЦЧ > 50 – к увеличению удельного расхода топлива за счет снижения полноты сгорания. ЦЧ дизельного топлива зависит от его углеводородного состава. Наиболее высокими ЦЧ обладают нормальные парафиновые углеводороды, причем с повышением их молярной массы ЦЧ также повышается. Самые низкие ЦЧ у ароматических углеводородов, не имеющих боковых цепей. Непредельные углеводороды имеют более низкие ЦЧ, чем соответствующие парафиновые. Чем выше температура кипения топлива, тем выше ЦЧ, зависимость носит линейный характер.

1.2 Таблица 1- Основные показатели качества дизельных топлив
(ГОСТ 305-82)

Показатель Марка топлива
Л З
Цетановое число, не менее 47…51 40…42
Фракционный состав, max t о перегонки, о С: 50 % топлива 96 % топлива
Кинематическая вязкость при 20 о С, мм 2 /с (сСт ) 3,0…6,0 1,8…5,0
Плотность при 20 о С, кг/м 3 , не более
Температура вспышки в закрытом тигле, о С
Температура застывания, о С, не выше для климатической зоны: умеренной, холодной –10 – –35 –45
Общее содержание серы, %, не более 0,5 0,5
Массовая доля меркаптановой серы, %, не более 0,01 0,01
Кислотность, мг КОН на 100 см 3 топлива, не более
Иодное число, г иода на 100 г топлива, не более
Зольность, %, не более 0,01 0,01
Содержание механических примесей отсутствуют отсутствуют
Содержание воды отсутствует отсутствует
Содержание фактических смол, мг /100 см 3 топлива, не более
Коксуемость 10 % остатка, %, не более 0,20 0,30

1.3 Фракционный состав дизельного топлива – это основной показатель топлива, влияющий на процесс его сгорания, как и ЦЧ. Его определяют согласно ГОСТ 2177-82 нагреванием 100 мл топлива в специальном приборе, образующиеся пары охлаждают, собирают в мерный цилиндр. В процессе разгонки фиксируют температуру выкипания 50 и 96 % топлива (табл. 1).

От фракционного состава топлива зависит качество его распыления и полнота сгорания. Если в дизельном топливе много легких углеводородов, то на их сгорание требуется меньше кислорода. Для такого топлива более полно протекает процесс смесеобразования, однако повышается жесткость работы двигателя (резко нарастает давление на градус угла поворота коленчатого вала). Тяжелые фракции при распылении образуют крупные капли, ухудшается качество горючей смеси, повышается расход топлива, существенно усиливается коксование распылителей форсунок, возрастает количество нагаров в зоне цилиндропоршневой группы.

Плотность

Абсолютной плотностью вещества называется масса, содержащаяся в единице объема. В системе СИ плотность выражается в кг/м 3 . За единицу абсолютной плотности принята масса 1м 3 дистиллированной воды при температуре 4С.

На практике часто приходится определять плотность при температуре отличающейся от 20°C. Для пересчета плотности используется формула, предложенная Д.И. Менделеевым:

Коэффициент α берется из таблицы:

Температура вспышки в закрытом тигле

Температурой вспышки называется температура, при которой пары нефтепродукта, нагреваемого в стандартном аппарате, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней открытого огня.

Прибор для определения температуры вспышки в закрытом тигле.

Температура вспышки может определяться в аппаратах закрытого и открытого типа. Для одного и того же продукта температура вспышки, определенного в приборе открытого типа, будет всегда выше, чем в приборе закрытого типа.

Вязкость кинематическая

Вязкость – это свойство жидкости оказывать сопротивление перемещению ее слоев относительно друг друга под действием внешней силы.

Определение кинематической вязкости проводят в капиллярных вискозиметрах, в которых исследуемый нефтепродукт протекает через капиллярную трубку определенного диаметра.

Кинематическая вязкость испытуемого нефтепродукта вычисляется по формуле:

ν=С*τ,

где τ – время истечения жидкости через капилляр вискозиметра, с;

С – постоянная вискозиметра, мм 2 /с 2 .

Вискозиметр ВПЖ-4

Ход работы.

Определение плотности ареометром

В стеклянный цилиндр осторожно наливаем 100 мл испытуемого дизельного топлива. Взяв за верхний конец ареометр, опускаем его в жидкостью. После установления ареометра снимаем показания:

ρ= 812кг/м 3

Определение температуры вспышки в закрытом тигле

Испытуемый нефтепродукт наливаем в тигель до метки, устанавливаем его на место и закрываем крышкой. В крышке укрепляем термометр, проверяем, работает ли мешалка, открывается ли заслонка, и зажигаем лампу.

Включаем электрообогрев и при периодическом перемешивании нагреваем прибор. Не более чем за 17ºС до предполагаемой температуры вспышки начинаем проводить испытания. В момент испытания перемешивание прекращаем, поворачиваем заслонку с помощью рукоятки и наблюдаем за появлением быстро исчезающего пламени над поверхностью нефтепродукта. Отмечаемую при этом температуру фиксируют как температуру вспышки. Испытания проводим через каждые 2ºС. Получив первую вспышку, нагревание продолжаем и через 2ºС повторяем зажигание, и вновь видим вспышку.

Т вспышки =67ºС

Определение кинематической вязкости

Вискозиметр с нефтепродуктом с помощью штатива и держателей устанавливаем в вертикальном положении в термостатируемый сосуд. Вискозиметр закрепляют так, чтобы верхнее расширение оказалось полностью в жидкости термостата. Засасываем грушей жидкость в колено выше метки М 1 . затем грушу снимают и уровень жидкости начинает убывать. Когда уровень жидкости достигает метки М 1 , включаем секундомер и останавливаем его в тот момент, когда уровень жидкости достигнет метки М 2 . Проводим 3 замера.

τ ср = 250 с

С const =0,01057мм 2 /с 2

Определим вязкость: σ= 0,01057*250= 2,6425

Вывод:

1. По ГОСТ для зимнего дизельного топлива плотность при 20ºС должна быть не более 840 кг/м 3 . Исследуемое дизельное топливо имеет плотность, равную ρ=812 кг/м 3 ; что соответствует ГОСТ.

2. По ГОСТ температура вспышки в закрытом тигле должна быть не ниже 35ºС. Температура вспышки исследуемого дизельного топлива равна: Т вспышки =67ºС, что соответствует ГОСТ.

3. По ГОСТ кинематическая вязкость при 20ºС должна быть в интервале: 1,8-5,0. У исследуемого нефтепродукта кинематическая вязкость равна σ=2,6425, что соответствует ГОСТ.

По всем основным качественным показателям исследуемый нефтепродукт соответствует требованиям ГОСТ 305-82 на зимнее и арктическое дизельное топливо.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27