Размеры элеваторов отопления. Предназначение элеваторного узла системы отопления. Видео: устройство и работа элеватора отопления

14.03.2019

Принцип работы теплового элеваторного узла и водоструйного элеватора. В предыдущей статье мы с вами выяснили основное и особенности эксплуатации, водоструйных или как их еще называют инжекционных элеваторов. Вкратце — основное назначение элеватора понижение температуры воды и одновременно увеличение объема прокачиваемой воды во внутренней системе отопления жилого дома.


Теперь разберем, как же все-таки работает водоструйный элеватор и за счет чего он увеличивает прокачку теплоносителя через батареи в квартире.

Теплоноситель поступает в дом с температурой соответствующей температурному графику работы котельной. Температурный график это соотношение между температурой на улице и температурой, которую котельная или ТЭЦ должны подать в теплосеть, и соответственно с небольшими потерями к вашему тепловому пункту (вода, двигаясь по трубам на большие расстояния, немного остывает). Чем холоднее на улице, тем большую температуру выдает котельная.

Например, при температурном графике 130/70:

  • при +8 градусах на улице в подающем трубопроводе отопления должно быть 42 градуса;
  • при 0 градусов 76 градусов;
  • при -22 градуса 115 градусов;

Если кого-то интересуют более подробные цифры, можете скачать температурные графики для различных систем отопления .

Но вернемся к принципу и схеме работы нашего теплового элеваторного узла.

Пройдя входные задвижки, грязевики или сетчато-магнитные фильтра, вода поступает непосредственно в смешивающее элеваторное устройство — элеватор , который состоит из стального корпуса, внутри которого находится смешивающая камера и сужающее устройство (сопло).

Перегретая вода выходит из сопла в с большой скоростью. В результате в камере за струей создается разрежение за счет чего и происходит подсасывание или инжекция воды из обратного трубопровода. За счет изменения диаметра отверстия в сопле можно в определенных пределах регулировать расход воды и соответственно температуру воды на выходе из элеватора.

Элеватор теплового узла работает одновременно как циркуляционный насос и как смеситель. При этом он не потребляет электрическую энергию , а использует перепад давления перед элеватором или как еще принято говорить располагаемый напор в тепловой сети.

Для эффективно работы элеватора необходимо, что бы располагаемый напор в теплосети соотносился к сопротивлению системы отопления не хуже чем 7 к 1 .
Если сопротивление системы отопления стандартной пятиэтажки 1м или это 0,1 кгс/см2 то для нормальной работы элеваторного узла необходим располагаемый напор в системе отопления до ИТП не менее 7 м или 0,7 кгс/см2.

Для примера если в подающем трубопроводе 5 кгс/см2 то в обратном не более 4,3 кгс/см2.

Обратите внимание на то, что на выходе элеватора давление в подающем трубопроводе не намного больше давления в обратном трубопроводе и это нормально, 0,1 кгс/см2 по манометрам заметить довольно сложно, качество современных манометров к сожалению на очень низком уровне, но это уже тема для отдельной статьи. А вот если у вас разница давлений после элеватора больше 0,3 кгс/см2 следует насторожиться, или у вас система отопления сильно забита грязью, или при капитальном ремонте вам очень сильно занизили диаметры разводящих труб.

Выше сказанное не относится к схемам с на батареях и стояках, с ними работают только схемы смешения с применением регулирующих клапанов и смесительных насосов.
Кстати и применение данных регуляторов тоже в большинстве случаев весьма спорно, поскольку на большинстве отечественных котельных применяется именно качественное регулирование по температурному графику . Вообще массовое внедрение автоматических регуляторов фирмы «Danfoss» стало возможным только благодаря хорошей маркетинговой компании. Ведь «перетоп» у нас явление очень редкое, обычно мы все тепло недополучаем.

Элеватор с регулируемым соплом.

Теперь нам осталось разобрать, как проще регулировать температуру на выходе элеватора , и возможно ли с помощью элеватора экономить тепло.

Экономить тепло с помощью водоструйного элеватора возможно, например, понижая температуру в помещениях в ночное время , или днем, когда большинство из нас на работе. Хотя этот вопрос тоже спорный, мы снизили температуру, здание остыло, следовательно, чтобы его заново прогреть расход тепло против нормы надо увеличить.
Выигрыш только в одном, при прохладной температуре 18-19 градусов спится лучше , наш организм чувствует себя комфортнее.

Для целей экономия тепла применяется специальный водоструйный элеватор с регулируемым соплом . Конструктивно его исполнение и главное глубина качественной регулировки может быть различной. Обычно коэффициент смешения водоструйного элеватора с регулируемым соплом меняется в диапазоне от 2 до 5. Как показала практика, таких пределов регулировки вполне достаточно на все случаи жизни. «Danfoss» предлагает с диапазоном регулирования до 1 к 1000. Для чего это нам в системе отопления совершенно непонятно. А вот соотношение цены в пользу водоструйного элеватора с регулируемым соплом относительно регуляторов «Danfoss» примерно 1 к 3. Правда надо отдать должное «Данфосовцам» их продукция надежнее, хотя и не вся, плохо работают на нашей воде некоторые разновидности недорогих трехходовых клапанов. Рекомендация – экономить нужно с умом!

Принципиально все регулирующие элеваторы выполнены одинаково. Их устройство хорошо видно на рисунке . , можете посмотреть анимированное изображение работы регулирующего механизма ВАРС водоструйного элеватора.

И на последок краткий комментарийприменение водоструйных элеваторов с регулируемым соплом особенно эффективно в общественных и производственных зданиях где позволяет экономить до 20-25% расходов на отопление, понижая температуру в отапливаемых помещениях в ночное время и, особенно, в выходные дни.

Элеватор выбирается по диаметру горловины d Г в зависимости от располагаемой разности давлений в подающем и обратном теплопроводе на вводе в здание. Диаметр горловины элеватора d Г, мм, определяется по формуле 5.1:

G СО – расход воды в системе отопления, определяемый по формуле 5.2:

Q ОТ = 44443,6 Вт – тепловая мощность системы отопления всего здания;

ΔР СО – насосное давление, создаваемое элеватором, Па, определяется по формуле 5.3:

Δp ТС – разность давления в теплопроводах теплосети на вводе в здание, 75кПа;

u – коэффициент смешения в элеваторе, определяется по формуле 5.4:

Принимаем ближайший стандартный элеватор №1, имеющий параметры:

диаметр горловины d Г = 15 мм,

диаметр трубы d У = 40 мм,

длина элеватора L= 425 мм. (По прил. 8 методических указаний.)

Согласно принятых параметров рассчитаем диаметр сопла d С по формуле 5.5:

(5.5)

5.3 Гидравлический расчет системы отопления

Гидравлический расчет трубопроводов сводится к подбору диаметров подводок, стояков и магистралей таким образом, чтобы при заданном циркуляционном давлении к каждому прибору поступало расчетное количество теплоты (теплоносителя), равное тепловой мощности системы отопления данного помещения.

Для расчета необходимо выделить главное циркуляционное кольцо, проходящее через наиболее удаленный и нагруженный стояк наиболее нагруженной ветви. В нашем случае, расчет главного циркуляционного кольца будем проводить через стояк № 1.

Определим расчетное циркуляционное давление для главного циркуляционного кольца по формуле 5.6:

Б – коэффициент, для двухтрубных систем, равный 0.4;

∆Р СО = – насосное давление, передаваемое элеватором в систему отопления, равно8436Па;

∆Р е – естественное давление от остывания воды в отопительных приборах,

Па, определяемое по формуле 5.7 (для двухтрубных систем):

∆Р е = 6,3h(t Г –t 0); (5.7)

h– высота расположения центра прибора первого этажа относительно оси элеватора, м;

t Г = 95ºС – температура воды в подающей магистрали отопления;

t 0 = 70ºС – температура воды в обратной магистрали;

h= 1,80 м (см. аксонометрическую схему и схему элеваторного узла);

Р Ц =8436 + 0,4 ∙ 6,3 ∙ 1,8 ∙ (95 – 70) = 8549,4 Па

Расчет двухтрубного стояка гцк

Определяют длину труб стояка от подающей до обратной магистрали, включая подводки к приборам. Находят количество воды G (по формуле 5.2). Задают диаметры труб таким образом, чтобы скорость движения воды не превышала 1 м/с, и по номограмме для G определяют удельные потери давления P y , Па/м, на 1 погонный метр трубы, учитывающие потери на трение и в местных

сопротивлениях. Тогда потери давления на участке вычисляются по формуле 5.8:

Р СТ = P У ∙ l, (5.8)

где l – длина участка стояка или магистрали, м.

Полные потери давления в стояке должны быть в пределах (0,1-0,15)Р Ц.

Расчет магистралей.

Потери давления в магистралях Р МАГ составляют 0,9(Р Ц –Р СТ). В таблицу 5.1 заносят номера участков, их тепловые нагрузки и длины. Определяют количество воды на участках G, кг/ч. Ориентировочные удельные потери давления в магистралях Р У.ОР рассчитываются по формуле 5.9:

где Ʃl МАГ – суммарная длина всех участков магистралей ГЦК, м.

Диаметры труб подбирают таким образом, чтобы скорость движения воды не превышала 1 м/с и удельные потери давления Р У, определяемые по номограмме, были бы наиболее близки к Р У.ОР. По принятому диаметру труб и фактическому расходу воды по той же номограмме определяют фактические удельные потери давления Р у и скорость движения воды V. Значения Р у,V записываются в таблицу 5.1, затем вычисляют полные потери давления на участках по формуле 5.8 по всему ГЦК.

Расчёт ГЦК считается законченным, если запас давления, определяемый по

формуле 5.10, равен 5-10%:

Р ЗАП =(Р Ц – Р ЦК) / Р Ц ∙100% (5.10)

Р ЦК = Р МАГ + Р СТ – суммарные потери давления на всех участках магистралей и стояке ГЦК, Па. Если Р ЦК больше Р Ц, значит, диаметры труб занижены. На участках следует увеличить диаметры труб и сделать пересчёт потерь давления. Если значения Р ЦК окажется значительно меньше Р Ц, то следует уменьшить диаметры труб отдельных участков, потери давления на которых малы.

Расчеты сведены в таблицу 5.1.

Предварительный расчет:

0,15  Р Ц = 8549,4  0,15 = 1282,5 Па

Р СТ = 3289,04 >> 1282,5 Па, поэтому принимаем диаметр труб стояка – 15 мм вместо 10.

Р СТ = 1364,5 ≈ 1282,5 Па, но если увеличить диаметр труб ещё, то потери давления на стояке составят намного меньше 10% от РЦ (около 2%).

P МАГ = 0,9 (8549,4 –1364,5) = 6467 Па, L МАГ =54,7 м, Р У.ОР. = 118 Па/м.

Р ЦК = 6986,9 + 1364,5 = 8351,4 Па

Р ЗАП = (8549,4 – 8351,4) / 8549,4  100% = 2,3% < 5%

Окончательный расчет:

Принимаем диаметр участка №15 32 мм вместо 25 мм, чтобы увеличить запас:

Р ЗАП = (8549,4 – 7982,3) / 8549,4  100% = 6,6%.

5.4 Расчет поверхности и подбор отопительных приборов:

Для расчета по заданию принимаем тип отопительных приборов – радиатор чугунный секционный М-140-АО.

Техническая характеристика (для одной секции):

    номинальный тепловой поток одной секции q H = 595 Вт/секц.

Требуемое число секций отопительного прибора рассчитывается по формуле 5.11:

q оп – расчетный тепловой поток одной секции, Вт/секц, вычисляемый по формуле 5.12:

q H = 595 Вт/секц – номинальный тепловой поток одной секции, Вт/секц;

n, p – экспериментальные показатели, учитывающие влияние типа отопительного прибора, направление движения и количество проходящей воды;

 1 – коэффициент, учитывающий направление движения воды в приборе;

Δt – разность средней температуры воды в радиаторе и температуры воздуха в помещении, o C, можно найти по формуле 5.13:

Δt = 0,5  (t ВХ +t ВЫХ) – t В (5.13)

t ВХ ≈ t Г = 95 o C, t ВЫХ ≈ t 0 = 95 o C

Значение коэффициента приборов β1 и показателей степени n и р берутся из таблицы 5.2.

Таблица 5.2

Схема подводки теплоносителя к прибору

Значения коэффициентов

Сверху - вниз

Снизу - вверх

Снизу - вниз

Отметим, что при двухтрубной системе у всех приборов схема присоединения сверху-вниз.

Расчет приборов сведён в таблицу 5.3.

Полученное число секций N P округляют до целого Nуст следующим образом:

    если десятичная часть больше 0,28 - в сторону увеличения,

    если меньше или равна 0,28 - в сторону уменьшения.

Таблица 5.3

Монтаж обогрева насчитывает, крепежи, развоздушки, систему соединения котел , коллекторы, бак для расширения, трубы, батареи терморегуляторы, увеличивающие давление насосы. Эти части отопления очень важны. Посему соответствие каждой части монтажа нужно осуществлять обдуманно. Монтаж обогревания коттеджа включает некоторые комплектующие. На открытой вкладке ресурса мы попытаемся подобрать для квартиры необходимые части системы.

Водоструйные элеваторы служат для подмешивания обратной воды к воде, поступающей из тепловой сети, и одновременно для создания циркуляционного напора в системе. Элеваторы бывают чугунные и стальные.

Вода из тепловой сети по патрубку 1 поступает через эжектирующее сопло 2 с большой скоростью в камеру смешения 3, где подмешивается обратная вода из системы отопления, которая подаётся в элеватор по патрубку 5. Смешанная вода поступает в подающий трубопровод системы отопления через диффузор 4.

Коэффициент смешения элеватора

T - температура воды поступающей из наружной подающей теплоцентрали в элеватор °С.

Конструктивными характеристиками элеватора являются диаметр эжектирующего сопла d с и смесительной горловины d г

Диаметр горловины вычисляется по формуле:

Δ Р нас = Δ Р с / (1,4 * (1 + U) 2)

Где Δ Р с – перепад давлений в подающей и обратной магистралях ТЭЦ, Па; U – коэффициент смешения

Диаметр сопла d с. мм

Источник: http://teplodoma.com.ua/labriori/moi_statiy/rashet_elevatora.htm

Отопительная система является одной из важнейших систем жизнеобеспечения дома. В каждом доме применяется определенная система отопления , но не каждый пользователь знает, что такое элеваторный узел отопления и как он работает, его назначение и те возможности, которые предоставляются с его применением.

Элеватор отопления с электроприводом

Принцип функционирования

Наилучшим примером, который покажет элеватор отопления принцип работы, будет многоэтажный дом. Именно в подвале многоэтажного дома среди всех элементов можно отыскать элеватор.

Первым делом, рассмотрим, какой в данном случае имеет элеваторный узел отопления чертеж. Здесь два трубопровода: подающий (именно по нему горячая вода идет к дому) и обратный (остывшая вода возвращается в котельную).

Схема элеваторного узла отопления

Из тепловой камеры вода попадает в подвал дома, на входе обязательно стоит запорная арматура. Обычно это задвижки, но иногда в тех системах, которые более продуманы, ставят шаровые краны из стали.

Как показывают стандарты, есть несколько тепловых режимов в котельных:

  • 150/70 градусов;
  • 130/70 градусов;
  • 95(90)/70 градусов.

Когда вода нагреет до температуры не выше 95-ти градусов, тепло будет распределено по отопительной системе при помощи коллектора. А вот при температуре выше нормы – выше 95 градусов, все становится намного сложнее. Воду такой температуры нельзя подавать, поэтому она должна быть уменьшена. Именно в этом и состоит функция элеваторного узла отопления. Заметим также и то, что охлаждение воды таким образом – это самый простой и дешевый способ.

Назначение и характеристики

Элеватор отопления охлаждает перегретую воду до расчетной температуры, после этого подготовленная вода попадает в отопительные приборы , которые размещены в жилых помещениях. Охлаждение воды случается в тот момент, когда в элеваторе смешивается горячая вода из подающего трубопровода с остывшей из обратного.

Принципиальная схема элеваторного узла

Схема элеватора отопления наглядно показывает, что данный узел способствует увеличению эффективности работы всей отопительной системы здания. На него возложено сразу две функции – смесителя и циркуляционного насоса . Стоит такой узел недорого, ему не требуется электроэнергия. Но элеватор имеет и несколько недостатков:

  • Перепад давления между трубопроводами прямого и обратного подавания должен быть на уровне 0,8-2 Бар.
  • Нельзя регулировать выходной температурный режим.
  • Должен быть точный расчет для каждого компонента элеватора.

Элеваторы широко применимы в коммунальном тепловом хозяйстве, так как они стабильны в работе тогда, когда в тепловых сетях изменяется тепловой и гидравлический режим. За элеватором отопления не требуется постоянно следить, все регулирование заключается в выборе правильного диаметра сопла.

Элеваторный узел в котельной многоквартирного дома

Элеватор отопления состоит из трех элементов – струйного элеватора, сопла и камеры разрежения. Также есть и такое понятие, как обвязка элеватора. Здесь должна применяться необходимая запорная арматура, контрольные термометры и манометры.

На сегодняшний день можно встретить элеваторные узлы системы отопления, которые могут с электрическим приводом отрегулировать диаметр сопла. Так, появится возможность автоматически регулировать температуру носителя тепла.

Подбор элеватора отопления такого типа обусловлен тем, что здесь коэффициент смешения меняется от 2 до 5, в сравнении с обычными элеваторами без регулирования сопла, этот показатель остается неизменным. Так, в процессе применения элеваторов с регулируемым соплом можно немного снизить расходы на отопление.

Строение элеватора

Конструкция данного вида элеваторов имеет в своем составе регулирующий исполнительный механизм, обеспечивающий стабильность работы системы отопления при небольших расходах сетевой воды. В конусообразном сопле системы элеватора размещается регулирующая дроссельная игла и направляющее устройство, которое закручивает струю воды и играет роль кожуха дроссельной иглы.

Этот механизм имеет вращающийся от электропривода или вручную зубчатый валик. Он предназначен для перемещения дроссельной иглы в продольном направлении сопла, изменяет его эффективное сечение, после чего расход воды регулируется. Так, можно повысить расход сетевой воды от расчетного показателя на 10-20%, или уменьшить его практически до полного закрытия сопла. Уменьшение сечения сопла может привести к увеличению скорости потока сетевой воды и коэффициента смешения. Так температура воды снижается.

Неисправности элеваторов отопления

Схема элеваторного узла отопления неисправности может иметь такие, которые вызваны поломкой самого элеватора (засорение, увеличение диаметра сопла), засорением грязевиков, поломкой арматуры, нарушениями настройки регуляторов.

Небольшой элеваторный узел отопления

Поломка такого элемента, как устройство элеватора отопления, может быть замечена по тому, как появляются перепады температуры до и после элеватора. Если разница большая – то элеватор неисправен, если разница незначительная – то он может быть засорен или диаметр сопла увеличен. В любом случае, диагностика поломки и ее ликвидация должны быть произведены только специалистом!

Если сопло элеватора засоряется, то он снимается и прочищается. Если расчетный диаметр сопла увеличивается вследствие коррозии или своевольного сверления, то схема элеваторного узла отопления и отопительная система в целом – придет в состояние разбалансированности.

Приборы, которые установлены на нижних этажах, перегреются, а на верхних – недополучат тепло. Такая неисправность, которую претерпевает работа элеватора отопления, ликвидируется заменой на новое сопло с расчетным диаметром.

Обслуживание элеваторного узла отопления

Засорение грязевика в таком устройстве, как элеватор в системе отопления, можно определить по тому, как увеличился перепад давления, контролируемого манометрами до и после грязевика. Такое засорение удаляется при помощи сброса грязи через краны спуска грязевика, которые размещены в его нижней части. Если так засор не удаляется, то грязевик разбирается и очищается изнутри.

Источник: http://otoplenie-doma.org/elevatornyj-uzel-otopleniya.html

По книге М.М. Апрарцева "Наладка водяных систем централизованного теплоснабжения"

Москва Энергоатомиздат 1983 г.

В настоящее время большинство систем отопления подключено по схеме элеваторного подключения. Одновременно, как показала практика, многие не совсем хорошо понимают принципы работы элеваторных узлов. В результате эффективность рабты систем отопления не всегда является приемлемой. При нормальной температуре теплоносителя в помещениях и квартирах температура либо слишком занижена, либо слишком завышена. Такой эффект может наблюдаться не только при неправильной настройке элеваторов, но большинство проблем возникает именно по этой причине. Поэтому расчету и наладки элеваторного узла должно быть уделено наибольшее внимание.

(5)

Н - располагаемый напор, м.

Во избежание вибрации и шума, которые обычно возникают при работе элеватора под напором, в 2 - 3 раза превышающим требуемый, часть этого напора рекомендуется гасить дроссельной диафрагмой, устанавливаемым перед монтажным патрубком до элеватора. Более эффективный путь - установка регулятора расхода перед элеватором, который позволит максимально эффективно настроить и эксплуатировать элеваторный узел.

При выборе номера элеватора по расчетному диаметру его горловины следует выбирать стандартный элеватор с ближайшим меньшим диаметром горловины, так как завышенный диаметр риводит к резкому снижению КПД элеватора.

Диаметр сопла следует определять с точностью до десятой доли мм с округлением в меньшую сторону. Диаметр отверстия сопла во избежание засорения должен быть не менее 3 мм.

При установке одного элеватора на группу небольших зданий его номер определяется исходя из максимальных потерь напора в распеределительной сети после элеватора и в системе отопления для самого неблагоприятно расположенного потребителя, которые следует принимать с К = 1,1. При этом перед системой отопления каждого здания следует установить дроссельную диафрагму, расчитанную на гашение всего избыточного напора при расчетном расходе смешанной воды.

После расчета и установки элеватора необходимо провести его точную настройку и регулировку.

Регулировку следует проводить только после выполнения всех предварительно разработанных мероприятий по наладке.

Перед началом регулировки системы теплоснабжения должна быть обеспечена работа автоматических устройств, предусмотренных при разработке мероприятий для поддержания заданного гидравлического режима и безаварийной работы источника теплоты, сети, насосных станций и тепловых пунктов.

Регулировка централизованной системы теплоснабжения начинается с фиксирования фактических давлений воды в тепловых сетях при работе сетевых насосов, предусмотренных расчетным режимом, и поддержания в обратном коллекторе источника теплоты заданного напора.

Если при сопоставлении фактического пьезометрического графика с заданным обнаружатся значительно увеличенные потери напора на участках, необходимо установить их причину (функционирующие перемычки, не полностью открытые задвижки, несоответствие диаметра трубопровода принятому при гидравлическом расчете , засоры и т. п.) и принять меры к их устранению.

В отдельных случаях при невозможности устранения причин завышенных по сравнению с расчетом потерь напора, например при заниженных диаметрах трубопроводов , может быть произведена корректировка гидравлического режима путем изменения напора сетевых насосов с таким расчетом, чтобы располагаемые напоры на тепловых вводах потребителей соответствовали расчетным.

Регулировка систем теплоснабжения с нагрузкой горячего водоснабжения , для которых гидравлический и тепловой режимы были рассчитаны с учетом соответствующих регуляторов на тепловых вводах, проводится при исправной работе этих регуляторов.

Регулировка систем теплопотребления и отдельных теплопотребляющих приборов базируется на проверке соответствия фактических расходов воды расчетным. При этом под расчетным расходом понимается расход воды в системе теплопотребления или в теплопотребляющем приборе, обеспечивающий заданный температурный график. Расчетный расход соответствует необходимому для создания внутри помещений расчетной температуры при соответствии установленной площади поверхности нагрева необходимой.

Степень соответствия фактического расхода воды расчетному определяется температурным перепадом воды в системе или в отдельном теплопотребляющем приборе. При этом фактическая температура воды в сети не должна отклоняться от графика более чем на 2° С. Заниженный температурный перепад указывает на завышенный расход воды и соответственно завышенный диаметр отверстия дроссельной диафрагмы или сопла. Завышенный температурный перепад указывает на заниженный расход воды и соответственно заниженный диаметр отверстия дроссельной диафрагмы или сопла.

Соответствие фактического расхода сетевой воды расчетному при отсутствии приборов учета (расходомеров) с достаточной для практики точностью определяется:

для систем теплопотребления, подключенным к сетям через элеваторы или подмешивающие насосы, по формуле

(6)

y = Gф/Gр - отношение фактического расхода сетевой воды, поступающей в отопительную систему, к расчетному;

t " 1 . t " 3 и t " 2 - замеренные на тепловом вводе температуры воды соответственно в подающем трубопроводе, смешанной и обратной, гр.С;

t 1 . t 2 и t 3 -температуры воды соответственно в подающем трубопроводе, смешанной и обратной по температурному графику при фактической температуре наружного воздуха, гр.С;

t " в и t в - фактическая и расчетная температуры воздуха внутри помещений;

Для систем теплопотребления жилых и административных зданий, подключенных к тепловой сети без подмешивающих устройств, а также для отопительно-рециркуляционных калориферных установок по формуле.

Системы теплоснабжения, применяемые в настоящее время, состоят из магистральных трубопроводов и теплопунктов, с помощью которых тепло распределяется по потребителям. Любой многоквартирный дом оснащен специальным тепловым узлом, в котором регулируется давление и температура воды. С этой задачей призваны справляться специальные устройства, называемые элеваторными узлами.

Элеваторный узел представляет собой модуль, с помощью которого любой многоквартирный дом подключается к общей теплосети. Теплоноситель часто имеет температуру, превышающую допустимые пределы. Сильно нагретая вода не должна поступать в радиаторы квартир. Для охлаждения воды в отопительных системах домов применяются элеваторные узлы.

Данные модули понижают температуру поступающего в подвалы домов теплоносителя из внешней теплосети путем добавления в него воды из обратной трубы. Элеваторы являются наиболее простыми вариантами охлаждения теплоносителей в жилых домах.

Устройство и принцип работы элеватора отопления

Элеватор системы отопления состоит из трех основных элементов:

  • смесительная камера;
  • сопло;
  • струйный элеватор.

Дополнительно в конструкции устройства предусматриваются различные термометры с манометрами. Элеваторы также оснащаются запорной арматурой.

Элеватор представляет собой устройство, сделанное из чугуна или стали. Устройство снабжено тремя фланцами. Принцип его работы заключается в следующем:

  • разогретая до высоких температур вода движется к элеватору и попадает в его сопло;
  • происходит усиление скорости потока теплоносителя при сужающемся сопле и уменьшении давления;
  • в то место, где возникло низкое давление, поступает холодная вода из обратного трубопровода;
  • обе жидкости (холодная и горячая) перемешиваются в смесительном узле элеватора.

Благодаря холодной воде, поступающей из обратной трубы, в отопительной системе снижается общее давление. Температура теплоносителя опускается до нужного показателя, после чего он распределяется по квартирам жилого дома.

По своей структуре элеваторный узел является устройством, одновременно выполняющим функции и смесителя, и циркуляционного насоса.

Основными достоинствами конструкции являются:

  • невысокая стоимость установки в многоквартирных домах;
  • несложность самой установки;
  • экономия используемого теплоносителя, достигающая 30%;
  • энергонезависимость данного оборудования.

Любой элеваторный узел требует обвязки. Нагретая вода движется по магистрали через трубопровод подачи. Ее возвращение происходит по обратному трубопроводу. От магистральных труб внутренняя система дома может отключаться благодаря задвижкам. Элементы теплового узла крепятся друг с другом фланцевым соединением.

Схема элеватора системы отопления

На входе в систему, как и на ее выходе, фиксируются специальные грязевики. Их функция сводится к сбору твердых частиц, которые попадают в теплоноситель. Благодаря грязевикам частицы не проникают дальше в отопительную систему, оседая в них. Используются грязевики прямого и косого типов. Данные элементы нуждаются в очищении от накопившихся в них осадков.

Обязательным элементом являются манометры. Данные контрольные приборы выполняют функцию регулирования показателей давления теплоносителя внутри труб.

При попадании в узел управления системой отопления теплоноситель может иметь давление, достигающее 12 атмосфер. На выходе из элеватора давление значительно снижается. Его показатель зависит от числа этажей в многоквартирном доме.

В системе предусматриваются термометры, регулирующие температуру внутритрубной жидкости.

Установка самого элеватора предусматривает особые правила монтажа:

  • наличие в системе свободного прямого участка длиной 25 см;
  • при помощи входного патрубка устройство соединяется с трубой подачи из централи (соединение происходит посредством фланца);
  • патрубком с противоположной стороны элеватор соединяется с трубой, являющейся частью внутридомовой разводки;
  • к обратной трубе элеваторный узел вместе с фланцем подключается при помощи перемычки.

Любая внутридомовая отопительная конструкция подразумевает присутствие задвижек и дренирующих элементов. Задвижки позволяют отключить элеватор от внутренней отопительной сети, а дренирующие элементы осуществляют слив теплоносителя из системы. Обычно это происходит в рамках плановых профилактических мероприятий или при авариях на теплосетях.

Элеватор с автоматической регулировкой

Используется два основных типа элеваторных узлов:

  • без регулировки;
  • устройства с автоматическим регулированием.

Второй тип устройств имеет свои особенности работы. Их конструкция позволяет электронными методами регулирования менять сечение сопла. Внутри такого элемента располагается специальный механизм, посредством которого происходит перемещение дроссельной иглы.

Дроссельная игла оказывает воздействие на сопло и меняет его просвет. В результате изменения просвета сопла существенно изменяются показатели расходования теплоносителя.

Изменение просвета не только оказывает влияние на расход жидкости внутри отопительных труб, но и на скорость ее перемещения. Все это становится результатом изменения коэффициента, при котором происходит смешивание холодной воды из обратного трубопровода и горячей воды, идущей по внешней магистральной трубе. Так происходит изменение температуры теплоносителя.

Посредством элеватора происходит регулировка не только подачи жидкости, но и ее давления. Давление самого устройства направляет поток теплоносителя в отопительном контуре.

Поскольку элеватор отчасти является циркуляционным насосом, то в его конструкцию удачно вписываются распределительные устройства. Это необходимо в многоэтажных домах, где проживает сразу несколько потребителей.

Основным распределительным устройством выступает коллектор или гребенка. В данную емкость попадает теплоноситель, выходящий из элеваторного узла. Жидкость выходит из гребенки через множество выходов, распределяясь по квартирам дома. При этом напор в системе остается неизменным.

Можно ремонтировать отдельных потребителей без необходимости остановки всего контура отопления.

Использование клапана трехходового

В качестве распределительного устройства используется клапан трехходовой. Механизм способен функционировать в нескольких режимах:

  • постоянном;
  • переменном.

Клапаны бывают чугунными, латунными, стальными. Внутри него имеется запорное устройство цилиндрического, шарового или конусного типа. По своей форме клапан напоминает тройник. Работая в отопительной системе, он выполняет функции смесителя.

Чаще используются клапаны шарового типа. Их назначение сводится к:

  • регулированию температуры радиаторов;
  • регулированию температуры внутри теплых полов;
  • направлению теплоносителя по двум направлениям.

Трехходовые клапаны, входящие в элеваторный узел, подразделяются на два вида - регулировочные, запорные. Оба вида во многом схожи по функционалу, но второй тип сложнее справляется с задачей плавной регулировки температурного режима.

Основные неисправности элеваторов

Среди достоинств устройства имеется несколько его недостатков, среди которых:

  • не допускается сильный перепад давления, который возникает в двух трубах (подающей и обратной);
  • допустимой нормой перепада давления является 2 Бар;
  • устройство не позволяет регулировать температуру теплоносителя на выходе из системы;
  • каждый элемент элеваторного узла нуждается в составлении расчетов, без чего невозможна точность их работы.

Среди частых случаев неисправностей, происходящих с данными устройствами, бывают:

  • засорение грязевиков;
  • засор всего оборудования;
  • выход из строя арматуры;
  • увеличение диаметра сопла, происходящее со временем и затрудняющее возможность регулировки температуры воды в отопительных трубах;
  • поломка регуляторов.

Один из примеров засорения грязевиков

Частыми причинами неисправностей являются различные засоры оборудования и увеличивающееся в диаметре сопло. Любая неисправность быстро дает о себе знать сбоем в работе узла. В системе возникает резкий перепад температуры теплоносителя. Серьезным перепадом является изменение температуры на 5 0 С. В подобных случаях требуется диагностика конструкции и проведение ее ремонта.

Сопло увеличивается в своем диаметре по двум главным причинам:

  • из-за непроизвольного сверления;
  • из-за коррозии в результате постоянного контакта с водой.

Проблема приводит к нарушению баланса в системе и регулировки температуры в ней. Ремонтные работы при этом должны быть проведены в кратчайшие сроки.