Какие бывают полимеры в химии. Химические свойства полимеров. Где применяются полимеры

10.04.2019

На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты).

Волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относятся полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями, либо методом нанесения растворов полимеров на движущуюся ленту, либо методом каландрования полимеров. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Каландрование –обработка полимеров на каландрах, состоящих из двух или более валков, расположенных параллельно и вращающихся навстречу друг другу.

Лаки – растворы пленкообразующих веществ в органических растворителях. Кроме полимеров, лаки содержат вещества, повышающие пластичность (пластификаторы), растворимые красители, отвердители и др. Применяются для электроизоляционных покрытий, а также в качестве основы грунтовочного материала и лакокрасочных эмалей.

Клеи – композиции, способные соединять различные материалы вследствие образования прочных связей между их поверхностями и клеевой прослойкой. Синтетические органические клеи составляются на основе мономеров, олигомеров, полимеров или их смесей. В состав композиции входят отвердители, наполнители, пластификаторы и др. Клеи подразделяются на термопластические, термореактивные и резиновые. Термопластические клеи образуют связь с поверхностью в результате затвердевания при охлаждении от температуры текучести до комнатной температуры или испарения растворителя. Термореактивные клеи образуют связь с поверхностью в результате отвердевания (образования поперечных сшивок), резиновые клеи – в результате вулканизации.

Пластмассы – это материалы, содержащие полимер, который при формировании изделия находится в вязкотекучем состоянии, а при его эксплуатации – в стеклообразном. Все пластмассы подразделяются на реактопласты и термопласты. При формовании реактопластов происходит необратимая реакция отвердевания, заключающаяся в образовании сетчатой структуры. К реактопластам относятся материалы на основе фенолоформальдегидных, мочевиноформальдегидных, эпоксидных и других смол. Термопласты способны многократно переходить в вязкотекучее состояние при нагревании и стеклообразное – при охлаждении. К термопластам относятся материалы на основе полиэтилена, политетрафторэтилена, полипропилена, поливинилхлорида, полистирола, полиамидов и других полимеров.



Эластомеры – это полимеры и композиты на их основе, для которых температурный интервал температуры стеклования – температуры текучести достаточно высок и захватывает обычные температуры.

Кроме полимеров в состав пластмасс и эластомеров входят пластификаторы, красители и наполнители. Пластификаторы – например, диоктилфталат, дибутилсебацинат, хлорированный парафин – снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико-механические свойства полимеров. В качестве наполнителей применяют порошки (графит, сажа, мел, металл и т.д.), бумагу, ткань.

Армирующие волокна и кристаллы могут быть металлическими, полимерными, неорганическими (например, стеклянными, карбидными, нитридными, борными). Армирующие наполнители в значительной степени определяют механические, теплофизические и электрические свойства полимеров. Многие композиционные полимерные материалы по прочности не уступают металлам. Композиты на основе полимеров, армированных стекловолокном (стеклопластики), обладают высокой механической прочностью (прочностью при разрыве 1300–2500 МПа) и хорошими электроизоляционными свойствами. Композиты на основе полимеров, армированных углеродными волокнами (углепластики), сочетают высокую прочность и вибропрочность с повышенной теплопроводностью и химической стойкостью. Боропластики (наполнители – борные волокна) имеют высокую прочность, твердость и низкую ползучесть.

Композиты на основе полимеров используются как конструкционные, электро- и теплоизоляционные, коррозионностойкие, антифрикционные материалы в автомобильной, станкостроительной, электротехнической, авиационной, радиотехнической, горнорудной промышленности, космической технике, химическом машиностроении и строительстве.

Редокситы. Широкое применение получили полимеры с окислительно-восстановительными свойствами – редокситы (с редоксгруппами, или редоксиониты).

Применение полимеров. В настоящее время широко применяется большое число различных полимеров, обладающих различными физическими и химическими свойствами.

Рассмотрим некоторые полимеры и композитов на их основе.

Полиэтилен [-CH2-CH2-] n – термопласт, получаемый методом радикальной полимеризации при температуре до 320 0C и давлении 120-320 МПа (полиэтилен высокого давления) или при давлении до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давлений имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен химически стоек во многих средах, но под действием окислителей стареет. Полиэтилен – хороший диэлектрик, может эксплуатироваться в пределах температур от –20 до +100 0 C. Облучение может повысить теплостойкость полимера. Из полиэтилена изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки и оболочки кабелей (высокочастотных, телефонных, силовых), пленки, упаковочный материал, заменители стеклотары.

Полипропилен [-CH(CH 3)-CH 2 -] n – кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120–140 0 C), нежели полиэтилен. Имеет высокую механическую прочность (см. табл. 14.2), стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др.

Полистирол – термопласт, получаемый радикальной полимеризацией стирола. Полимер стоек к действию окислителей, но неустойчив к воздействию сильных кислот, он растворяется в ароматических растворителях, обладает высокой механической прочностью и диэлектрическими свойствами и используется как высококачественный электроизоляционный, а также конструкционный и декоративно-отделочный материал в приборостроении, электротехнике, радиотехнике, бытовой технике. Гибкий эластичный полистирол, получаемый вытяжкой в горячем состоянии, применяется для оболочек кабелей и проводов. На основе полистирола также выпускают пенопласты.

Поливинилхлорид [-CH 2 -CHCl-] n – термопласт, изготовляемый полимеризацией винилхлорида, стоек к воздействию кислот, щелочей и окислителей; растворим в циклогексаноне, тетрагидрофуране, ограничено – в бензоле и ацетоне; трудногорюч, механически прочен; диэлектрические свойства хуже, чем у полиэтилена. Применяется как изоляционный материал, который можно соединять сваркой. Из него изготовляют грампластинки, плащи, трубы и др. предметы.

Политетрафторэтилен (фторопласт) [-CF 2 -CF 2 -] n – термопласт, получаемый методом радикальной полимеризации тетрафторэтилена. Обладает исключительной химической стойкостью к кислотам, щелочам и окислителям; прекрасный диэлектрик; имеет очень широкие температурные пределы эксплуатации (от –270 до +260 0 C). При 400 0 C разлагается с выделением фтора, не смачивается водой. Фторопласт используется как химически стойкий конструкционный материал в химической промышленности. Как лучший диэлектрик применяется в условиях, когда требуется сочетание электроизоляционных свойств с химической стойкостью. Кроме того, его используют для нанесения антифрикционных, гидрофобных и защитных покрытий, покрытий сковородок.

Полиметилметакрилат (плексиглас)

– термопласт, получаемый методом полимеризации метилметакрилата. Механически прочен; стоек к действию кислот; атмосферостоек; растворяется в дихлорэтане, ароматических углеводородах, кетонах, сложных эфирах; бесцветен и оптически прозрачен. Применяется в электротехнике как конструкционный материал, а также как основа для клеев.

Полиамиды – термопласты, содержащие в основной цепи амидогруппу -NHCO-, например, поли-ε-капрон [-NH-(CH 2) 5 -CO-] n , полигексаметиленадипинамид (нейлон) [-NH-(CH 2) 5 -NH-CO-(CH 2) 4 -CO-] n ; полидодеканамид [-NH-(CH 2) 11 -CO-] n и др. Их получают как поликонденсацией, так и полимеризацией. Плотность полимеров 1,0÷1,3 г/см 3 . Характеризуются высокой прочностью, износостойкостью, диэлектрическими свойствами; устойчивы в маслах, бензине, разбавленных кислотах и концентрированных щелочах. Применяются для получения волокон, изоляционных пленок, конструкционных, антифрикционных и электроизоляционных изделий.

Полиуретаны – термопласты, содержащие в основной цепи группы -NH(CO)O-, а также эфирные, карбаматные и др. Получают взаимодействием изоциантов (соединений, содержащих одну или несколько NCO-групп) с полиспиртами, например, с гликолями и глицерином. Устойчивы к действию разбавленных минеральных кислот и щелочей, масел и алифатических углеводородов. Выпускаются в виде пенополиуретанов (поролонов), эластомеров, входят в составы лаков, клеев, герметиков. Используются для тепло- и электроизоляции, в качестве фильтров и упаковочного материала, для изготовления обуви, искусственной кожи, резинотехнических изделий.

Полиэфиры – полимеры с общей формулой НО[-R-О-] n Н или [-OC-R-COO-R"-O-] n . Получают либо полимеризацией циклических оксидов, например этиленоксида, лактонов (сложных эфиров оксикислот), либо поликонденсацией гликолей, диэфиров и других соединений. Алифатические полиэфиры устойчивы к действию растворов щелочей, ароматические – также к действию растворов минеральных кислот и солей. Применяются в производстве волокон, лаков и эмалей, пленок, коагулянтов и фотореагентов, компонентов гидравлических жидкостей и др.

Синтетические каучуки (эластомеры) получают эмульсионной или стереоспецифической полимеризацией. При вулканизации превращаются в резину, для которой характерна высокая эластичность. Промышленность выпускает большое число различных синтетических каучуков (CK), свойства которых зависят от типа мономеров. Многие каучуки получают совместной полимеризацией двух и более мономеров. Различают CK общего и специального назначения. К CK общего назначения относят бутадиеновый [-CH 2 -CH=CH-CH 2 -] n и бутадиенстирольный [-СН 2 -СН=СН-СН 2 -] n - - [-CH 2 -CH(C 6 H 5)-] n . Резины на их основе используются в изделиях массового назначения (шины, защитные оболочки кабелей и проводов, ленты и т.д.). Из этих каучуков также получают эбонит, широко используемый в электротехнике. Резины, получаемые из CK специального назначения, кроме эластичности, характеризуются некоторыми специальными свойствами, например бензо- и маслостойкостью (бутадиен-нитрильный CK [-CH 2 -CH=CH-CH 2 -] n – [-CH 2 -CH(CN)-] n), бензо-, масло- и теплостойкостью, негорючестью (хлоропреновый CK [-CH 2 -C(Cl)=CH-CH 2 -] n), износостойкостью (полиуретановый и др.), тепло-, свето-, озоностойкостью (бутилкаучук) [-С(СН 3) 2 -СН 2 -] n -[-СН 2 С(СН 3)=СН-CН 2 -] m . К наиболее применяемым относятся бутадиенстирольный (более 40 %), бутадиеновый (13 %), изопреновый (7 %), хлоропреновый (5 %) каучуки и бутилкаучук (5 %). Основная доля каучуков. (60 - 70 %) идет на производство шин, около 4 % – на изготовление обуви

Кремнийорганические полимеры (силиконы) – содержат атомы кремния в элементарных звеньях макромолекул. Большой вклад в разработку кремнийорганических полимеров внес российский ученый К. А. Андрианов. Характерной особенностью этих полимеров является высокая тепло- и морозостойкость, эластичность; они не стойки к воздействию щелочей и растворяются во многих ароматических и алифатических растворителях. Кремнийорганические полимеры используются для получения лаков, клеев, пластмасс и резины. Кремнийорганические каучуки [-Si(R 2)-O-] n , например диметилсилоксановый и метилвинилсилоксановый имеют плотность 0,96 – 0,98 г/см 3 , температуру стеклования 130 0 C. Растворимы в углеводородах, галогеноуглеводородах, эфирах. Вулканизируются с помощью органических пероксидов. Резины могут эксплуатироваться при температуре от -90 до +300 0 C, обладают атмосферостойкостью, высокими электроизоляционными свойствами. Применяются для изделий, работающих в условиях большого перепада температур, например для защитных покрытий космических аппаратов и т.д.

Феноло- и аминоформальдегидные смолы получают поликонденсацией формальдегида с фенолом или аминами. Это термореактивные полимеры, у которых в результате образования поперечных связей образуется сетчатая пространственная структура, которую невозможно превратить в линейную структуру, т.е. процесс идет необратимо. Их используют как основу для клеев, лаков, ионитов, пластмасс.

Пластмассы на основе фенолоформальдегидных смол получили название фенопластов , на основе мочевиноформальдегидных смол – аминопластов . Наполнителями фенопластов и аминопластов служит бумага или картон (гетинакс), ткань (текстолит), древесина, кварцевая и слюдяная мука и др. Фенопласты стойки к действию воды, растворов кислот, солей и оснований, органических растворителей, трудногорючи, атмосферостойки и являются хорошими диэлектриками. Используются в производстве печатных плат, корпусов электро- и радиотехнических изделий, фольгированных диэлектриков.

Аминопласты характеризуются высокими диэлектрическими и физико-механическими свойствами, устойчивы к действию света и УФ-лучей, трудногорючи, стойки к действию слабых кислот и оснований и многих растворителей. Они могут быть окрашены в любые цвета. Применяются для изготовления электротехнических изделий (корпусов приборов и аппаратов, выключателей, плафонов, тепло- и звукоизоляционных материалов и др.).

В настоящее время около 1/3 всех пластмасс применяется в электротехнике, электронике и машиностроении, 1/4 – в строительстве и примерно 1/5 – для упаковки. Растущий интерес к полимерам можно показать на примере автомобилестроения. Многие специалисты оценивают уровень совершенства автомобиля по доле использования в нем полимеров. Например, масса полимерных материалов возросла от 32 кг у ВАЗ-2101 до 76 кг у ВАЗ-2108. За рубежом средняя масса пластмасс составляет 75÷120 кг на автомашину.

Таким образом, полимеры находят чрезвычайно широкое применение в виде пластмасс и композитов, волокон, клеев и лаков, причем масштабы и области их использования постоянно возрастают.

Вопросы для самоконтроля:

1. Что такое полимеры? Их виды.

2. Что такое мономер, олигомер?

3. В чем заключается метод получения полимеров полимеризацией? Привести примеры.

4. В чем заключается метод получения полимеров поликонденсацией? Привести примеры.

5. В чем заключается радикальная полимеризация?

6. В чем заключается ионная полимеризация?

7. В чем заключается полимеризация в массе (блоке)?

8. В чем заключается эмульсионная полимеризация?

9. В чем заключается суспензионная полимеризация?

10. В чем заключается газовая полимеризация?

11. В чем заключается поликонденсация в расплаве?

12. В чем заключается поликонденсация в растворе?

13. В чем заключается поликонденсация на межфазной границе?

14. Какова форма и структура макромолекул полимеров?

15. Чем характеризуется кристаллическое состояние полимеров?

16. Каковы особенности физического состояния аморфных полимеров?

17. Каковы химические свойства полимеров?

18. Каковы физические свойства полимеров?

19. Какие материалы получают на основе полимеров?

20. Каково применение полимеров в различных отраслях промышленности?

Вопросы для самостоятельной работы:

1. Полимеры и их применение.

2. Пожарная опасность полимеров.

Литература:

1. Семенова Е. В., Кострова В. Н., Федюкина У. В. Химия. – Воронеж: Научная книга – 2006, 284 с.

2. Артименко А.И. Органическая химия. - М.: Высш. шк. – 2002, 560 с.

3. Коровин Н.В. Общая химия. - М.: Высш. шк. – 1990, 560 с.

4. Глинка Н.Л. Общая химия. – М.: Высш. шк. – 1983, 650 с.

5. Глинка Н.Л. Сборник задач и упражнений по общей химии. – М.: Высш. шк. – 1983, 230 с.

6. Ахметов Н.С. Общая и неорганическая химия. М.:Высшая шк. – 2003, 743 с.

Лекция 17 (2 ч)

Тема 11. Химическая идентификация и анализ вещества

Цель лекции: ознакомится с качественным и количественным анализом веществ и дать общую характеристику, применяемых при этом методов

Изучаемые вопросы:

11.1. Качественный анализ вещества.

11.2. Количественный анализ вещества. Химические методы анализа.

11.3. Инструментальные методы анализа.

11.1. Качественный анализ вещества

В практической деятельности часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания. Наука, которая занимается качественным и количественным анализом называется аналитической химией . Анализ проводят поэтапно: сначала проводят химическую идентификацию вещества (качественный анализ), а затем определяют, сколько вещества находится в образце (количественный анализ).

Химическая идентификация (обнаружение) – это установление вида и состояния фаз, молекул, атомов, ионов и других составных частей вещества на основе сопоставления экспериментальных и соответствующих справочных данных для известных веществ. Идентификация является целью качественного анализа.При идентификации обычно определяется комплекс свойств веществ: цвет, фазовое состояние, плотность, вязкость, температуры плавления, кипения и фазового перехода, растворимость, электродный потенциал, энергия ионизации и (или) т.д. Для облегчения идентификации созданы банки химических и физико-химических данных. При анализе многокомпонентных веществ часто используются универсальные приборы (спектрометры, спектрофотометры, хроматографы, полярографы и др.), снабженные компьютерами, в памяти которых имеется справочная химико-аналитическая информация. На базе этих универсальных установок создается автоматизированная система анализа и обработки информации.

В зависимости от вида идентифицируемых частиц различают элементный, молекулярный, изотопный и фазовый анализы. Поэтому наибольшее значение имеют методы определения, классифицируемые по характеру определяемого свойства, или по способу регистрации аналитического сигнала:

1) химические методы анализа ,которые основаны на применении химических реакций. Они сопровождаются внешними эффектами (образование осадка, выделение газа, появление, исчезновение или изменение окраски);

2) физические методы , которые основаны на определенной взаимосвязи между физическими свойствами вещества и его химическим составом;

3) физико-химические методы , которые основаны на физических явлениях, сопровождающих химические реакции. Они наиболее распространены вследствие высокой точности, селективности (избирательности) и чувствительности. В первую очередь будут рассмотрены элементный и молекулярный анализы.

В зависимости от массы сухого вещества или объема раствора анализируемого вещества различают макрометод (0,5 – 10 г или 10 – 100 мл), полумикрометод (10 – 50 мг или 1 – 5 мл), микрометод (1-5 Гмг или 0,1 – 0,5 мл) и ультрамикрометод (ниже 1 мг или 0,1 мл) идентификаций.

Качественный анализ характеризуется пределом обнаружения (обнаруженным минимумом) сухого вещества, т. е. минимальным количеством надежно идентифицируемого вещества и предельной концентрацией раствора. В качественном анализе применяются только такие реакции, пределы обнаружения которых не менее 50 мкг.

Имеются некоторые реакции, которые позволяют обнаружить то или иное вещество или ион в присутствии других веществ или других ионов. Такие реакции называются специфическими . Примером таких реакций могут быть обнаружение ионов NH 4 + действием щелочи или нагреванием

NH 4 Cl + NaOH = NH 3 ­ + H 2 O + NaCl

или реакция иода с крахмалом (темно-синее окрашивание) и т.д.

Однако в большинстве случаев реакции обнаружения вещества не являются специфическими, поэтому мешающие идентификации вещества переводят в осадок, слабодиссоциирующее или комплексное соединение. Анализ неизвестного вещества проводят в определенной последовательности, при которой то или иное вещество идентифицируют после обнаружения и удаления, мешающих анализу других веществ, т.е. применяют не только реакции обнаружения веществ, но и реакции отделения их друг от друга.

Следовательно, качественный анализ вещества зависит от содержания примесей в нем, т. е. его чистоты. Если примеси содержатся в очень малых количествах, то их называют «следами». Термины отвечают молярным долям в %: «следы» 10 -3 ÷ 10 -1 , «микроследы» – 10 -6 ÷ 10 -3 , «ультрамикроследы» - 10 -9 ÷ 10 -6 , субмикроследы – менее 10 -9 . Вещество называется высокочистым при содержании примесей не более 10 -4 ÷ 10 -3 % (мол. доли) и особо чистым (ультрачистым) при содержании примесей ниже 10 -7 % (мол. доли). Имеется и другое определение особо чистых вещества, согласно которому они содержат примеси в таких количествах, которые не влияют на основные специфические свойства веществ. Однако значение имеет не любая примесь, а примеси, оказывающие влияние на свойства чистого вещества. Такие примеси называются лимитирующими или контролирующими.

При идентификации неорганических веществ проводят качественный анализ катионов и анионов. Методы качественного анализа базируются на ионных реакциях, которые позволяют идентифицировать элементы в форме тех или иных ионов. Как и при любом виде качественного анализа, в ходе реакций образуются труднорастворимые соединения, окрашенные комплексные соединения, происходит окисление или восстановление с изменением цвета раствора. Для идентификации с помощью образования труднорастворимых соединений используют как групповые, так и индивидуальные осадители.

При идентификации катионов неорганических веществ групповыми осадителями для ионов Ag + , Pb 2+ , Hg 2+ служит NaCl; для ионов Ca 2+ , Sr 2+ , Ba 2+ - (NH 4) 2 CO 3 , для ионов Al 3+ , Cr 3+ , Fe 2+ , Fe 3+ , Mn 2+ , Co 2+ , Ni 2+ , Zn 2+ и др. - (NH 4) 2 S.

Если присутствует несколько катионов, то проводят дробный анализ , при котором осаждаются все труднорастворимые соединения, а затем обнаруживаются оставшиеся катионы тем или иным методом, либо проводят ступенчатое добавление реагента, при котором сначала осаждаются соединения с наименьшим значением ПР, а затем соединения с более высоким значением ПР. Любой катион можно идентифицировать с помощью определенной реакции, если удалить другие катионы, мешающие этой идентификации. Имеется много органических и неорганических реагентов, образующих осадки или окрашенные комплексные соединения с катионами (табл. 9).

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

ОПРЕДЕЛЕНИЕ

Полимеры — химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов) , молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

n CH 2 =CH 2 = -(-CH 2 -CH 2 -)-

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

m р-ра (C 6 H 6) = m(C 6 H 6)/(/100%)

Полимерные материалы (пластмассы, пластики) представляют собой, как правило, затвердевшие композиционные составы, связующим в которых служат полимеры, олигомеры. Широко распространенное название «пластмассы» (что не совсем корректно) они получили за то, что при переработке в изделия находятся в пластическом (текучем) состоянии. Поэтому научно обоснованные названия - «полимерные материалы», «композиционные материалы на основе полимеров».

Полимеры (от греч. poly - много, meres - части) - это высокомолекулярные химические соединения, молекулы которых состоят из огромного числа многократно повторяющихся элементарных звеньев одинаковой структуры. Такие молекулы называют макромолекулами. В зависимости от расположения в них атомов и атомных групп (элементарных звеньев) они могут иметь линейное (цеповидное), разветвленное, сетчатое и пространственное (трехмерное) строение, что и определяет их физико-механические и химические свойства. Образование этих молекул возможно благодаря тому, что атомы углерода легко и прочно соединяются друг с другом и со многими другими атомами.

Различают также формополимеры (предполимеры, преполимеры), которые представляют собой соединения, содержащие функциональные группы и способные участвовать в реакциях роста или сшивания полимерной цепи с образованием высокомолекулярных линейных и сетчатых полимеров. Прежде всего, это тоже жидкие продукты полиолов с избытком полиизоционатов или других соединений при производстве изделий из полиуретанов.

По происхождению полимеры могут быть природными, искусственными и синтетическими.

Природные полимеры - это в основном биополимеры - белковые вещества, крахмал, природные смолы (сосновая канифоль), целлюлоза, натуральный каучук, битум и др. Многие из них образуются в процессе биосинтеза в клетках живых и растительных организмов. Однако в промышленности в большинстве случаев используются искусственные и синтетические полимеры.

Основным сырьем для производства полимеров являются побочные продукты угольной и нефтяной промышленности, производства удобрений, природный газ, целлюлоза и другие вещества. Процесс образования таких макромолекул и в целом полимера вызывается воздействием на исходное вещество (мономер) потока световых лучей, электрических разрядов токов высокой частоты, нагреванием, давлением и т. п.

В зависимости от способа получения полимеров их можно подразделить на полимеризационные, поликонденсационные и модифицированные природные полимеры. Процесс получения полимеров путем последовательного присоединения звеньев мономера друг к другу в результате раскрытия кратных (ненасыщенных) связей называют реакцией полимеризации. В процессе этой реакции вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. При этом реакция не сопровождается отделением каких-либо низкомолекулярных побочных продуктов. Как мономер, так и полимер характеризуются одинаковым элементным составом. Реакцией полимеризации получают полиэтилен из этилена, полипропилен из пропилена, полиизобутилен из изобутилена и многие другие полимеры.

При реакции поликонденсации происходит перегруппировка атомов двух или нескольких мономеров и выделение из сферы реакции побочных низкомолекулярных продуктов (например, воды, спиртов или других низкомолекулярных веществ). Реакцией поликонденсации получают полиамиды, полиэфиры, эпоксидные, фенолоформальдегидные, кремнийорганические и другие синтетические полимеры, называемые еще смолами.

В зависимости от отношения к нагреванию и растворителям полимеры, как и материалы на их основе, делят на термопластичные и термореактивные.

Термопластичные полимеры (термопласты) при переработке в изделия могут многократно переходить из твердого агрегатного состояния в вязко-текучее (плавиться), а при охлаждении вновь отвердевать. Они имеют, как правило, не высокую температуру перехода в вязко-текучее состояние, хорошо перерабатываются литьем под давлением, экструзией и прессованием. Формообразование изделий из них является процессом физическим, который состоит в затвердевании жидкого или размягченного материала при его охлаждении и химических изменений не происходит. Большинство из термопластов способны также растворяться в соответствующих растворителях. Термопластичные полимеры имеют линейное или слегка разветвленное строение макромолекул. К ним относят отдельные разновидности полиэтилена, поливинилхлорид, фторопласты, полиуретаны, битумы и др.

К термореактивным (реактопластам) относят полимеры, переработка в изделия которых сопровождается химической реакцией образования сетчатого или трехмерного полимера (отверждением, сшивкой цепей) и переход из жидкого состояния в твердое, происходит необратимо. Отвержденное состояние их является термостабильным, и они теряют способность к повторному переходу в вязко-текучее состояние (например, фенолоальдегидные, полиэфирные, эпоксидные полимеры и др.).

Классификация и свойства полимерных материалов

Полимерные материалы в зависимости от состава или количества компонентов подразделяются на ненаполненные, представленные только одним связующим (полимером) - органическое стекло, в большинстве случаев полиэтиленовая пленка; наполненные, в состав которых для получения требуемого комплекса свойств могут входить наполнители, пластификаторы, стабилизаторы, отвердители, пигменты - стеклопластики, текстолит, линолеум и газонаполненные (пено- и поропласты) - пенополистирол, пенополиуретан и др.

В зависимости от физического состояния при нормальной температуре и вязкоупругих свойств полимерные материалы бывают жесткие, полужесткие, мягкие и эластичные.

Жесткие - это твердые, упругие материалы аморфной структуры, имеющие модуль упругости более 1000 МПа. Они хрупко разрушаются с незначительным удлинением при разрыве. К ним относят фенопласты, аминопласты, пластмассы на основе глифталевых и других полимеров.

Плотность полимерных материалов чаще всего находится в пределах 900.1800 кг/м3, т.е. они в 2 раза легче алюминия и в 5.6 раз легче стали. Вместе с тем плотность пористых полимерных материалов (пенопластов) может составлять 30..15 кг/м3, а плотных - превышать 2 000 кг/м3.

Прочность при сжатии полимерных материалов в большинстве случаев превосходит многие традиционные строительные материалы (бетон, кирпич, древесину) и составляет для ненаполненных полимеров около 70 МПа, армированных пластиков - более 200 МПа, при растяжении - для материалов с порошкообразным наполнителем 100.150 МПа, у стекловолокнистых - 276.414 МПа и более.

Теплопроводность таких материалов зависит от их пористости и технологии производства. У пено- и поропластов она составляет 0,03.0,04 Вт/м-К, у остальных - 0,2.0,7 Вт/мК или в 500.600 раз ниже, чем у металлов.

Недостатком многих полимерных материалов является низкая теплостойкость. Например, у большинства из них (на основе полистирола, поливинилхлорида, полиэтилена и других полимеров) теплостойкость составляет 60.80 °С. На основе фенолоформальдегидных смол теплостойкость может достигать 200 °С и лишь на кремнийорганических полимерах - 350 °С.

Являясь углеводородными соединениями, многие полимерные материалы сгораемы или имеют низкую огнестойкость. К легковоспламеняемым и сгораемым с обильным выделением сажи относятся изделия на основе полиэтилена, полистирола, производных целлюлозы. Трудно сгораемыми являются изделия на основе поливинилхлорида, полиэфирные стеклопластики, фенопласты, которые при повышенной температуре лишь обугливаются. Негорючими являются полимерные материалы с большим содержанием хлора, фтора или кремния.

Многие полимерные материалы при переработке, горении и даже нагревании выделяют опасные для здоровья вещества, такие как угарный газ, фенол, формальдегид, фосген, соляную кислоту и др. Значительным недостаткам их является также высокий коэффициент термического расширения - от 2 до 10 раз выше, чем у стали.

Полимерным материалам свойственна усадка при затвердевании, достигающая 5.8 %. У большей части из них низкий модуль упругости, значительно ниже, чем у металлов. При длительных нагрузках они обладают большой ползучестью. С повышением температуры ползучесть еще больше возрастает, что приводит к нежелательным деформациям.

Полимерные материалы - это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации - это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы - это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1-10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1-10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.

Достоинства полимерных материалов - достаточно высокие прочность и износостойкость, хорошие антифрикционные свойства и химическая стойкость. Ремонт деталей с применением полимерных материалов не требует сложного оборудования, малотрудоемок, сопровождается невысоким нагревом детали (250-320 °С), допускает большие износы (1-1,2 мм), в ряде случаев не требует последующей механической обработки. Применяется для заделки трещин, вмятин, пробоин, раковин, отколов, для восстановления размеров изношенных деталей, для изготовления быстроизнашивающихся деталей или их отдельных частей, для противокоррозионной защиты. Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Традиционно изделия из полимеров отличаются надежностью и высоким качеством.

Применение полимерных материалов в домашнем хозяйстве с самого начала было одной из первых задач промышленности, производящей полимеры. Для этого было много предпосылок. Их легко окрашивать в любые цвета, и благодаря этому они могут украсить наши будни.

Полиэтиленовые ведра, тазы много легче металлических - вот и желанное облегчение труда. На предприятиях общественного питания мы встречаем небьющуюся легкую пластмассовую посуду. При этом тарелки, чашки и другая утварь, получаемые на основе меламиновой смолы, блестяще проявили себя в эксплуатации.

Из ПВХ и полиэтилена высокопроизводительными способами изготавливаются бутылки для уксуса и масла.

Полимерные материалы находят все большее применение в производстве мебели. Декоративные прессованные пленки придают столам, шкафам и другим предметам праздничный вид и делают их стойкими по отношению к таким воздействиям, которых не выносит покрытие из дерева. При этом за ними чрезвычайно легко ухаживать.

Моющиеся обои из пенистого материала обеспечивают одновременно уют и праздничную обстановку в помещении.

Современные надежные в эксплуатации покрытия для пола, изготавливаемые из полимерных материалов, также облегчают уборку помещений. Особо следует отметить, что для их изготовления можно применять отходы переработки полимеров.

Сегодня никого уже не удивляет водопроводная арматура из полистирола, поливинилхлорида, полиэтилена или аминопластов. Привычным стал телефонный аппарат из полимерных материалов.

Приблизительно 25% производимых пластмасс в самых разнообразных формах находят применение в строительстве. О традиционном применении в качестве покрытия полов, обшивки внутренних водостоков, санитарных объектов и т.п. мы уже не будем говорить.

В последние годы во все большем объеме применяются элементы конструкций заводского изготовления, в которых преобладают полимерные материалы. Их незначительная масса приносит выгоды при транспортировке и монтаже. Высокая светопроницаемость, способность материала окрашиваться в любой цвет, незначительные расходы при эксплуатации-вот определяющие свойства этих новых материалов.

Отличные теплоизоляционные свойства, особенно пенопластов, также будоражат мысли архитекторов и строителей. Светопрозрачные купола делают возможным бестеневое освещение. Неразрушающиеся прозрачные элементы, как правило из стеклопластиков, заменяют традиционные конструкции из армированного бьющегося стекла. Такими сводами при толщине составляющих их элементов не более 2 мм можно перекрывать пролеты шириной до 12 м. Такие конструкции применяют, например, в строительстве теплиц, так как они не корродируют во влажной атмосфере и, кроме того, проницаемы для света. Можно было бы назвать еще много других примеров применения полимеров для покрытия помещений. Для перекрытия стадионов уже применяют панели с элементами большой площади.

Известны пластмассовые конструкции диаметром до 43 м и высотой до 36 м, которые служат для защиты радарных установок от атмосферного влияния. (Высокочастотное излучение проходит через стеклопластик, почти не теряя своей мощности.) Внушительные размеры сооружения подчеркивают возможность полимерных материалов. Стоит посмотреть и на смонтированные на головокружительной высоте цилиндры, защищающие антенну телевизионной башни от обледенения (63).

В последние годы в строительстве внедряются многослойные легкие строительные элементы для перекрытий (64). Так называемые сандвич-конструкции состоят из покрывающих слоев на основе алюминия, асбоцементного или жестковолокнистого полотна, которые соединены с жестким пенополиуретаном или пенополистиролом. При толщине элементов от 50 до 80 мм в зависимости от системы покрывающих слоев масса поверхности составляет от 6 до 25 кг/м2. Температурная область эксплуатации простирается до 100 °С.

Свыше 30% производимых пластмасс используется в машино- и аппаратостроении в качестве конструкционных материалов. В машиностроении в центре внимания находится, конечно, экономичность изготовления элементов конструкций. Уплотнения всех видов, зубчатые колеса с осями и втулками, дисковые кулачки, осевые и радиальные колеса, элементы сцепления, подшипники скольжения, катушки зубчатых передач и многие другие профильные детали оказались весьма эффективными в эксплуатации. Большая жесткость, способность точно сохранять заданные размеры, хорошее скольжение и износостойкость -достоинства, которые обеспечивают многофункциональность внедряемых полимерных материалов.

Наряду с большинством применяемых до сих пор в машиностроении пластмасс (твердые полиамиды, пресс-массы на основе фенольной смолы), сегодня могли бы найти новые области применения прежде всего стеклопластики на основе термопластичного связующего. Если массовое содержание стекловолокна достигает 30%, предел прочности на растяжение в 2-3 раза превышает этот показатель для неусиленного полимера, а модуль упругости даже в 3-4 раза. Напротив, тепловое линейное расширение составляет от 1/4 до х/з исходной величины, относительное удлинение при разрыве-только около 1/20. Сверх того уменьшается склонность к раздиру, что также указывает на увеличение работоспособности полимера.

Полиуретановые эластомеры также открывают новые технические возможности для машиностроения. Поскольку этот материал обладает и коррозионной стойкостью, отпадает необходимость поверхностной обработки и прежде всего нанесения металлических и неметаллических защитных слоев. Это существенно снижает затраты на изготовление и поддержание изделий в исправном состоянии.

В аппаратостроении, особенно для химической промышленности, значение полимеров определяется их высокой коррозионной стойкостью. При температуре до 100 °С и умеренных механических нагрузках имеются благоприятные предпосылки для замены высоколегированных сталей полимерными материалами. Поливинилхлорид, полиэтилен высокого давления, полипропилен, полибутен, политетрафторэтилен и стеклопластики-наиболее интересные в этом отношении материалы. Для конструкций, на которые вместе с механическими нагрузками действует агрессивная среда, особенно важную роль играют стеклопластики на основе термопластичных смол.

Трубы из термопластов можно производить экструзией при внешнем диаметре до 1200 мм, а методом обмотки изготавливают трубы диаметром до 3000 мм.

Складские и транспортные резервуары (65) можно изготавливать вместимостью до 85 м3 (железнодорожные цистерны) или до 22 м3 (автотрейлеры для уличного движения). Предпочтительный материал - стеклопластики. Существуют хранилища для соляной кислоты диаметром до 9 м и высотой до 7 м.

Внедрение пластмасс в область технологических аппаратов и соответствующих систем трубопроводов также весьма значительно. Очень эффективно использование полимерных материалов в вентиляционных установках для вытяжки агрессивных газов. Очистные башни для корро-зионноактивных отходящих газов, дымовые трубы, вентиляционные элементы для колпачковых тарелок, гальванотехническая аппаратура, установки для получения хлора и щелочей электролитическим методом, реакционные колонны, насосы и многие другие подобные области применения-вот примеры использования полимеров в качестве конструкционных материалов. Благодаря стойкости к истиранию, химической инертности и легкости обработки в каждом конкретном случае может быть достигнута экономия, которая складывается из уменьшения затрат на поддержание установок в исправности и увеличения длительности и безопасности их эксплуатации по сравнению с аналогичными из металлических или других материалов.

Упаковочная техника потребляет 20-25% всех производимых пластмасс, то есть столько же, сколько строительство. Традиционные упаковочные материалы, такие как бумага, дерево, веревки и ткани из растительных волокон, гораздо быстрее приходят в негодность. Полимерные пленки и пенопласты не только заменяют эти «старомодные» материалы, но и вызвали к жизни принципиально новую технологию упаковки.

Упаковочные пленки удовлетворяют более широким требованиям, чем традиционные материалы. Они прозрачны и на них можно печатать это обеспечивает упаковке привлекательный вид. Физиологическая инертность, так же как непроницаемость для газов и водяных паров, особенно ценятся при упаковке пищевых продуктов. Пленки бывают полиэтиленовые, полипропиленовые, поливинилхлоридные, полиамидные, из поливинилового спирта и целлофана толщиной от 20 до 200 мкм. Конечно, у них разные значения прочностных характеристик и проницаемости для газов и водяного пара. Для некоторых из этих материалов прочность при растяжении может быть достаточна высока, и тогда они могут удовлетворять требованиям, которые предъявляются, например, к мешкам (в них загружают до 50 кг материала и складывают в штабели до 30 слоев).

В тех случаях, когда требуется непроницаемый для газов материал, применяют так называемые комбинированные пленки. Наиболее известны дублированные пленочные материалы: полиэтилен-целлофан, полиэтилен-полиамид, поливинил-хлорид-целлофан, поливинилиденхлорид - целлофан. Для специальной упаковки высокочувствительных технических приборов, особенно для морских перевозок нужны трехслойные пленки. Комбинации полиэтилен - полиамид - полиэтилен, полиэтилен-полипропилен - полиэтилен, полиэтилен - поликарбонат - полиэтилен отвечают самым суровым требованиям.

Полимерные пленки открыли новые возможности для упаковочной техники. Особыми технологическими свойствами обладают так называемые термоусадочные пленки. При их получении фиксируются внутренние напряжения, которые позднее при воздействии тепла «снимаются» и таким образом возникает усадка.

Пленка охватывает предназначенное для упаковки изделие, и после завершения усадки оно готово к транспортированию, защищено от пыли и влаги. Отпадает необходимость в дополнительной перевязке. Благодаря компактности упаковки появляется возможность оптимально использовать загружаемое пространство, что равносильно увеличению полезного объема транспорта на 20%. Легко представить себе, какое народнохозяйственное значение имеет связанное с этим повышение степени загрузки транспорта.

Другие новые возможности в упаковочной технике появились благодаря пенопла-стам, прежде всего пенополистиролу с плотностью 25-30 кг/м3. В 1 м3 этого материала содержится около 350 000 сферических ячеек, разделенных стенками толщиной 1-2 мкм. Материал содержит до 97% воздуха. Воздух, заключенный в ячейках, гасит толчки и вибрацию, случающиеся при транспортировке. Прочность пенопла-стов должна быть достаточна для того, чтобы выдержать изделие. Внутри блока легко сделать выемку, точно соответствующую внешней форме изделия.

Новая упаковочная техника особенно ценна для транспортировки хрупких дорогих высококачественных приборов, например электронных ламп, пишущих машин, телевизионных аппаратов, так как позволяет существенно ограничить повреждения. Теплозащитная упаковка на определенное время без дополнительных мероприятий гарантирует, что температура транспортируемых товаров, чувствительных к воздействию тепла или холода, будет поддерживаться на определенном уровне. Так, для сохранения рыбы, транспортируемой в ящиках из пенополистирола, требуется только около половины обычно необходимого льда.

Зато мусор, возникающий после использования полимерных упаковочных материалов, также породил новые проблемы. Часть его не горит, а при горении некоторых видов полимеров отщепляются ядовитые продукты. Гнить пластмассовый мусор не может.

Для полного изменения упаковочной техники требуется дальнейшее развитие этих материалов и разработа способов безопасного уничтожения образующегося пластмассового мусора.

Пластмассы с их прекрасными диэлектрическими свойствами, можно сказать, подтолкнули развитие электротехники и электроники. Корпуса катушек и контактов, штепсельные соединения, монтажные платы, цоколи реле, программные переключатели, а также печатные платы - вот только некоторые примеры применения полимеров в этих важных отраслях промышленности.

Высокочастотный кабель с семью коаксиальными системами своей конструкцией и мощностью также обязан названному выше специфическому свойству пластмасс.

Раньше задачу электроизоляции возлагали на керамику, фарфор и резину. Сегодня возросшие требования к электроизоляционным свойствам и необходимость снижения электрических потерь удовлетворяется почти исключительно полимерами. Так, в высокочастотной технике требуется независимость эксплуатационных свойств материала от частоты и температуры. Кроме того, эти свойства не должны изменяться под влиянием старения, например во влажном теплом климате. Отщепление коррозионноактивных веществ под влиянием повышенной температуры и высокой влажности в процессе эксплуатации часто ограничивает работоспособность металлических контактов.

В последнее время в качестве изоляционных материалов нашли применение жесткие формовочные массы на основе термореактивных смол: фенольной, мелами-новой, мочевинной, полиэфирной и эпоклщной. Эти материалы, свойства которых варьируют, подбирая смолу, наполнитель и другие компоненты, отличаются теплостойкостью, незначительным тепловым расширением и формоустойчивостью при повышенных температурах. Особо ценятся их устойчивость к действию органических растворителей, незначительные воспламеняемость и горючесть и ряд других отличительных черт.

Внедрение термопластов в электротехнику было поначалу существеннее всего з области кабельной изоляции. Высокая инертность и хорошие технологические свойства позволили все больше заменять резину, в частности для изоляции проводов.

В электронике высокоэкономичное массовое производство сложных деталей, особенно с учетом возрастающей их миниатюризации, создало хорошие предпосылки J.TJI внедрения термопластов. Стеклопластики на основе термопластов по прочностным и деформационным свойствам сопоставимы уже с материалами на термореактивной основе. Там, где до сих пор повышенным требованиям к стабильности форм при тепловом воздействии могли удовлетворить только термореактивные полимеры, теперь имеется широкий спектр материалов.

Хотя электрическим свойствам материалов мы придаем первостепенное значение, всегда надо сравнивать и их стоимости. Именно поэтому мы находим в управляющей и регулирующей, передающей технике и других смежных областях различные виды пластмасс, соответствующие этим конкретным областям.

Заключение.

В настоящее время полимеры вошли в каждый дом, а применение полимерных материалов охватило множество самых различных сфер, которые, казалось бы, не имеют ничего общего между собой. Каждый год растет уровень потребления полимерных материалов и спрос на них, расширяется сфера применения и рынок полимерной продукции. Современные технологии позволяют создать более качественные и совершенные изделия из полимерных материалов, сделать их экологичнее и безопаснее. Большим преимуществом применяемой полимерной продукции является то, что она подлежит вторичной переработке, и этому вопросу уделяется все больше внимания. Таким образом, полимеры без преувеличения можно назвать материалами будущего.