Автономный дом с нулевым энергопотреблением. Дом с нулевым энергопотреблением (ZEB) – новое поколение экологичных строений

17.02.2019

Эпоха зданий с нулевым энергопотреблением уже начала свой отсчет. Подтверждением этому может послужить размещение властями США в открытом доступе официального документа Министерства энергетики под названием «Здания с нулевым энергетическим балансом» (Zero Energy Buildings, ZEB), опубликованного на сайте ведомства 16 сентября 2015 года.

Документ был разработан совместными усилиями с Национальным институтом строительных наук. Кроме того, огромную поддержку и одобрение событие получило в сообществе лучших экспертов и влиятельных профессиональных организаций строительной индустрии и сферы недвижимости в лице Совета по экологическому строительству (USGBC), а также Союза архитекторов США (AIA).

Какими же должны быть эти самые здания ZEB? Что такое нулевой дом? В чем их особенность и какие условия должны выполняться для проектов, которые получат статус здания с нулевым энергосбережением? Ответы на эти и другие вопросы можно найти в новом документе, причем основные понятия и нюансы там четко расписаны. Чтобы здание было отнесено к классу ZEB, нужно произвести расчеты по определенным формулам, обязательно используя строгие критерии и термины.

Если сделать некоторое обобщение, то можно сказать что дом с нулевым энергопотреблением – это энергоэффективное здание, которое в течении определённого периода потребляет из центральной электросети столько же или меньше энергии, чем производит за то же время для собственных нужд.

Электричество в таких зданиях вырабатывается за счет собственных возобновляемых источников, таких как энергия солнца и ветра , тепло земли (геотермальная энергия) или океана и волн . Многие эксперты убеждены в успехе проекта Zero Energy: по их мнению – это уверенный шаг в новую эру, способную значительно изменить мир. Благодаря экологичности и низким эксплуатационным расходам, а также высокой устойчивости к климатическим изменениям, природным катаклизмам и сбоям в электроснабжении, дома с нулевым энергетическим балансом – это наше будущее.

Уже сегодня тема ZEB-зданий особенно актуальна в странах Евросоюза, где проходит реализация стратегии «Европа 2020». Рост заинтересованности проявляется у коммерческих компаний и организаций, работающих над программами экологической ответственности, а также у многих государственных учреждений. Стоит отметить, что до недавнего времени различные регионы и организации не имели единых четких стандартов для зданий с нулевым энергетическим балансом и отличались собственными представлениями о нулевых домах.

Документ «Здания с нулевым энергетическим балансом» стал важнейшим шагом на пути разрешения этих неопределенностей. В нем раскрывается ряд основных приоритеты, влияющих на классификацию домов. Так, количество энергии, которое ZEB-дом производит, используя возобновляемые источники энергии, играет большую роль, чем среднее энергопотребление.

«Энергия не должна производится посредством сгорания топлива, то есть, сжигающий газ или биомассу для отопления, или генерации электроэнергии дом не может быть отнесен к категории ZEB», – комментируют эксперты по экологическому строительству.

Избыточное количество энергии, которое было произведено в дневное время, направляется в сеть. Ночью же, когда потребление меняется и здание производит меньше энергии, чем необходимо, ее недостающая часть снова поступает из сети. Проще говоря электрическая сеть выступает в роли накопления и хранения энергии.

Здания с нулевым энергобалансом, согласно документу, могут быть настолько энергоэффективны, насколько этого потребует реальная ситуация, без каких-либо ограничений. И, если производится необходимое количество энергии только из возобновляемых источников, то этого достаточно, чтобы соответствовать стандартам ZEB. Концепция же пассивных домов предусматривает четкие требования к норме допустимого потребления энергии на квадратный метр в год, что говорит о значительном различии этих двух понятий.

Над проектами ZEB-зданий уже сегодня работают специалисты из США и Евросоюза. В ближайшем времени RuGBC совместно с компанией Siemens проведет мероприятие, на котором выступит один из ведущих ZEB-дизайнеров Мэтт Мако. Компания (Environmental Building Strategies (EBS), владельцем которой является Мако, на уже сегодня успешно работает с несколькими крупнейшими ZEB-проектами в США.

Узнайте больше о "нулевых" домах из .

Каждый месяц, получая счета за свет, газ, отопление и водоснабжение, мы видим, что суммы неуклонно растут, несмотря на то, что мы стараемся экономить. Кто-то просто сокрушается на эту тему, а кто-то действует. Есть один законный способ отказаться от платы монополистам: обустроить дом с нулевым энергопотреблением. Как это сделать – в этом материале от HouseСhief.ru.

Читайте в статье

Бесплатная энергия вокруг нас

Знаете, почему выпуск электромобилей был отсрочен почти на 20 лет? Всё дело в том, что монополисты-производители топлива принимали невероятные усилия, чтобы не допустить появления на рынке более дешёвых конкурентов. И так со всем. Никто не будет помогать вам , это не выгодно. Действовать придется только вам самим. А ведь источники этой энергии буквально вокруг нас: солнце, ветер, вода – всё это может сделать ваш дом абсолютно автономным, не зависящим от газовой и электрической «иглы».


Использование энергосберегающих технологий

Начать обустройство такого дома нужно с замены всего потребляющего энергию оборудования на энергосберегающее. Ведь мы собираемся использовать собственные источники и нужно подходить к ним очень экономно. Такое оборудование имеет маркировку Energy Star. Все основные потребители энергии, а это в основном бытовая техника, должны иметь такую маркировку. Все лампочки следует заменить на энергосберегающие.


Установка контролирующего оборудования

Установка системы управления энергией в доме – очень важный этап в реализации этого плана. Она будет регулировать подогрев воды в бойлере, температуру в доме, порядок освещения комнат и расход воды в унитазе.


Максимальное утепление от фундамента до кровли

Сохранение тепла без энергозатрат – это очень существенно. Для этой цели ещё на этапе строительства максимально утепляют фундамент пенополистиролом. Это уже сократит расходы на отопление почти на 20%. Энергосберегающие окна и двери, стены с многослойной структурой и качественная крыша – всё это часть энергосберегающей системы. Чтобы летом не тратиться на кондиционеры, нужно сделать свесы кровли шире и установить на окна жалюзи.


Проточные водонагреватели вместо бойлера

Сами подумайте: сколько энергии тратится на то, чтобы постоянно поддерживать температуру в двухсотлитровом баке воды? А нужно ли вам это каждую минуту? Гораздо дешевле и экономичнее – установить проточные водонагреватели на все краны.


Солнечные батареи и ветрогенераторы

А теперь, после того, как вы снизили энергопотребление дома до минимальной отметки, пора задуматься о добыче собственной энергии. Сделать это можно двумя доступными способами: использовать ветрогенераторы и . Лучше пользоваться и тем и другим, чтобы не было перебоев в энергоснабжении. Солнечные батареи придётся купить, а вот ветрогенератор вполне реально собрать своими руками, и вот тому подтверждение:

Кстати, если вам нужно освещение во дворе и в саду – используйте светильники на солнечных батареях. За день их аккумуляторы наполняются энергией, а с наступлением темноты она расходуется на работу энергосберегающей светодиодной лампы.


Термальное тепло для отопления

Это непросто – установить систему, которая бы обогревала дом за счёт тепла планеты. Но это реально и возможно. Для этого потребуется специальная установка и бурение глубокой скважины. Да, удовольствие не из дешёвых, но вы вкладываете деньги в себя, а не отдаете их «Газпрому», а это уже греет.


Удивительно, но факт: газ из собственных источников

Если у вас не просто большая семья, но и богатое подворье, вы можете даже обустроить собственную газодобычу, которая обеспечит вашу кухонную плиту топливом. Не верите? А ведь это возможно! Метан – это продукт разложения биоотходов. Если сделать герметичный резервуар и складировать в нём навоз – вы получите тот самый метан, который отлично горит.


Обустроив дом с нулевым энергопотреблением, вы не только перестанете оплачивать баснословные счета, а ещё и сделаете мир чище, ведь все перечисленные способы абсолютно экологичны. Да, работа по организации такого жилища потребует немалых вложений, но они окупятся за 5-7 лет, а удовольствие от полной независимости – просто бесценно.

Если у вас есть ещё мысли о том, как снизить затраты и получить бесплатную энергию – поделитесь с нами в комментариях!

Понравилась публикация? Поддержите нас и поделитесь с друзьями

В статье приведена классификация зданий по их уровню энергопотребления, рассматриваются основные принципы проектирования и строительства пассивных домов.

Классификация зданий по их уровню энергопотребления

Для того чтобы понять, как различные строения отличаются между собой по их уровню энергоэффективности (или отсутствия такового), рассмотрим для начала европейскую классификацию зданий в зависимости от уровня энергопотребления во время их эксплуатации:

  • Старые здания (здания построенные до 1970-х годов) —требуют для своего функционирования (отопления и охлаждения) около 300 кВт-час/м² в год. Этот стандарт, к сожалению, до сих пор отвечает и обычному зданию, которое строится в Украине.
  • Новые здания (которые строились в Европе с 1970-х до 2002 года) — 150 кВтh/(м²a).
  • Дома низкого потребления энергии (с 2002 года в Европе не разрешено строительство домов с большим энергопотреблением!) — 60 кВт-час/м² в год.
  • Пассивный дом (принят Закон, согласно которому с 2019 года в Европе нельзя строить дома по стандартам ниже, чем пассивный дом) — 15 кВт-час/м² в год.
  • Дом нулевой энергии (здание, архитектурно имеющее тот же стандарт, что и пассивный дом, но инженерно оснащенное так, чтобы потреблять исключительно только ту энергию, которую само и вырабатывает) — 0 кВт-час/м² в год.
  • Дом плюс энергии (здание, которое с помощью установленного на нем инженерного оборудования: солнечных батарей, коллекторов, тепловых насосов, рекуператоров и т.п. вырабатывает больше энергии, чем само потребляет).

С 2019 года в Европе можно будет строить дома не ниже стандарта пассивного. При этом, дома нулевой или плюс энергии не отличаются от пассивного стандарта своими архитектурно-планировочными решениями и принципами строительства. В них увеличивается только объем и мощность инженерного оборудования на основе альтернативных источников энергии.

Таким образом, пассивный дом — это стандарт, к которому сейчас cтремится прогрессивное европейское сообщество. Считается, что концепция пассивного дома предлагает застройщику рациональное соотношение цены и получаемого качества в проектировании и строительстве. В зависимости от желания и финансовых возможностей заказчика, пассивный дом может потребовать увеличения затрат при строительстве от 3% до 30% по сравнению со стоимостью возведения обычного украинского дома. Но, при этом, на эксплуатационных расходах в этом доме будет экономится от 70% до 99%, что, к сожалению, у нас в Украине еще не очень актуально, так как цены на энергоносители далеки от европейских.

И все же, если только с помощью рационального проектирования можно значительно уменьшить затраты на эксплуатацию здания, то почему бы и нет?

Первое, что нужно понимать, когда речь заходит о пассивном доме: для того чтобы строить энерговыгодно средств нужно не на много (на 3-7%) больше, чем для обычного строительства. Ведь пассивный дом называется «пассивным» именно потому, что он уже за счет своей архитектуры — то есть не активно (с помощью инженерного оборудования), а пассивно (с помощью планировочного решения) — поглощает, аккумулирует и сохраняет для своих жильцов максимальное количество энергии из окружающей среды. Это достигается именно с помощью архитектурно-планировочного решения, которое основывается на обеспечении попадания внутрь здания максимального количества энергии от низкого зимнего солнца и максимально долгого ее сохранения с помощью качественной теплоизоляции, соответствующего пространственно-планировочного решения, а также почти полного отсутствия теплопотерь через вентиляцию.

Основные принципы проектирования пассивных домов

Суть пассивного дома заключается в экономии уже 80% энергии на эксплуатационных расходах только с помощью соответственного архитектурного проектирования, а также использования системы контролируемой приточно-вытяжной вентиляции с рекуперацией. Основные принципы проектирования пассивного дома можно разбить на следующие подразделы:

Ландшафтно-планировочные принципы

Правильная ориентация здания по сторонам света, основные принципы "правильности" описаны ниже:

Ветрозащита северной глухой стороны здания, закрытость этой стороны: зеленые насаждения, лес, другое здание и т.п.;

Открытость объема здания с юга, отсутствие затенения южного фасада.

Рис 1.Пример применения основных ландшафтно-планировочных и некоторых объемно-планировочных принципов

На рисунке 1 видно, как применены эти принципы, на примере пассивного дома под Черниговом (арх. Т.Эрнст). План дома компактный. С южной стороны выполнено полное остекление Северный фасад глухой, без окон, со стороны северного фасада внутри дома расположены буферные зоны. С севера дом защищен дерерьями, с юга- полностью открыт.

Объемно-планировочные принципы

  • максимальная компактность здания. Компактность — это соотношение площади ограждающих конструкций (оболочки здания ) и всего объема здания (его полезной площади). Чем меньше площадь ограждающих конструкций по отношению к полезной площади здания, тем компактнее оно;
  • по возможности полное отсутствие эркеров, внутренних углов, балконов и т.п. Идеальной считается максимальная приближенность формы здания к самой компактной: полушару, стоящему срезом на земле;
  • зонирование: разделение на буферные и жилые зоны;
  • расположение вспомогательных помещений с севера в качестве буферных зон;
  • расположение жилой зоны на юго-востоке;
  • расположение зимних садов с южной стороны;
  • наличие наружной летней солнцезащиты в виде выступающих архитектурных элементов: эркеров, карнизов, балконов, террас, затеняющих светопрозрачные конструкции и не дающие попадать лучам высокого летнего солнца в здание.

Примечание: этот пункт не должен вступать в противоречие с требованием к компактности плана (то есть, компактности именно "теплого" объема здания). Защита от солнца- это архитектурные элементы, а не "вычурность" плана дома. Солнцезащитные элементы имеют, как правило, свою собственную несущую конструкцию и отдельный фундамент, так как являются "холодными" (не утепленными) и находятся снаружи от утепленной оболочки здания.

На рисунке 2 показано, как применены объемно- планировочные принципы, на примере типового пассивного дома (арх.Т.Эрнст). Видно, как проникают в дом лучи низкого зимнего солнца, при этом выполнена защита от летнего перегрева (с помощью свеса кровли, а также навеса террасы). Также видно, что буферные помещения дома расположены с северной строны.

Фасадные (правильное остекление здания)

  • отсутствие светопрозрачных частей, через которые тепло покидало бы здание, на его северной стороне;
  • расположение с юга максимального количества светопрозрачных конструкций, которые пропускали бы глубоко в здание лучи низкого зимнего солнца;
  • окна и другие светопрозрачные конструкции должны располагаться на фасаде в таком соотношении: 70-80% всех окон с южной стороны, 20-30% с восточной, 0-10% с западной и полное их отсутствие с северной.

Аккумулирующие элементы

  • наличие массивных аккумулирующих элементов внутри помещений для обеспечения приема, сохранения и отдачи ими энергии в местах, куда попадают прямые солнечные лучи от низкого зимнего солнца. Массивными аккумулирующими элементами в этом случае могут служить стены из полнотелого кирпича или бетона, желательно, отделанные изнутри глиняной штукатуркой. Если стены изнутри отделаны гипсокартоном - то массива уже нет. Если стены выполнены из пустотелого кирпича, пено или газоблока, или дерева - то массива тоже нет;
  • использование тромб-стен .

Примечание: тромб стены предназначены для улавливания и аккумулировании солнечного излучения, используемого для нагревания воздуха внутри отапливаемого здания. Циркуляция воздуха в пространстве между остеклением и лучепоглощающей поверхностью — естественная, при этом воздух из каждого помещения выходит через отверстие в нижней части стены, проходит между стеной и остеклением наверх, и уже нагретый воздух возвращается в помещение через отверстия в верхней части теплоаккумулирующей стены.

  • планирование неглубоких помещений, в которых низкое зимнее солнце попадало бы на заднюю массивную (желательно темную) стену, прогревая ее;
  • массивные элементы внутри здания (простенки, внутренние части утепленных наружных стен) также способствуют пассивному накоплению в здании ночного холода в летний зной;
  • улавливание аккумулирующими элементами энергии «внутренних источников тепла» (бытовых приборов, тела человека, лампочек, компьютеров и т.п.).

Инженерные решения

  • система контролируемой приточно-вытяжной вентиляции с рекуперацией ;
  • использование подземных каналов (грунтовых теплообменников ) для пассивного предварительного подогрева (или охлаждения) воздуха или воды.


Рис 9. Пример грунтового теплообменника

Выводы

За счет вышеперечисленных приемов, пассивным способом, экономится огромное количество энергии. В результате — мы получаем пассивный дом, который на эксплуатацию (отопление и охлаждение) требует не более 20% от обычного дома. Причем это не стоит застройщику почти никаких дополнительных инвестиций при строительстве. Все что нужно сделать — это создать правильный архитектурный проект будущего здания и качественно воплотить его в жизнь. Дополнительные расходы на увеличение толщины утеплителя, как правило, нивелируются компактностью здания. А система приточно-вытяжной вентиляции является, по большому счету, обязательной абсолютно для любого типа здания, а не только для энерговыгодных домов. Ведь контролируемая вентиляция — это единственный метод, который обеспечивает 100% качество воздуха постоянно.

Дополнительную же энергию на обслуживание дома можно экономить уже активно: с помощью соответствующего инженерного оборудования (тепловые насосы, солнечные коллекторы, солнечные батареи, ветряки и т.п.), работающего от альтернативных источников энергии (тепла земли и солнца, силы ветров и т.п.). Подобная инженерия в пассивном доме является не обязательной, а только опциональной. Она может значительно (на 10-30%) повысить сметную стоимость здания, но с ее помощью можно свести затраты по эксплуатации дома и его вредное воздействие на окружающую среду практически к нулю, получив, так называемый дом «нулевой энергии», а при желании и наличии средств, даже дом «плюс энергии».

Ставшее в последнее время расхожим выражение "Энергоэффективный дом" в России пока не имеет конкретного определения. Законом "Об энергосбережении..." предписывается определять класс энергоэффективности многоквартирных жилых домов и информацию о классе энергоэффективности вывешивать на фасаде дома. До 1 мая 2010 г. Министерство регионального развития России должно определиться с классами энергоэффективности домов. Главный критерий энергоэффективности для жилых домов, используемый сегодня в мире - это значение удельного энергопотребления дома, необходимого для обеспечения комфортных условий проживания. Комфортные условия проживания - это не менее 18 градусов по Цельсию и нормальная влажность.

До сих пор теплоэффективность зданий определялась исходя из уровня тепловой энергии, которую необходимо подвести для отопления 1 кв.м. площади здания. Для различных типовых проектов зданий этот показатель, естественно, различается. Для обеспечения тепловой защиты зданий СНиП II-3-79 (скачать как архив ZIP) был оговорен график достижения тепловой эффективности. В среднем для России в сравнении с ФРГ это выглядело так:

В 2003 г. СНИиП II-3-79 был отменен, вышедший в замен его СНиП 23-03-2003 (скачать как архив ZIP) ввел градацию зданий по теплоэффективности с привязкой к проектному уровню. Введено 5 классов по отклонению от нормы А,В,C,D,E. Нормальный класс - С. Если дом по состоянию энергоэффективности на 50% лучше этого класса, т.е. с коэффициентом 1,5, то это класс А, если на 76% и более хуже, т.е. с коэфициентом более 1,76, то это класс Е.

Как видно из приведенных примеров, уровень требований к тепловому сопротивлению конструкций в России существенно ниже требований, предъявляемых в странах Евросоюза с похожими на наши климатическими условиями. Например в Финляндии уже обеспечивается уровень требований 17 Вт.ч/(м 2 . o C.сут), что в 4-5 раз лучше обеспечиваемых у нас требований.

Параметр Вт.ч/(м 2 . o C.сут) универсального применения и предназначен для расчета мощности отопительных систем домов и относительной оценки качества зданий в сходных климатических условиях. Для потребителя более понятна конечная информация о необходимой мощности для отопления помещения. Для этого, в качестве справочного параметра, можно использовать данные приведенные в таблице, заменив значение Вт.ч/(м 2 . o C.сут) на значение Вт/кв. метр. Для климатической зоны средней Европы и центральной России такой подход уместен, хотя и приблизителен.

Общие требования к пассивному дому

В настоящее время в Европе уровень энергоэффективности, на который сориентировано строительство и реконструкция домов, соответствует понятию "пассивный дом". Это такой дом, удельный расход тепловой энергии на отопление у которого не должен превышать 15 кВт∙ч/(м 2 год). Это приблизительно соответствует расчетной мощности подогрева 7-10 Вт на квадратный метр, что составляет 10% от уровня расчетной мощности отопительных систем обычных домов. Общее потребление первичной энергии для всех бытовых нужд (отопление, горячая вода и электрическая энергия), не должно превышать 120 кВт∙ч/(м 2 год). На практике это означает, что такой дом можно дополнительно не отапливать, все необходимое тепло может быть обеспечено за счет жизнедеятельности человека.

Пассивные дома - уже не единичное явление в Европе. Таких домов зарегистрировано более 4000. В основном это небольшие жилые дома коттеджного типа. Но среди них есть и немало немало многоквартирных домов на 4-10 квартир.

Расчеты показывают: чтобы сделать дом "пассивным", необходимо снизить тепловые потери дома на 90%. Для этого необходимо обеспечить ряд требований к тепловой защите здания и некоторым элементам конструкции:

Тепловое сопротивление наружных стен, кровли, пола первого этажа. R0 ≥ 6,7 (м2 о C)/Вт
Тепловое сопротивление остекления R0 ≥1,4 (м2 о C)/Вт
Тепловое сопротивление оконного профиля R0 ≥ 1,25 (м2 о C)/Вт
Тепловое сопротивление установленного в стену окна. Примерно такие же требования к входным дверям. R0 ≥ 1,2 (м2 о C)/Вт
В конструкции дома должны быть максимально исключены тепловые мосты.
Высокий КПД рекуператора в системе вентиляции (исходящий воздух отдает тепло входящему свежему воздуху). КПД более 75%, лучше более 80%.
Кратность воздухообмена при разности давлений 50 Па наружного и внутреннего воздуха. n50 ≤ 0,6 ч-1.

Конструктивно дом должен быть не только хорошо утеплен и герметизирован. Дом в большей степени должен быть остеклен с южной стороны и представлять из себя "тепловую ловушку".

Если сравнить возможности по сохранению тепла обычного добротного кирпичного дома с толщиной стен в 2 кирпича и "пассивного дома", то при внешней температуре -26 градусов мороза и отключении источников тепла температура в обычном доме за сутки снизится до +2-3 градусов, в пассивном доме до + 16 градусов по Цельсию. Поэтому так и получается, что даже в сильный мороз за счет тепла от приготовления пищи, работы бытовой техники и освещения в доме поддерживается нормальный микроклимат.

Как построить пассивный дом?

Как уже отмечалось, пассивный дом - это отличная теплоизоляция, герметичность, возврат тепла вытяжной вентиляции в дом с притоком свежего воздуха, энергоэффективная бытовая техника.

Для того, что бы определиться с необходимыми конструктивными решениями, нужно составить энергетический баланс дома. Обычно приход-расход тепла имеет следующий вид:

Из приведенных данных видно, что около 70% утечек тепла приходится на конструкцию здания, 30% - на результат жизнедеятельности человека: вентиляцию и стоки. Значит основное внимание необходимо уделять теплоизоляции.

Повышение теплового сопротивления ограждающих конструкций и сокращение утечек тепла

В понятие ограждающих конструкций входят стены, крыша, окна, входные двери, пол первого этажа, фундамент.

Приведем основные принципы, которые должны соблюдаться при повышении теплового сопротивления ограждающих конструкций:

  • Разделение функций строительных материалов в конструкциях. Конструкционные и крепежные элементы должны обеспечивать прочность, утеплители должны обеспечивать тепловую изоляцию, декоративно-отделочные материалы - внешний вид. При таком подходе удается сократить количество "тепловых мостов", по которым тепло из дома может выходить наружу.
  • Теплоизоляция должна располагаться равномерно и непрерывно по всему контуру здания.
  • Мостики холода должны максимально исключаться и при необходимости иметь дополнительную теплоизоляцию.
  • По всему контуру здания должна быть проложена воздухонепроницаемая оболочка, обеспечивающая герметизацию здания.

Бытует мнение, что стоимость дополнительной теплоизоляции значительно увеличивает стоимость строительства. Это неправда. При реализации вышеизложенных принципов стоимость кирпичной стены, обеспечивающей необходимое тепловое сопротивление в несколько раз выше каркасной стены с облицовкой. Это видно из сопоставления толщин стен различных конструкций одинаковой теплопроводности, обеспечивающих тепловое ограждение для разницы температур -26 градусов снаружи, +18 градусов внутри:

  • теплоизолированная каркасная конструкция с облицовкой кирпичом - 290 мм;
  • деревянный брус - 360 мм;
  • монолитная кирпичная стена - 1290 мм.

Наиболее проблемные места для теплозащиты здания:

  • места сочленения крыши и стен;
  • места примыкания перекрытий и стен;
  • контуры установки оконных коробок и примыкания фрамуг;
  • места примыкания стен к фундаменту.

Как правило, места примыкания стараются делать с применением термовкладок из конструкционных материалов с низкой теплопроводностью. Например, блоки из ячеистого бетона, специальных видов кирпича и т.д. Места сочленений дополнительно герметизируют различными видами герметиков, пластичными строительными растворами.

Теплопотери через фундамент сокращают:

  • теплоизоляцией фундамента снаружи по всей высоте;
  • установкой горизонтальной наружной теплоизоляции по периметру дома у нижней кромки опоры фундамента;
  • установкой фундаментных блоков на песчанную подушку;
  • применением схемы укладки плиты первого этажа на грунт через сэндвич: песчанная подушка, гидроизоляция, толстый утеплитель;
  • фундаментные блоки над поверхностью должны иметь теплоизоляцию снаружи и изнутри.

При такой схеме зона промерзания грунта будет находиться на значительном расстоянии от дома и утечки тепла через подпол будут несущественны. Аналогичным образом решаются проблемы сокращения теплопотерь при обустройстве подземных помещений.

Энергосберегающие окна

Обязательный элемент пассивного дома - окна с высоким тепловым сопротивлением R0 не менее 1,2 (м2 о C)/Вт. Таким требованиям отвечают следующие технические решения:

  • стеклопакет в окне с тройным остеклением и с наполнением стеклопакета инертным газом;
  • стекла в окне должны иметь низкоэмиссионное покрытие с внутренних сторон межстекольного пространства, снижающее теплообмен внутри стеклопакета;
  • профиль окна должен иметь высокое тепловое сопротивление. Таким требованиям отвечает часть профилей ПХВ, специально обработанные деревянные профили;
  • при установке оконного блока должна быть обеспечена герметичность стыка с конструктивными элементами здания. Элементы крепления оконного блока не должны создавать тепловых мостов;
  • при установке окна используются вспомогательные материалы для монтажа окон без тепловых мостов и материалы, обеспечивающие герметичность.

Энергосберегающие двери

Внешние двери должны быть теплоизолированы. При входе в дом должен быть тепловой тамбур и вторая дверь. Требования к уплотнению притвора дверей и стыка дверной коробки с конструктивными элементами здания такие же, как для окон.
Пример конструктивного исполнения дверного полотна для пассивного дома:Дверное полотно состоит из теплоизоляционного слоя из пробки толщиной 64 мм. Этот слой обшит с двух сторон березовой фанерой толщиной 12 мм. В теплоизоляционном слое расположены поперечные прокладки из фанеры через каждые 25 см. Площадь прокладок из фанеры составляет только 5% от общей площади, их толщина составляет 12,5 мм. Наружный слой состоит из шпона толщиной 1,4 мм, фанеры из бука толщиной 4 мм и алюминиевой пластины толщиной 1,2 мм в качестве паронепроницаемого слоя, приклеенной с помощью фенольного клея. Общая толщина двери составляет 100 мм.

Энергосберегающая вентиляция

В пассивных домах не применяется вентиляция посредством открывания форточек. Это крайне расточительно с точки зрения теплопотерь и неэффективно с позиции удаления загрязненного воздуха. Для того, что бы обеспечить необходимую для здоровья активность обмена воздуха при помощи окон нужно открывать их полностью на 10-15 минут каждые 3 часа. Приточно-вытяжная вентиляция в пассивном доме организована следующим образом:

  • воздух из кухни, ванной, туалета не участвует в рециркуляции и удаляется из помещений наружу;
  • в жилые помещения подается только чистый воздух;
  • отводимый из дома (из кухни и санузла) воздух проходит через теплообменник (рекуператор) и нагревает поступающий в помещения воздух. Эффективность современных рекуператоров 75-95%. Возможно применение специальных электродвигателей с высоким КПД в вентиляции. Затраты энергии на работу двигателя в 8-15 раз меньше сберегаемого с его помощью тепла;
  • часто для предварительного подогрева наружный воздух предварительно пропускают через грунт под домом. Тепло грунта подогревает воздух и обеспечивает более эффективную работу теплообменника - рекуператора;
  • чистый воздух сначала поступает в жилые помещения. Из жилых помещений в коридоры и лестничные переходы, затем в кухню, туалет, ванную. Такая схема обеспечивает поддержание в помещении необходимой влажности и надежное удаление загрязненного воздуха.

Дом пассивный. А что дальше?

В общем смысле основная задача пассивного дома - обеспечение тепловой эффективности, достаточной для отказа от дополнительного отопления. Но в концепции энергоэффективного дома ограничено общее потребление энергии, тепла, горячей и холодной воды, газа из сторонних источников уровнем 120 кВт∙ч/(м 2 год). Реальное совокупное энергопотребление среднего дома со средней семьей в несколько раз превышает указанную цифру. То есть энергосбережение во всех точках приложения энергии - необходимое условие для отнесения жилища к этой категории.

Что заставляет людей стремиться к самограничению? Конечно, очень высокие цены на коммунальные услуги и энергоносители. Но в не меньшей степени и новая философия жизни, в которой нет снижения уровня комфорта, но есть желание жить в гармонии с внешней средой, не нанося ей ущерб. Современные технологии предоставляют для этого необходимые возможности:

  • применение солнечных коллекторов позволяет полностью отказаться от использования газа и электрической энергии для подогрева воды и помещения;
  • применение солнечных батарей и ветрогенераторов совместно с аккумуляторными батареями позволяет полностью отказаться от электроснабжения;
  • применение контроллеров для управления электрическими устройствами и системой теплообеспечения позволяет оптимизировать микроклимат в помещении, согласовать работу устройств с наличием людей в доме;
  • применение функционально насыщенной экономичной бытовой техники;
  • возможность использования тепловых насосов для исключения сброса тепла и использования аккумулированной тепловой энергии;
  • возможность использования биогаза, полученного при брожении и газогенерации взамен магистрального природного газа.

Этот перечень можно существенно продолжить. В настоящее время мы, в основном, используем запасенную энергию Земли и крайне мало используем энергию из возобновляемых источников энергии моря, рек, водоемов, солнца, ветра.

Пассивные дома совсем недавно казались малопонятной экзотикой. Сегодня это вполне достижимая реальность, предмет для широкого внедрения и преференций со стороны государства.

Умные энергонезависимые дома пока тоже экзотика. Но количество таких домов увеличивается, технологии настраиваются на предложение доступных по цене и качеству устройств и материалов для обеспечения такого строительства. Во Франции несколько лет функционирует 10 этажное офисное здание с энергоснабжением от солнечных батарей. Количество вырабатываемой энергии превышает собственные нужды здания. В Китае открывается самое большое в мире здание общей площадью 75 тысяч квадратных метров с энергоснабжением от солнечных батарей. Значит появится опыт эксплуатации, стандарты исполнения и доступные цены. Это всего лишь вопрос времени. Такое строительство уже не дань моде и не эксперименты. Высокие цены на энергию и энергоносители делают выгодными вложения в энергонезависимые объекты.

Нулевой дом (он же пассивный дом (англ. passive house), энергоэффективный дом, ЭкоДом)

энергоэффективное здание, соответствующее наивысшему стандарту энергосбережения в мировой практике индивидуального и многоэтажного строительства. Для пассивного дома энергопотребление составляет около 10% от удельной энергии на единицу объема, потребляемой большинством современных зданий. Незначительное отопление требуется лишь в период отрицательных температур.

В идеале пассивный дом является независимой энергосистемой, вообще не требующей расходов на поддержание комфортной температуры воздуха и воды. вся необходимая энергия для жизнедеятельности людей должна вырабатываться внутри дома, причем при помощи возобновляемых источников энергии.

Основным принципом проектирования энергоэффективного дома является использование всех возможностей сохранения тепла . В таком доме нет необходимости в применении традиционных систем отопления, вентиляции, кондиционирования, водоснабжения. Отопление нулевого дома осуществляться благодаря теплу, выделяемому живущими в нем людьми, бытовыми приборами и альтернативными источниками энергии, горячее водоснабжение – за счет установок возобновляемой энергии, например, тепловых насосов, солнечных батарей и термовихревых установок.

Кроме того, нулевые дома очень комфортны и экологически благоприятны для человека. На сегодняшний день такие сооружения – самые удобные и современные типы зданий. В них автоматически поддерживается оптимальная температура, влажность и чистота воздуха, что превращает жизнь в такого рода домах в удовольствие. С учетом того, что люди около 60% своего времени проводят в помещениях, значение таких объектов для поддержания высокого качества жизни трудно переоценить. Микроклимат такого здания способствует продлению жизни человека.

В целом нулевые дома – наиболее удобные, современные и эффективные типы зданий. Наибольшим практическим опытом реализации проектов нулевых домов обладают страны Западной Европы. На сегодняшний день построены тысячи подобных сооружений. Концепция энергоэффективных и пассивных домов является перспективной и реализуемой и у нас.

Теплопотери нулевого дома близки к нулю. При тех же условиях обычный дом «отапливает» улицу.

Преимущества энергоэффективных и нулевых домов

Экономия средств

Тарифы на газ и электроэнергию растут вопреки кризису. К 2011-2012 гг. согласно уже опубликованным планам российских естественных монополий их размер увеличится как минимум в 2 раза. Владелец нулевого дома экономит до 80% энергоресурсов на отопление. Весной отопительный период нулевого дома заканчивается раньше, осенью – начинается позже. В летний период сведены к нулю затраты электроэнергии на кондиционирование.

Энергонезависимость

Нулевой дом позволяет отказаться от централизованного газо- и/или теплоснабжения и строить дома в «чистом поле». Однако в ближайшем будущем концепция нулевого дома получит широкое распространение и в пределах территории с развитой инфраструктурой. При аварийном отключении тепла зимой температура внутри нулевого дома понижается лишь на 1-2 °С в сутки. Отсутствие необходимости подключения к газовым сетям, а также коммунальных платежей за газ сокращает срок его окупаемости.

Комфортная внутренняя среда

С учетом того, что человек в среднем более 60% своего времени проводит дома, комфортная среда является одним из важнейших факторов при выборе типа здания. Благодаря применяемым техническим решениям, в этих домах поддерживается благоприятный для здоровья человека внутренний климат: теплые стены и полы, оптимальная температура, влажность и чистота воздуха. Достоверно установлено, что комфортная среда обитания, формируемая в пассивных домах, способствует продлению дееспособного срока жизни человека. Например, микроклимат такого здания благотворно влияет на аллергиков. Неудивительно, что именно эти особенности пассивных домов стали причиной их быстро растущей популярности в последние годы.

Высокая ликвидность

Энергоэффективность становится одним из основных стандартов качественного жилья. Постепенно по мере появления все большего числа энергоэффективных домов продать обычный дом станет все сложнее без уступок в цене. Расходы на утепление значительно уступают последующему размеру роста стоимости дома и являются своего рода инвестициями в будущее.

Инновационность

Нулевой дом в полной мере является жильем 21 века. Используемые решения в области обогрева, минимизации энергопотерь, вентиляции, инженерных систем, считающиеся технологиями завтрашнего дня, доступны в нулевом доме уже сегодня.

Экологическая составляющая

Нулевой дом часто называют также «экологическими домами» («ЭкоДом»). Известно, что около 40% выбросов CO2 в атмосферу образуется при сжигании топлива, используемого именно для отопления зданий. Применение нулевых домов может сократить эти цифры – ведь в них для обогрева используются альтернативные источники энергии. Кроме этого, для строительства выбираются экологически чистые материалы, часто традиционные – дерево, камень, кирпич.

Существуют ли какие-нибудь архитектурные ограничения при строительстве Пассивного Дома?

Пассивный Дом, также как и обычный дом, может быть любой планировки и этажности, никаких особых ограничений в данном случае не существует. Единственная желательная рекомендация – расположение большинства окон на южной стороне здания (для уменьшения тепловых потерь).

Для чего нужно строить Пассивный Дом?

Срок эксплуатации современного капитального здания – несколько десятков лет. Для поддержания жизнедеятельности людей за это время расходуется огромное количество тепловой и электрической энергии (а значит и денег). Пассивный Дом позволяет в несколько раз сократить потребление ресурсов и затрат на отопление. Особенно актуальным это становится в следующих случаях:

– для обогрева здания используется электричество;

– на участке строительства (или в уже построенном доме) подведено электричество ограниченной мощности (либо отсутствует вообще), а увеличение подводимой мощности (прокладка линий электропередач до Вашего дома) связано с большими капитальными вложениями;

– cуществует потребность снизить потребление электричества;

– для обогрева здания используется твердое топливо, жидкое топливо, либо сжиженный газ в баллонах и необходимо снизить его потребление или перейти на более удобный источник энергии;

– для обогрева используется магистральный природный газ, но, учитывая растущиетарифы, необходимо сэкономить его расход;

Так же не стоит забывать и про то, что запасы энергоресурсов (нефти, газа) ограничены, ввиду чего цена на них с каждым годом становится все больше.

Принципы проектирования энергоэффективного дома

Архитектурное решение

  • энергетически рациональная ориентация здания по частям света с точки зрения расположения оконных проемов, дверей и буферных зон.

Объемно-планировочное решение

  • энергоэффективная форма дома, обеспечивающая минимальную площадь наружных стен;
  • оптимальная площадь остекления;
  • наличие тамбуров на входах.

Конструктивные решения

Инженерные решения

  • обеспечение воздухообмена с минимальными теплопотерями, обеспечиваемого механической приточно-вытяжной системой с рекуперацией тепла.

Устройство пластинчатого рекуператора

Рекуператор – это устройство, в котором происходит передача тепла «отработанного» уходящего воздуха свежему входящему воздуху, т.е. мы не «выбрасываем» тепло из помещения вместе с воздухом вытяжной вентиляции, а используем это тепло для нагрева входящего воздуха. Приточный и вытяжной потоки воздуха в рекуператоре не смешиваются, происходит только передача тепла.

  • рациональное использование источников тепла и энергии самого дома (внутренние тепловыделения электроприборов) и окружающей его территории: например, использование , который позволяет получить до 5 кВт*ч тепловой энергии на каждый киловатт-час затраченной электроэнергии. Возможно использование солнечной энергии и ветровой энергии.

  • применение современного инженерного оборудования с высоким КПД (например, теплогенераторов, вихревых термогенераторов).
  • дополнительная экономия тепловой энергии за счет использования автоматизированной системы управления всеми техническими устройствами в здании (система «Умный дом»)

Экономическая выгода

Экономическая выгода нулевого дома была не столь очевидна в прошлые времена экономического благополучия, низких цен на энергоносители и их доступности. В будущем стоимость энергии будет постоянно расти, а доступность энергоносителей и инфраструктуры снижаться. Причина подобных тенденций — серьёзный структурный кризис российской энергетики, последствия которого начинают ощущаться уже сейчас.

Наибольшая экономия в нулевом доме достигается на отоплении — первоначальные затраты на отопление могут быть снижены в 10 раз . Если же в доме установлена «умная» система контроля энергосистемы, то затраты на отопление и энергоснабжение могут быть снижены еще более значительно. Средняя стоимость окупаемости инженерных систем умного дома укладывается в диапазоне 5-7 лет при постоянных ценах на энергоносители.

Строительство Нулевого дома площадью 200 м 2 , в условиях доступности сетевой энергетической инфраструктуры, с условием внедрения всех возможных энергоэффективных решений, обходится в среднем на 30% дороже сооружения аналогичного по площади традиционного загородного дома, однако за счёт принципиального снижения расходов на электроснабжение и тепло эти затраты окупаются в течение 5-8 лет. В последующем суммарные расходы на строительство и энергообеспечение нулевого дома меньше тех же расходов на традиционный, что позволяет получать заказчику существенный экономический эффект.

В условиях недоступности сетевой инфраструктуры капитальные затраты окупаются еще быстрее. В этом случае решения по автономному электроснабжению уже сегодня конкурентоспособны по уровню капитальных затрат с традиционным сетевым электроснабжением. Установившие такие системы (ветрогенераторы малой мощности, солнечные батареи) домохозяйства начинают выигрывать, за счёт сокращения выплат за электроэнергию.