В помощь монтажникам. Расчет предварительного растяжения компенсатора при монтаже Формула растяжки п образного компенсатора тепловой сети

13.06.2019

Компенсационные устройства в тепловых сетях служат для устранения (или значительного уменьшения) усилий, возникающих при тепловых удлинениях труб. В результате снижаются напряжения в стенках труб и силы, действующие на оборудование и опорные конструкции.

Удлинение труб в результате теплового расширения металла определяют по формуле

где а - коэффициент линейного расширения, 1/°С; l - длина трубы, м; t - рабочая температура стенки, 0 C; t м -температура монтажа, 0 C.

Для компенсации удлинения труб применяют специальные устройства - компенсаторы, а также используют гибкость труб на поворотах трассы тепловых сетей (естественную компенсацию).

По принципу работы компенсаторы подразделяют на осевые и радиальные. Осевые компенсаторы устанавливают на прямолинейных участках теплопровода, так как они предназначены для компенсации усилий, возникающих только в результате осевых удлинений. Радиальные компенсаторы устанавливают на теплосети любой конфигурации, так как они компенсируют как осевые, так и радиальные усилия. Естественная компенсация не требует установки специальных устройств, поэтому ее необходимо использовать в первую очередь.

В тепловых сетях находят применение осевые компенсаторы двух типов: сальниковые и линзовые. В сальниковых компенсаторах (рис. 29.3) температурные деформации труб приводят к перемещению стакана 1 внутри корпуса 5, между которыми для герметизации помещается сальниковая набивка 3. Зажимается набивка между упорным кольцом 4 и грундбуксой 2 при помощи болтов 6.

Рис 19.3 Сальниковые компенсаторы

а - односторонний; б - двусторонний: 1 - стакан, 2 - грундбукса, 3 - сальниковая набивка,

4 - упорное кольцо, 5 - корпус, 6 - затяжные болты

В качестве сальниковой набивки применяют асбестовый прографиченный шнур или термостойкую резину. В процессе работы набивка изнашивается и теряет упругость, поэтому требуются периодическая ее подтяжка (зажатие) и замена. Для возможности проведения указанных ремонтов сальниковые компенсаторы размещают в камерах.

Соединение компенсаторов с трубопроводами осуществляется сваркой. При монтаже необходимо оставлять зазор между буртом стакана и упорным кольцом корпуса, исключающий возможность возникновения растягивающих усилий в трубопроводах в случае понижения температуры ниже температуры монтажа, а также тщательно выверять осевую линию во избежание перекосов и заедания стакана в корпусе.

Сальниковые компенсаторы изготовляют односторонними и двусторонними (см. рис. 19.3, а и б). Двусторонние применяют обычно для уменьшения числа камер, так как в середине их устанавливается неподвижная опора, разделяющая участки труб, удлинения которых компенсируются каждой из сторон компенсатора.

Основными достоинствами сальниковых компенсаторов являются малые габариты (компактность) и низкие гидравлические сопротивления, вследствие чего они нашли широкое применение в тепловых сетях, особенно при подземной прокладке. В этом случае их устанавливают при d y =100 мм и более, при надземной прокладке - при d у =300 мм и более.

В линзовых компенсаторах (рис. 19.4) при температурных удлинениях труб происходит сжатие специальных упругих линз (волн). При этом обеспечивается полная герметичность в системе и не требуется обслуживания компенсаторов.

Изготовляют линзы из листовой стали или штампованных полулинз с толщиной стенки от 2,5 до 4 мм газовой сваркой. Для уменьшения гидравлических сопротивлений внутри компенсатора вдоль волн вставляется гладкая труба (рубашка).

Линзовые компенсаторы имеют относительно небольшую компенсирующую способность и большую осевую реакцию. В связи с этим для компенсации температурных деформаций трубопроводов тепловых сетей устанавливают большое число волн или производят предварительную их растяжку. Применяют их обычно до давлений примерно 0,5 МПа, так как при больших давлениях возможно вспучивание волн, а повышение жесткости волн путем увеличения толщины стенок приводит к снижению их компенсирующей способности и возрастанию осевой реакции.

Ряс. 19.4. Линзовый трехволновый компенсатором

Естественная компенсация температурных деформаций происходит в результате изгиба трубопроводов. Гнутые участки (повороты) повышают гибкость трубопровода и увеличивают его компенсирующую способность.

При естественной компенсации на поворотах трассы температурные деформации трубопроводов приводят к поперечным смещениям участков (рис. 19.5). Величина смещения зависит от расположения неподвижных опор: чем больше длина участка, тем больше его удлинение. Это требует увеличения ширины каналов и затрудняет работу подвижных опор, а также не дает возможности применять современную бесканальную прокладку на поворотах трассы. Максимальные напряжения изгиба возникают у неподвижной опоры короткого участка, так как он смещается на большую величину.

Рис. 19.5 Схема работы Г- образного участка теплопровода

а – при одинаковых длинах плеч; б – при разных длинах плеч

К радиальным компенсаторам , применяемым в тепловых сетях, относятся гибкие и волнистые шарнирного типа. В гибких компенсаторах температурные деформации трубопроводов устраняются при помощи изгибов и кручения специально согнутых или сваренных участков труб различной конфигурации: П- и S-образных, лирообразных, омегообразных и др. Наибольшее распространение на практике вследствие простоты изготовления получили П-образные компенсаторы (рис. 19.6,а). Их компенсирующая способность определяется суммой деформаций по оси каждого из участков трубопроводов ∆l = ∆l /2+∆l /2. При этом максимальные изгибающие напряжения возникают в наиболее удаленном от оси трубопровода отрезке - спинке компенсатора. Последняя, изгибаясь, смещается на величину у, на которую необходимо увеличивать и габариты компенсаторной ниши.

Рис. 19.6 Схема работы П- образного компенсатора

а – без предварительной растяжки; б – с предварительной растяжкой

Для увеличения компенсирующей способности компенсатора или уменьшения величины смещения его устанавливают с предварительной (монтажной) растяжкой (рис. 19.6,б ). При этом спинка компенсатора в нерабочем состоянии изогнута внутрь и испытывает изгибающие напряжения. При удлинении труб компенсатор приходит сначала в ненапряженное состояние, а затем уже спинка изгибается наружу и в ней возникают изгибающие напряжения обратного знака. Если в крайних положениях, т. е. при предварительной растяжке и в рабочем состоянии достигаются предельно допустимые напряжения, то компенсирующая способность компенсатора увеличивается вдвое по сравнению с компенсатором без предварительной растяжки. В случае же компенсации одинаковых температурных деформации в компенсаторе с предварительной растяжкой не будет происходить смещение спинки наружу и, следовательно, уменьшатся габариты компенсаторной ниши. Работа гибких компенсаторов других конфигураций происходит примерно таким же образом.

Подвески

Подвески трубопроводов (рис 19.7) выполняются с помощью тяг 3, соединяемых непосредственно с трубами 4 (рис. 19.7, а ) или с траверсой 7 , к которой на хомутах 6 подвешена труба (рис. 19.7, б ), а также через пружинные блоки 8 (рис. 19.7, в ). Шарнирные соединения 2 обеспечивают перемещения трубопроводов. Направляющие стаканы 9 пружинных блоков, приваренные к опорным пластинам 10, позволяют исключить поперечный прогиб пружин. Натяжение подвески обеспечивается с помощью гаек.

Рис. 19.7 Подвески:

а – тяговые; б – хомутовая; в – пружинная; 1 – опорная балка; 2, 5 – шарниры; 3 – тяга;

4 – труба; 6 – хомут; 7 – траверса; 8 – пружинная подвеска; 9 – стаканы; 10 – пластины

3.4 Способы изоляции тепловых сетей.

Мастичная изоляция

Мастичная изоляция применяется только при ремонте тепловых сетей, проложенных или в помещениях, или в проходных каналах.

Изоляция из мастик накладывается слоями по 10-15 мм на горячий трубопровод по мере высыхания предшествующих слоев. Мастичную изоляцию нельзя выполнять индустриальными методами. Поэтому указанная изоляционная конструкция для новых трубопроводов неприменима.

Для мастичной изоляции применяется совелит, асбестотрепел и вулканит. Толщина слоя тепловой изоляции определяется на основе технико экономических расчетов или по действующим нормам.

Температура на поверхности изоляционной конструкции трубопроводов в проходных каналах и камерах должна быть не выше 60° С.

Долговечность теплоизоляционной конструкции зависит от режима работы теплопроводов.

Блочная изоляция

Сборно-блочную изоляцию из заранее отформованных изделий (кирпича, блоков, торфяных плит и пр.) устраивают по горячим и холодным поверхностям. Изделия с перевязкой швов в рядах укладывают на мастичной подмазке из асбозурита, коэффициент теплопроводности которой близок к коэффициенту самой изоляции; подмазка обладает минимальной усадкой и хорошей механической прочностью. Изделия из торфа (торфоплиты) и пробки укладывают на битуме или идитоловом клее.

К плоским и криволинейным поверхностям теплоизоляционные изделия крепят стальными шпильками, заранее приваренными в шахматном порядке с интервалом 250 мм. Если установка шпилек невозможна, изделия крепят как мастичную изоляцию. На вертикальных поверхностях высотой более 4 м устанавливают разгрузочные опорные пояса из полосовой стали.

В процессе установки изделия подгоняют друг к другу, размечают и просверливают отверстия для шпилек. Монтируемые элементы закрепляют шпильками или проволочными скрутками.

При многослойной изоляции каждый последующий слой укладывают после выравнивания и закрепления предыдущего с перекрытием продольных и поперечных швов. Последний слой, закрепленный каркасом или металлической сеткой, выравнивают мастикой под рейку и после этого наносят штукатурку толщиной 10 мм. Оклейку и окраску выполняют после полного высыхания штукатурки.

Преимущества сборно-блочной изоляции - индустриальность, стандартность и сборность, высокая механическая прочность, возможность облицовки горячих и холодных поверхностей. Недостатки - многошовность и сложность монтажа.

Засыпная изоляция

По горизонтальным и вертикальным поверхностям строительных конструкций применяют засыпную теплоизоляцию.

При устройстве теплоизоляции по горизонтальным поверхностям (бесчердачные кровли, перекрытия над подвалом) изоляционным материалом служит преимущественно керамзит или перлит.

На вертикальных поверхностях делают засыпную изоляцию из стеклянной или минеральной ваты, диатомовой крошки, перлитового песка и др. Для этого параллельно изолируемую поверхность ограждают кирпичами, блоками или сетками и в образовавшееся пространство засыпают (или набивают) изоляционный материал. При сетчатом ограждении сетку крепят к заранее установленным в шахматном порядке шпильками высотой, соответствующей заданной толщине изоляции (с припуском 30...35 мм). По ним натягивают металлическую плетеную сетку с ячейкой 15х15 мм. В образовавшееся пространство послойно снизу вверх с легким трамбованием засыпают сыпучий материал.

После окончания засыпки всю поверхность сетки покрывают защитным слоем из штукатурки.

Засыпная теплоизоляция достаточно эффективна и проста в устройстве. Однако она не устойчива против вибрации и характеризуется малой механической прочностью.

Литая изоляция

В качестве изоляционного материала применяют в основном пенобетон, который готовят смешиванием цементного раствора с пеномассой в специальной мешалке. Теплоизоляционный слой укладывают двумя методами: обычными приемами бетонирования пространства между опалубкой и изолируемой поверхностью или торкретированием.

При первом методе параллельно вертикальной изолируемой поверхности выставляется опалубка. В образовавшееся пространство теплоизоляционный состав укладывают рядами, разравнивая деревянной гладилкой. Уложенный слой увлажняют и укрывают матами или рогожами для обеспечения нормальных условий твердения пенобетона.

Методом торкретирования литую изоляцию наносят по сетчатой арматуре из 3-5-миллиметровой проволоки с ячейками 100-100 мм. Нанесенный торкретный слой плотно прилегает к изолируемой поверхности, не имеет трещин, раковин и других дефектов. Торкретирование производят при температуре не ниже 10°С.

Литая теплоизоляция характеризуется простотой устройства, монолитностью, высокой механической прочностью. Недостатки литой теплоизоляции - большая продолжительность устройства и невозможность производства работ при низких температурах.

Монтаж тепловых сетей, который должен вестись поточным методом, включает в себя зем­ляные, монтажно-сварочные, каменные, бетонные, же­лезобетонные, изоляционные, опрессовочные, плотнич­ные и прочие работы.

При правильно организованном поточном методе строительства работы выполняются в определенной тех­нологической последовательности. Поток ор­ганизуется с таким расчетом, чтобы наиболее экономич­но распорядиться силами и средствами, выполнить большой объем работ в сжатые сроки, с малыми затратами и с высоким качеством строительства.

Тепловые сети в городах и других населенных пунк­тах прокладывают в специально отведенных для строи­тельства инженерных сооружений полосах, параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы зеленых насаждений. При обосновании возможна прокладка сетей под проезжей частью и тро­туарами.

Для тепловых сетей в основном предусматривается подземная прокладка, реже - надземная (на территори­ях предприятий, вне пределов города, при высоком уров­не грунтовых вод, в районах вечной мерзлоты и других случаях, когда подземная прокладка невозможна или нецелесообразна).

При подземной прокладке трубопроводы тепловых сетей (теплопроводы) укладывают в каналах - специ­альных строительных конструкциях, ограждающих тру­бопроводы, или бесканально. Каналы могут быть про­ходными и непроходными. В зависимости от принятой конструкции подземной прокладки (в непроходных или проходных каналах, коллекторах) допускается прокладка тепловых сетей совместно с другими инженерными сетями (водопроводом, кабелями связи, сило­выми кабелями, напор­ной канализацией).

При надземной (от­крытой) прокладке теплопроводы прокла­дывают на кронштей­нах по стенам зданий, на бетонных, железобе­тонных и металличе­ских опорах . При переходе теплопроводов че­рез железнодорожные пути и водные прегра­ды используют конст­рукции мостов. Тепло­проводы, прокладывае­мые под руслом реки или канала, по склонам и дну оврага, изгибают в соответствии с рель­ефом местности. Такие сооружения называют дюкерами. При прокладке под ру­слом реки теплопрово­ды заключают в сталь­ные трубы (футля­ры). Против всплытия трубы удерживаются грузами. Таким обра­зом строят и другие ви­ды подземных сетей (водопровод, газопро­вод и канализация) при пересечении ими рек, оврагов и прочих подобных препятствий.

Сборка стальных труб больших диаметров в звенья с помощью крана-трубоукладчика . До начала работ сборке труб в звенья завозят трубы и раскладывают их по заранее размеченной оси; очищают концы труб от загрязнений и выправляют деформированные кромки.

Стальные трубы собирают в звенья в такой последо­вательности: укладывают и выверяют лежни, укладывают с помощью крана-трубоукладчика тру­бы на лежни; очищают и подготовляют кромки труб к сварке; центрируют стыки центратором, поддерживая трубы краном-трубоукладчиком во время прихватки стыка электросваркой; сваривают стыки труб с повора­чиванием звена труб; удаляют лежни и устанавливают собранное звено на инвентарные подкладки.

Укладка и выверка лежней . Трубоукладчики, натянув, рулетку вдоль оси раскладки звеньев, размечают на ней места укладки лежней. Затем под­носят лежни и раскладывают их по размет­кам, при этом середина лежней должна совпадать с осью раскладки. По концам крайних лежней забивают четыре металлических штыря и натягивают между крайними лежнями шпагат на уровне верха лежней. Ориентиру­ясь на этот уровень, устанавливают промежуточные лежни, срезая или подбивая лопатами под ними грунт.

Укладка труб на лежни . Разметив с помощью рулетки середину трубы, кран-трубоукладчик устанавливают так, чтобы его стрела находилась над центром тяжести трубы. Трубу стропят, и машинист крана приподнимает ее на 20-30 см. Убедившись в надежности и правильности строповки, машинист крана поднимат трубу на высоту 1 м и по команде трубоукладчика укладывает трубу на лежни. Трубоукладчики, стоя у обоих концов трубы, удерживают ее от разворота.

Очистка и подготовка кромок труб к сварке . При по­грузке, транспортировании или разгрузке на концах труб могут образоваться эллипсность, вмятины и пр. При не­обходимости концы труб следует выправить. Искривле­ния концов выправляют с помощью винтовых домкратов или вручную ударами кувалды с предварительным подогревом трубы в месте правки.

В том случае, если деформированные концы невоз­можно выправить, их обрезают газовой резкой с после­дующей зачисткой кромок.

Используя зубила и молотки, трубоукладчики очи­щают кромки труб от грязи и наледи. Электрошлифо­вальными машинками, напильниками, реверсивными уг­ловыми пневматическими щетками зачищают кромки до металлического блеска на длину не менее 10 мм снаружи л изнутри.

Центрирование стыка и поддерживание труб при прихватке стыка . Машинист устанавливает кран-трубо­укладчик напротив середины трубы и опускает строп- полотенце. Трубоукладчик стропит трубу и подает коман­ду приподнять ее на 0,5 м и переместить к месту стыков­ки. После перемещения трубы рабочие укладывают ее на лежни, визуально центрируют стык, рихтуют и за­крепляют трубу на лежнях деревянными кольями. Затем на стык устанавливают центратор и по­воротом рукоятки закрепляют стык.

Электросварщик, проверив универсальным шаблоном величину зазора между торцами стыкуемых труб по всей окружности и удостоверившись в том, что размер зазора соответствует норме, прихватывает сваркой стык.

Если при проверке шаблоном величина зазора между торцами труб не соответствует нормативным требовани­ям, трубоукладчики ослабляют центратор, машинист крана движением стрелы изменяет величину зазора, при этом трубоукладчики помогают ему ломами. После по­лучения необходимой величины зазора положение трубы окончательно фиксируют деревянными клиньями, рычаг центратора затягивают до отказа и затем стык прихва­тывают сваркой. После прихватки стыка трубоукладчики снимают центратор.

Поворачивание звена при сварке труб . После наложе­ния шва на четверть окружности трубы с каждой ее стороны трубоукладчики поворачивают звено, закрепляя его деревянными клиньями на лежнях у стыка.

Установка и приварка подвижных опор . Подвижные опоры воспринимают нагрузки от веса теплопровода, кроме того, обеспечивают перемещение трубопровода в осевом направлении, происходящее вследствие измене­ния его длины при изменении температуры. Подвижные опоры заводского изготовления бывают скользящие, полозковые, катковые, подвес­ные. Из перечисленных конструкций подвиж­ных опор наиболее широко применяются скользящие опоры.

Скользящие опоры могут быть низкие и высокие, нор­мальной длины и укороченные . Тип опоры выбирают в зависимости от толщины теплоизоляции и расстояния ме­жду опорами. Низкие (подкладки) и высокие опоры пре­дохраняют трубы от истирания при перемещениях тепло­проводов. Кроме того, высокие опоры защищают тепло­вую изоляцию от соприкосновения с основанием канала.

Скользящие опоры устанавливают на опорных камнях с некоторым смещением в сторону неподвижной опоры. При пуске горячей воды трубопро­вод нагреется и несколько удлинится; скользящая опора приваренная к трубопроводу, сместится в сторону ком­пенсатора и займет на опорном камне рабочее положе­ние. Если скользящую опору установить на опорном камне без монтажного смещения, то она может сойти с опорного камня в период эксплуатации тепло­провода. Скользящая опора перемещается по металли­ческой подкладке, забетонированной в опорный камень и выступающей над его верхней плоскостью.

Расстояние между скользящими опорами зависит от расстояния между опорными камнями, которое в свою очередь принимается в зависимости от условного прохо­да труб.

В местах сварных стыков приваривать скользящие опоры не допускается. Опора должна быть приварена без боковых смещений по отношению к вертикальной оси трубопровода.

Разметив места установки опор на трубах, их подго­няют по месту, прихватывают и приваривают . Привари­вают скользящие опоры до опрессовки трубопровода, так как на трубопроводе, прошедшем гидравлическое или пневматическое испытание па плотность и прочность, не разрешается производить сварочные работы.

Установка сальниковых компенсаторов . Сальниковые компенсаторы воспринимают осевые темпера­турные деформации трубопроводов тепловых сетей и тем самым предохраняют трубопровод и арматуру от разру­шающих напряжений.

Сальниковые компенсаторы изготовляют односторонние и двусторонние . Компенсирующая способность дву­стороннего компенсатора в два раза больше компенсиру­ющей способности одностороннего.

Компенсатор соединяется с основным трубопроводом на сварке.

Компенсатор устанавливается в выдвинутом положе­нии на полную длину хода, которая зависит от компенси­рующей способности, с зазором между упорным кольцом корпуса и предохранительным кольцом на стакане. Зазор компенсирует изменение длины трубопровода при понижении температуры труб после установки компенса­тора (в связи с понижением температуры наружного воздуха).

При установке компенсатора следует тщательно на­бивать сальниковые уплотнения (сальник), так как замена набивки в период эксплуатации приводит к оста­новке работы тепловых сетей. Места соединения колец сальника должны быть смещены один относительно дру­гого, швы сальниковых компенсаторов должны быть ров­ными, а кратеры заварены.

Установка фланцев . Трубопроводная арматура и ли­нейное оборудование соединяются с трубопроводом на сварке или на фланцах, стягиваемых болтами, шпилька­ми и гайками. При условном внутреннем давлении в тру­бопроводе до 40 кгс/см2 (4 МПа) используют болты, при 40 кгс/см2 и более шпильки. Плотность флайцевого соединения зависит от точности обработки поверхности фланцев, качества болтов и равномерности их затяжки. Фланцы должны быть параллельны один другому.

Фланцы приваривают перпендикулярно осям патруб­ков . Перекос не должен превышать 1 мм на 100 мм на­ружного диаметра фланца (но не более 3 мм). После пригонки фланцев по месту устанавливают два-три бол­та для выверки прокладки, затем монтируют остальные болты, навертывают на них гайки и фланцевое соедине­ние затягивают. Чтобы не было перекоса, гайки затяги­вают постепенно в крестообразном порядке.

Диаметр болтов должен соответствовать диаметру отверстий соединяемых фланцев . Головки болтов распо­лагают с одной стороны соединения. Болты фланцевого соединения могут выступать над гайкой не менее чем на три нитки резьбы и не более чем на половину диаметра болта. Необходимо, чтобы внутренний диаметр проклад­ки соответствовал внутреннему диаметру трубы с допу­ском 3 мм, а ее наружный диаметр должен быть не менее диаметра соединительного выступа и не более диаметра окружности, касательной к болтам.

Для более плотного закрепления прокладки иногда на одном из соединяемых фланцев делают выступ, на другом - впадину. Выступ входит во впадину, и таким образом прокладка надежно крепится между фланцами. Для этой же цели на зеркало фланцев наносят концент­рически расположенные углубления - риски.

При установке трубопроводной арматуры , например задвижек, нельзя допускать чрезмерного стягивания фланцев болтами, так как снижается плотность и проч­ность фланцевого соединения.

Растяжка П-образных компенсаторов . Для увеличе­ния компенсирующей способности П-образные компенса­торы растягивают. Величина растяжки, указываемая в проекте, должна быть равна половине удлинения компен­сируемого участка. Компенсатор растягивают лишь пос­ле того, как с двух его сторон будут установлены непо­движные опоры; таким образом, при растяжке компенса­тора трубопровод остается неподвижным в местах его приварки к опорам. Несваренным остается лишь один стык — в месте растяжки компенсатора.

Компенсатор растягивают с помощью уголковых стя­жек, домкратов, талей и др . На рав­ном расстоянии по окружности трубы П-образного ком­пенсатора приваривают четыре пластины, а также четыре пластины - к ранее уложенной трубе. Расстоя­ние между пластинами не должно превышать длины стяжных болтов. В отверстие пластин вставляют стяж­ные болты и, завинчивая гайки, растягивают компенса­тор, сближая кромки труб до требуемого для сварки за­зора. Стыки прихватывают электросваркой, пластины срезают газовым резаком и стык сваривают.

Монтаж узлов тепловых сетей . Трубоукладчик сталь­ной щеткой или напильником очищает концы патрубков и труб от ржавчины и грязи. Затем с помощью подъем­ного крана узел подается в камеру тепловых сетей, где его устанавливают в проектное положение. Пос­ле этого подгоняют и подрезают кромки и центрируют стыки наружным центратором. Стыки сваривают, центра­тор переносят на следующие работы.

Возможно, Вас так же заинтересует:

Расчёт П-образного компенсатора заключается в определении минимальных размеров компенсатора, достаточных для компенсации температурных деформаций трубопровода. Заполнив выше приведенную форму, вы сможете рассчитать компенсирующую способность П-образного компенсатора заданных размеров.

В основе алгоритма данной online программы лежит методика расчёта П-образного компенсатора приведенная в — Справочнике проектировщика «Проектирование тепловых сетей» под редакцией А. А. Николаева.

  1. Максимальное напряжение в спинке компенсатора рекомендуется принимать в диапазоне от 80 до 110 МПа.

  2. Оптимальное отношение вылета компенсатора к наружному диаметру трубы рекомендуется принимать в диапазоне H/Dн = (10 — 40), при этом вылет компенсатора в 10DN соответствует трубопроводу DN350, а вылет в 40DN – трубопроводу DN15.

  3. Оптимальное отношение ширины компенсатора к его вылету рекомендуется принимать в диапазоне L/H= (1 — 1,5), хотя могут быть приняты и другие значения.

  4. Если для компенсации расчётных тепловых удлинений необходим компенсатор слишком больших размеров, возможна его замена двумя меньшими компенсаторами.

  5. При расчёте тепловых удлинений трубопровода температуру теплоносителя следует принимать максимальной, а температуру окружающей трубопровод среды минимальной.

В расчёте приняты следующие ограничения:

  • Трубопровод заполнен водой или паром
  • Трубопровод выполнен из стальной трубы
  • Максимальная температура рабочей среды не превышает 200 °С
  • Максимальное давление в трубопроводе не превышает 1,6 МПа (16 бар)
  • Компенсатор установлен на горизонтальном трубопроводе
  • Компенсатор симметричен, а его плечи одинаковой длины
  • Неподвижные опоры считаются абсолютно жёсткими
  • Трубопровод не испытывает ветрового давления и других нагрузок
  • Сопротивление сил трения подвижных опор при тепловом удлинении не учитывается
  • Отводы гладкие
  1. Не рекомендуется располагать неподвижные опоры на расстоянии менее 10DN от П–образного компенсатора, так как передача на него момента защемления опоры снижает гибкость.

  2. Участки трубопровода от неподвижных опор до П-образного компенсатора рекомендуется принимать одинаковой длины. Если компенсатор располагают не посредине участка а смещают в сторону одной из неподвижных опор, то силы упругой деформации и напряжения увеличиваются примерно на 20-40%, по отношению к значениям полученным для компенсатора, расположенного посередине.

  3. Для увеличения компенсирующей способности применяют предварительное растягивание компенсатора. При монтаже компенсатор испытывает изгибающую нагрузку, нагреваясь принимает ненапряжённое состояние, а при максимальной температуре приходит в напряжение. Предварительное растягивание компенсатора на величину равную половине теплового удлинения трубопровода, позволяет увеличить его компенсирующую способность вдвое.

Область применения

П-образные компенсаторы применяют для компенсации температурных удлинений труб на протяжённых прямых участках, если возможности самокомпенсации трубопровода за счёт поворотов тепловой сети — нет. Отсутствие компенсаторов на жёстко закреплённых трубопроводах с переменной температурой рабочей среды, приведёт к росту напряжений способных деформировать и разрушить трубопровод.

Гибкие компенсаторы применяют

  1. При надземной прокладке для всех диаметров труб независимо от параметров теплоносителя.
  2. При прокладке в каналах туннелях и общих коллекторах на трубопроводах от DN25 до DN200 при давлении теплоносителя до 16бар.
  3. При бесканальной прокладке для труб диаметром от DN25 до DN100.
  4. Если максимальная температура рабочей среды превышает 50°C

Достоинства

  • Высокая компенсирующая способность
  • Не требует обслуживания
  • Прост в изготовлении
  • Незначительные усилия передаваемые на неподвижные опоры

Недостатки

  • Большой расход труб
  • Большая занимаемая площадь
  • Высокое гидравлическое сопротивление

Расчет предварительного растяжения компенсатора при монтаже необходим для максимального использования по назначению компенсирующей способности сильфонного компенсатора.

Компенсирующая способность компенсатора

Для начала определимся, что такое компенсирующая способность. Как правило компенсирующая способность выражается в отрицательных (-) и положительных (+) значений в его маркировке. Например, КСО 200-16-80, где 80 это значение максимальной компенсирующей способности. Оно означает, что компенсатор КСО имеет к.с. 80мм (т.е. +/-40) +40мм на растяжение и -40мм на сжатие.

Максимальные величины расширения (сужения) трубопроводов зависят от наибольшего и наименьшего значений температуры рабочей среды.

Приведем способ монтажа сильфонного компенсатора в холодном состоянии, определив монтажную длину сильфонного компенсатора, для использования его компенсирующей способности по-максимуму:

∆.(Е уст - Т мин)

T макс - Т мин

Определение общей длины растянутого компенсатора:

L=L 0 +H [мм], где:

Δ - суммарное расширение трубопровода [мм]
L 0 - свободная длина компенсатора [мм]
L - монтажная длина компенсатора (длина растянутого компенсатора) [мм]
Т макс - максимальная рабочая температура [°C]
Т мин - минимальная рабочая температура [°C]
Т уст - температура монтажа [°C]

Осевой компенсатор должен монтироваться в холодном состоянии, направление движения, установленный в этом холодном состоянии. Величина предварительного растяжения зависит от установочной температуры.

Минимальная рабочая температура трубопровода - 0 о С, а максимальная 100 о С. Таким образом, разница получается 100 о С. Возьмем длину теплотрассы 90м. Рассчитывая максимальное удлинение труб, получим ∆L=100мм, т.е. подходящим компенсатором будет КСО с компенсирующей способностью +/-50мм.

Теперь определим характер работы компенсатора при температуре монтажа 20 о С.:

  • при 0 о С КСО растянут на 50мм;
  • при 100 о С КСО сжат на 50мм;
  • при 20 о С КСО растянут на 30мм;
  • при 50 о С на КСО не действует никаких сил.

Поэтому, если предварительно растянуть компенсатор КСО с компенсирующей способностью +/-50мм при температуре монтажа в 20 о С, то он покажет максимальную эффективность на участке трубопровода длиной 90м. В случае повышения температуры рабочей среды до 50 о С компенсатор примет ненапряженное состояние. При достижении температуры трубопровода 100 о С сильфон компенсатора будет растянут на 50мм (максимальное рабочее состояние).

Величина смещения (компенсирующая способность) компенсаторов, как правило, выражается комбинацией положительных и отрицательных числовых значений (±). Отрицательное (-) значение обозначает допустимое сжатие компенсатора, положительное (+) — его допустимое растяжение. Сумма абсолютных величин таких значений представляет собой полное смещение компенсатора. В большинстве случаев, компенсаторы работают на сжатие, компенсируя температурное расширение трубопроводов, реже (охлажденные среды и криогенные продукты) — на растяжение.

Предварительная растяжка при монтаже нужна для рационального использования полного смещения компенсатора в зависимости от характера работы трубопровода, условий монтажа и предотвращения возникновения стрессовых условий.

Пиковые значения расширения трубопровода зависят от минимальной и максимальной температур его эксплуатации. Например, минимальная температура работы трубопровода Tmin = 0°С и максимальная Т тах = 100°С. Т.е. разница температур At = 100°C. При длине трубопровода L равной 90 м, максимальное значение его удлинения трубопровода AL составит 100 мм. Представим, что для установки на таком трубопроводе используются компенсаторы со смещением ±50 мм, т.е. с полным смещением 100 мм. Также, представим, что температура окружающей среды на этапе их монтажа Т у равна 20°С. Характер работы компенсатора при таких условиях будет такой:

  • при 0°С — компенсатор будет растянут на 50 мм
  • при 100°С — компенсатор будет сжат на 50 мм
  • при 50°С — компенсатор будет находится в свободном состоянии
  • при 20°С — компенсатор будет растянут на 30 мм

Следовательно, предварительная растяжка на величину 30 мм при монтаже (Т у = 20°С) обеспечит эффективную его работу. Когда температура поднимется от 20°С до 50°С при вводе в эксплуатацию трубопровода, компенсатор вернется в свободное (ненапряженное) состояние. При повышении температуры трубопровода от 50°С до 100°С, смещение компенсатора относительно свободного состояние в сторону сжатия составит расчетные 50 мм.

Определение значения предварительного растяжения

Примем длину трубопровода равную 33 метрам, максимальную/минимальную рабочую температуру +150°С /-20°С соответственно. При такой разнице температур, коэффициент линейного расширения а составит 0,012 мм/м*°С.

Максимальное удлинение трубопровода может быть рассчитано следующим образом:

ΔL = αxLx Δt = 0,012 х 33 х 170 = 67 мм

Значение предварительного растяжения PS определяется по формуле:

PS = (ΔL/2) — ΔL (Ty-Tmin): (Tmax-Tmin)

Таким образом, в процессе монтажа компенсатора, его необходимо установить с предварительным растяжением PS равным 18 мм.

На рис. 1 показано расстояние необходимое для монтажа компенсатора в линию трубопровода, определяемое как сумма значений длины компенсатора lq в свободном состоянии и предварительного растяжения PS.

На рис. 2 показано, что при монтаже, с одной стороны компенсатор фиксируется фланцем или приваривается.