Технологическая схема теплового пункта. Что такое индивидуальный тепловой пункт (ИТП). Основные этапы проектирования ЦТП

01.03.2019

Тепловой пункт – комплекс устройств, расположенный в обобщенном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя.

Тепловой пункт является связующим звеном между тепловой сетью и системами потребления теплоты. Системы отопления, вентиляции и горячего водоснабжения производственных, жилых или общественных зданий присоединяются к тепловому пункту. Практика показывает, что существует огромное количество возможных сочетаний схем абонентских присоединений к закрытым и открытым теплосетям водяных и паровых систем центрального теплоснабжения.

Таким образом, основное назначение теплового пункта прием, подготовка теплоносителя и подача его в системы теплопотребления, а также возврат использованного теплоносителя в тепловую сеть. Тепловые пункты бывают центральными и индивидуальными.

Центральный тепловой пункт (ЦТП) – пункт подключения систем теплоснабжения микрорайона к распределительным сетям городской тепловой сети и водопровода и управления системами отопления, вентиляции и водоснабжения зданий.

Центральные тепловые пункты широко применяются на промышленных предприятиях, а также в городских жилых рай онах. Обычно ЦТП размещают в отдельных специальных зданиях. В ЦТП устанавливаются блоки подогревателей горячего водоснабжения (при независимой схеме); групповая смесительная установка сетевой воды; подкачивающие насосы холодной водопроводной воды, а при необходимости и сетевой; регуляторы и контрольно – измерительные приборы (КИП).

При использовании ЦТП уменьшаются затраты на сооружение подогревательной установки горячего водоснабжения, насосных установок и систем автоматического регулирования, но возрастают затраты на сооружение участка тепловой сети между ЦТП и отдельными зданиями, так как вместо двухтрубной сети требуется сооружать четырехтрубную или трехтрубную при тупиковой схеме ГВС. В настоящее время в ЦТП часто размещают не только теплоэнергетическое оборудование, но и водопроводное, насосное противопожарное, электротехническое и низковольтное оборудование, проведя диспетчеризацию и превратив их в энергетические центры обслуживания населения. При этом, после ЦТП прокладываются четырех-, шести-, восьмитрубные распределительные тепловые сети к зданиям, а часто и водопроводные, противопожарные и другие линии и коммуникации .

На рис. 1.3 изображена схема ЦТП, к которому с помощью четырехтрубной сети присоединены потребители отопления и горячего водоснабжения. ЦТП связан с источником прямым (I) и обратным (II) трубопроводами тепловой сети. Отопление осуществляется по подающему (ПО) и обратному (ОО) трубопроводам отопления, а горячее водоснабжение – по подающему (ПГВС) и обратному (ОГВС) трубопроводам ГВС. Сырая вода из водопровода в систему ГВС подается по трубопроводу СВ.


1 – обратный клапан; 2, 7 – подогреватели сырой воды для ГВС; 3 – смесительный насос; 4 – насос системы ГВС; 5 – регулятор отопления; 6 – регулятор температуры горячей воды в системе ГВС; 8, 9 – трубопроводы подачи и рециркуляции горячей воды у потребителей; 10 – смесительный насос – элеватор; 11 – нагревательное устройство отопления.

Для обеспечения постоянной температуры горячей воды в системе ГВС (не ниже 50°С) применяется циркуляционная схема ГВС. Циркуляция производится насосом 4 (рис. 1.3). Во время малого расхода горячей воды (ночное и дневное время) давление воды перед обратным клапаном 1 повышается и возрастает циркуляция воды в системе ГВС. В случае большого водоразбора давление перед клапаном 1 снижается, и уменьшается циркуляционный расход, но возрастает расход воды в подающей линии СВ и стояках 8, поэтому снижается выстывание воды по пути к потребителю.

Устройство индивидуальных тепловых пунктов (ИТП) обязательно в каждом жилом и общественном здании независимо от наличия ЦТП, при этом в ИТП предусматриваются только те функции, которые необходимы для присоединения систем потребления теплоты данного здания и не предусмотрены в ЦТП.

ИТП – пункт подключения систем отопления, вентиляции и водоснабжения здания к распределительным сетям системы теплоснабжения микрорайона.

При теплоснабжении от котельной мощностью 35 МВт и менее рекомендуется предусматривать в зданиях только ИТП. В промышленных зданиях проектируются только ЦТП.

Любая из применяемых на практике схем присоединения потребителей теплоты к тепловым сетям должна обеспечивать минимальные расходы воды в тепловых сетях, экономию теплоты за счет применения регуляторов расхода и ограничителей максимального расхода сетевой воды, корректирующих насосов или элеваторов с автоматическим регулированием, снижающих температуру воды, поступающей в системы отопления, вентиляции и кондиционирования воздуха.

Индивидуальный тепловой пункт предназначен для экономии тепла, регулирования параметров снабжения. Это комплекс, располагающийся в отдельном помещении. Может эксплуатироваться в частном или многоквартирном доме. ИТП (индивидуальный тепловой пункт), что это такое, как устроен и функционирует, рассмотрим подробнее.

ИТП: задачи, функции, назначение

По определению ИТП — тепловой пункт, обогревающий здания полностью или отчасти. Комплекс получает энергию из сети (ЦТП, центрального теплового пункта или котельной) и распределяет ее до потребителей:

  • ГВС (горячего водоснабжения);
  • отопления;
  • вентиляции.

При этом имеется возможность регуляции, так как режим обогрева в жилой комнате, подвале, на складе, отличается. На ИТП возлагаются следующие основные задачи.

  • Учет расхода тепла.
  • Защита от аварий, контроль за параметрами для безопасности.
  • Отключение системы потребления.
  • Равномерное распределение тепла.
  • Регулировка характеристик, управление температурными и другими параметрами.
  • Преобразование теплоносителя.

Для установки ИТП здания модернизируются, что обходится недешево, но несет в себе выгоды. Пункт располагают в отдельном техническом или подвальном помещении, пристройке к дому или отдельно расположенном рядом сооружении.

Преимущества наличия ИТП

Значительные расходы на создание ИТП допускаются в связи с преимуществами, которые следуют из наличия пункта в здании.

  • Экономичность (по потреблению — на 30%).
  • Снижение затрат на эксплуатацию до 60%.
  • Расход тепла контролируется и учитывается.
  • Оптимизация режимов снижает потери до 15%. Учитывается время суток, выходные дни, погода.
  • Тепло распределяется соответственно условиям потребления.
  • Расход можно регулировать.
  • Вид теплоносителя подлежит изменению в случае необходимости.
  • Низкая аварийность, высокая безопасность эксплуатации.
  • Полная автоматизация процесса.
  • Бесшумность.
  • Компактность, зависимость габаритов от нагрузки. Пункт можно разместить в подвале.
  • Обслуживание тепловых пунктов не требует многочисленного персонала.
  • Обеспечивает комфорт.
  • Оборудование комплектуется под заказ.

Управляемый расход тепла, возможность влияния на показатели привлекает в плане экономии, рационального расхода ресурса. Поэтому считается, что затраты окупаются в приемлемый период.

Виды ТП

Различие ТП — в количестве и видах систем потребления. Особенности типа потребителя предопределяют схему и характеристики требуемого оборудования. Отличается способ монтажа и расстановки комплекса в помещении. Выделяют следующие виды.

  • ИТП для единственного здания или его части, расположенный в подвале, техническом помещении или рядом стоящем сооружении.
  • ЦТП — центральный ТП обслуживает группу зданий или объектов. Располагается в одном из подвалов или отдельном сооружении.
  • БТП — блочный тепловой пункт. Включает один или несколько блоков, изготовленных и поставленных на производстве. Отличается компактным монтажом, применяется для экономии места. Может выполнять функцию ИТП или ЦТП.

Принцип работы

Схема конструкции зависит от источника энергии и специфики потребления. Наиболее популярная — независимая, для закрытой системы ГВС. Принцип работы ИТП следующий.

  1. Носитель тепла приходит в пункт по трубопроводу, отдавая температуру подогревателям отопления, ГВС и вентиляции.
  2. Теплоноситель идет в обратный трубопровод на теплогенерирующее предприятие. Используется повторно, но часть может быть израсходована потребителем.
  3. Потери тепла восполняются подпитками, имеющимися в ТЭЦ и котельных (подготовка воды).
  4. В тепловую установку поступает водопроводная вода, проходя через насос для холодного водоснабжения. Часть ее идет потребителю, остальное нагревается подогревателем 1 ступени, направляясь в контур ГВС.
  5. Насос ГВС перемещает воду по кругу, проходя через ТП, потребителя, возвращается с частичным расходом.
  6. Подогреватель 2 ступени действует регулярно при потере жидкостью тепла.

Теплоноситель (в данном случае — вода) движется по контуру, чему способствуют 2 циркуляционных насоса. Возможны его утечки, которые восполняет подпитка из первичной тепловой сети.

Принципиальная схема

Та или иная схема ИТП имеет особенности, зависящие от потребителя. Важен центральный поставщик тепла. Самый распространенный вариант — закрытая система ГВС с независимым присоединением отопления. В ТП по трубопроводу поступает носитель тепла, реализуется при подогреве воды для систем и возвращается. Для возврата имеется обратный трубопровод, идущий к магистрали на центральный пункт — предприятие по генерации тепла.

Отопление и ГВС устроено в виде контуров, по которым с помощью насосов перемещается носитель тепла. Первый принято проектировать, как замкнутый цикл с возможными утечками, восполняемыми из первичной сети. А второй контур — циркулярный, снабженный насосами для ГВС, подающий воду к потребителю для расходования. При потере тепла нагрев осуществляется второй нагревательной ступенью.

ИТП для разных целей потребления

Будучи оборудованным для отопления, ИТП имеет независимую схему, в которой установлен пластинчатый теплообменник со 100% нагрузкой. Потери давления предотвращается установкой сдвоенного насоса. Подпитка осуществляется от обратного трубопровода в тепловых сетях. Дополнительно ТП комплектуется приборами учета, блоком ГВС при наличии других необходимых узлов.


ИТП, предназначенный для ГВС — это независимая схема. Кроме того, она параллельная и одноступенчатая, укомплектованная двумя пластинчатыми теплообменниками, нагруженными по 50%. Есть насосы, компенсирующие снижение давления, приборы учета. Предполагается наличие других узлов. Подобные теплопункты функционируют по независимой схеме.

Это интересно! Принцип осуществления теплофикации для отопительной системы может быть основан на пластинчатом теплообменнике со 100% нагрузкой. А ГВС имеет двухступенчатую схему с двумя аналогичными устройствами, нагруженными на 1/2 каждый. Насосы различного назначения компенсируют снижающееся давление и подпитывают систему из трубопровода.

Для вентиляции применяют пластинчатый теплообменник со 100% нагрузкой. ГВС обеспечивается двумя такими устройствам, нагруженными на 50%. Посредством работы нескольких насосов компенсируется уровень давления и делается подпитка. Дополнение — устройство учета.

Этапы установки

ТП здания или объекта при установке проходит поэтапную процедуру. Одного лишь желания жильцов в многоквартирном здании недостаточно.

  • Получение согласия собственников помещений жилого здания.
  • Заявка теплоснабжающим компаниям на проектирование в конкретном доме, разработка техзадания.
  • Выдача технических условий.
  • Обследование жилого либо иного объекта под проект, определение наличия и состояния оборудования.
  • Автоматический ТП будут проектировать, разрабатывать и утверждать.
  • Заключается договор.
  • Проект ИТП жилого дома либо иного объекта реализуется, проводятся испытания.

Внимание! Все этапы можно реализовать за пару месяцев. Забота возлагается на ответственную специализированную организацию. Для успеха компания должна быть хорошо зарекомендована.

Безопасность эксплуатации

Автоматический теплопункт имеет обслуживание с работниками должной квалификации. Персонал знакомят с правилами. Есть и запреты: автоматика не запускается при отсутствии воды в системе, насосы не включают, если на вводе перекрыта запорная арматура.
Требуется контролировать:

  • параметры давления;
  • шумы;
  • уровень вибрации;
  • нагрев двигателя.

Регулирующий клапан нельзя подвергать чрезмерному усилию. Если система под давлением, регуляторы не разбирают. Перед пуском промывают трубопроводы.

Допуск к эксплуатации

Эксплуатация комплексов АИТП (автоматизированных ИТП) требует оформления допуска, для чего в Энергонадзор предоставляется документация. Это техусловия подключения и справка об их исполнении. Нужны:

  • согласованная проектная документация;
  • акт ответственности по эксплуатированию, балансу принадлежности от сторон;
  • акт готовности;
  • теплопункты должны иметь паспорт с параметрами теплоснабжения;
  • готовность устройства учета тепловой энергии — документ;
  • справка о наличии договора с энергокомпанией по обеспечению теплоснабжения;
  • акт приемки работ от компании, производящей монтаж;
  • Приказ, назначающий ответственного за техобслуживание, исправность, ремонт и безопасность АТП (автоматизированного теплового пункта);
  • список лиц, отвечающих за обслуживание установок АИТП и их ремонт;
  • копия документа о квалификации сварщика, сертификаты на электроды и трубы;
  • акты по иным действиям, исполнительная схема объекта автоматизированный теплопункт, включающая трубопроводы, арматуру;
  • акт по опрессовке, промывке отопления, ГВС, которые включает автоматизированный пункт;
  • инструктаж.


Составляется акт допуска, заводятся журналы: оперативный, по инструктажу, выдаче нарядов, обнаружению дефектов.

ИТП многоквартирного дома

Автоматизированный индивидуальный тепловой пункт в многоэтажном жилом здании транспортирует тепло от ЦТП, котельных или ТЭЦ (теплоэлектроцентраль) к отоплению, ГВС и вентиляции. Подобные новшества (автоматический тепловой пункт) сберегают до 40% и более тепловой энергии.

Внимание! Система использует источник — тепловые сети, к которым подключается. Необходимости согласования с этими организациями.

Множество данных требуется для расчетов режимов, нагрузки и результатов экономии для оплаты в ЖКХ. Без этой информации проект не будет выполнен. Без согласования ИТП не выдадут допуск к эксплуатации. Жильцы приобретают следующие выгоды.

  • Большая точность работы аппаратов по поддержанию температуры.
  • Подогрев производится с расчетом, включающим состояние наружного воздуха.
  • Снижаются суммы за услуги по счетам ЖКХ.
  • Автоматизация упрощает обслуживание объектов.
  • Снижаются затраты на ремонт, численность персонала.
  • Экономятся финансы на потребление тепловой энергии от централизованного поставщика (котельных, ТЭЦ, ЦТП).

Итог: как происходит экономия

Тепловой пункт системы отопления снабжают узлом учета при вводе, что является залогом экономии. С приборов снимают показания по расходу тепла. Сам учет не снижает расходы. Источник экономии — возможность смены режимов и отсутствие завышения показателей со стороны энергоснабжающих компаний, точное их определение. Невозможно будет списать на подобного потребителя дополнительные издержки, утечки, расходы. Окупаемость происходит в сроки 5 месяцев, как среднее значение с экономией до 30%.

Автоматизирована подача теплоносителя от централизованного поставщика — теплотрассы. Монтаж современного узла отопления и вентиляции позволяет учитывать при эксплуатации сезонные и суточные температурные изменения. Режим коррекции — автоматический. Теплопотребление уменьшается на 30% при окупаемости от 2 до 5 лет.

Описание

Завод ГазСинтез проектирует и производит центральные тепловые пункты , которые устанавливаются в качестве связующего звена между городскими магистралями и распределительными сетями. Основная функция центральных тепловых сетей ЦТП - это передача и распределение тепловой энергии от ТЭЦ к потребителям для отопления, вентиляции и горячего водоснабжения. ЦТП обслуживают более двух объектов (домов), комплекс зданий и сооружений, группу промышленных и производственных зданий, микрорайоны, кварталы, поселки, деревни и др.

Назначение центральных тепловых пунктов

Пункты ЦТП не просто распределяют тепловую энергию между Потребителями. ЦТП осуществляют контроль, управление и регулирование всех технических параметров работы пункта: поддерживают необходимый температурный режим, регулируют давление на выходе из теплового пункта в зависимости от входного давления воды, защищают оборудование Потребителей от гидроударов из-за превышения давления воды у теплоисточника.

Устройство центральных тепловых пунктов

Завод ГазСинтез поставляет отдельно стоящие центральные тепловые пункты. Внутри ЦТП располагается все необходимое технологическое оборудование. Состав оборудования подбирается индивидуально на основании требований Заказчика к производительности/мощности, площади обслуживаемого объекта, схемы имеющегося теплоснабжения (открытой/закрытой), технических условий эксплуатации.

Зависимая и независимая схемы подключения системы отопления

При использовании воды в качестве теплоносителя в системе отопления центральные тепловые пункты могут иметь зависимую и независимую схему подключения оборудования. При зависимой схеме подключения (одноконтурной) вода от магистральной сети поступает непосредственно Потребителю в систему теплоснабжения. При такой схеме нет необходимости в промежуточных тепловых пунктах, теплообменниках и другом смесительном оборудовании. Поэтому в пунктах ЦТП не может быть использована зависимая схема подключения системы теплоснабжения. Недостатком такой схемы является невозможность регулирования температурного режима.

При независимой схеме подключения (двухконтурной) теплоноситель от магистральных сетей (первый контур) нагревает теплоноситель, который уже будет циркулировать в системе отопления Потребителей (второй контур). Преимуществами данной схемы является возможность регулирования и управления температурным режимом и давлением теплоносителя обоих контуров.

Открытая и закрытая схемы подключения системы ГВС

Открытая схема подключения системы горячего водоснабжения характеризуется непосредственным забором воды для нужд Потребителя непосредственно из тепловой магистральной сети. Закрытая схема подключения системы горячего водоснабжения - это подогрев воды до нужной температуры теплоносителем, забранным из магистральной теплосети.

Принцип работы центрального теплового пункта

Теплоноситель из магистральных сетей поступает по подающему трубопроводу в теплообменник центрального теплового пункта , где используется для подогрева воды для системы ГВС и отопления. После подогрева воды в теплообменнике, вода возвращается по обратному трубопроводу в магистральную сеть.

Нагреваемая вода для системы ГВС и отопления поступает в тепловой пункт из магистрального водопровода, проходит через насос и поступает в теплообменник для подогрева. Затем после достижения необходимой температуры поступает в циркуляционную систему горячего водоснабжения. В результате отбора горячей воды Потребителями, температура воды понижается. Для поддержания ее на заданном уровне, устанавливается подогреватель второй ступени ГВС.

В результате нормальной работы теплового пункта ЦТП может происходить естественная утечка воды, которая восполняется системой подпитки из магистральной сети.

Состав оборудования центральных тепловых пунктов

В состав пунктов ЦТП входит следующее теплоэнергетическое оборудование и вспомогательное оборудование:

  • теплообменник для нагрева воды теплоносителем из магистральных сетей
  • насосы (циркуляционные насосы ГВС и системы отопления, насос подпитки, смесительный, резервный/аварийный)
  • регулирующая арматура
  • запорно-предохранительное оборудование (краны, задвижки, клапаны)
  • контрольно-измерительные приборы (счетчики, приборы учета тепла, манометры и др.)
  • система автоматизированного контроля, управления и регулирования гидравлическим и тепловым режимами
  • система водоподготовки и деаэрации воды
  • расширительный бак для компенсации расширения теплоносителя в системе отопления

Компоновочная схема центрального теплового пункта ЦТП мощностью 4,28 МВт производства Завода ГазСинтез

(размещение оборудования, габаритные размеры даны для справки и могут отличаться)

Преимущества центральных тепловых пунктов производства Завода ГазСинтез

На Заводе ГазСинтез центральные тепловые пункты комплектуются всем необходимым и качественным оборудованием для надежной безаварийной и долговечной эксплуатации ЦТП. Точный расчет необходимого оборудования обеспечит Вам нормальное функционирование системы, а также позволит экономить теплоэнергию.

Мы проектируем и производим ЦТП в соответствии с требованиями государственных стандартов:

  • СП 41-101-95 "Проектирование тепловых пунктов"
  • СТО 17330282.27.060.003-2008 "Тепловые пункты тепловых сетей"
  • СП 124.13330.2012 "Тепловые сети. Актуализированная редакция СНиП 41-02-2003"

Изготавливаемые на Заводе тепловые пункты имеют высокое качество, подтвержденное Сертификатами соответствия и разрешительными документами государственного образца. Наши тепловые пункты мы комплектуем оборудованием только ведущих производителей.

Как в Вашем городе заказать центральный тепловой пункт на Заводе ГазСинтез?

Для расчета стоимости изготовления центральных тепловых пунктов на Заводе ГазСинтез и расчета стоимости доставки до места эксплуатации:

  • звоните по телефону 8-800-555-4784
  • заполняйте Опросный лист и присылайте на электронную почту
  • указывайте контактную информацию в форме " ", и наш специалист свяжется с Вами

Наши специалисты предлагают весь комплекс услуг (проектирование, изготовление, монтаж, пуско-наладку ЦТП), что существенно отразится на Вашей экономической выгоде при заказе на Заводе ГазСинтез, а также на сроках производства, монтажа и пуско-наладки.

Тепловой пункт (ТП) - комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Назначение тепловых пунктов:

  • преобразование вида теплоносителя или его параметров;
  • контроль параметров теплоносителя;
  • учет тепловых нагрузок, расходов теплоносителя и конденсата;
  • регулирование расхода теплоносителя и распределение по системам потребления теплоты (через распределительные сети в ЦТП или непосредственно в системы ИТП);
  • защита местных систем от аварийного повышения параметров теплоносителя;
  • заполнение и подпитка систем потребления теплоты;
  • сбор, охлаждение, возврат конденсата и контроль его качества;
  • аккумулирование теплоты;
  • водоподготовка для систем горячего водоснабжения.

В тепловом пункте в зависимости от его назначения и местных условий могут осуществляться все перечисленные мероприятия или только их часть. Приборы контроля параметров теплоносителя и учета расхода теплоты следует предусматривать во всех тепловых пунктах.

Устройство ИТП ввода обязательно для каждого здания независимо от наличия ЦТП, при этом в ИТП предусматриваются только те мероприятия, которые необходимы для присоединения данного здания и не предусмотрены в ЦТП.

В закрытых и открытых системах теплоснабжения необходимость устройства ЦТП для жилых и общественных зданий должна быть обоснована технико-экономическим расчетом.

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП.

Различают следующие виды тепловых пунктов:

  • . Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • . Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Центральные и индивидуальные тепловые пункты

Центральный тепловой пункт (ЦТП) позволяет сосредоточить все наиболее дорогостоящее и требующее систематического и квалифицированного наблюдения оборудования в удобных для обслуживания отдельно стоящих зданиях и благодаря этому значительно упростить последующие индивидуальные тепловые пункты (ИТП) в зданиях. Здания общественного назначения, размещаемые в жилых микрорайонах, - школы, детские учреждения должны иметь самостоятельные ИТП, оборудованные регуляторами. ЦТП должны размещаться на границах микрорайонов (кварталов) между магистральными, распределительными сетями и квартальными.

При водяном теплоносителе оборудование тепловых пунктов состоит из циркуляционных (сетевых) насосов, водо-водяных теплообменников, аккумуляторов горячей воды, повысительных насосов, приборов для регулирования и контроля параметров теплоносителя, приборов и устройств для защиты от коррозии и накипеобразования местных установок горячего водоснабжения, приборами для учета расхода теплоты, а также автоматическими устройствами для регулирования отпуска теплоты и поддержания заданных параметров теплоносителя в абонентских установках.

Принципиальная схема теплового пункта

Схема теплового пункта зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Тепловые пункты промышленных предприятий

Промышленное предприятие должно, как правило, иметь один центральный тепловой пункт (ЦТП) для регистрации, учета и распределения теплоносителя, получаемого из тепловой сети. Количество и размещение вторичных (цеховых) тепловых пунктов (ИТП) определяется размерами и взаимным размещением отдельных цехов предприятия. ЦТП предприятия должен быть размещен в отдельном помещении; на крупных предприятиях, особенно при получении кроме горячей воды также и пара, - в самостоятельном здании.

Предприятие может иметь цехи как с однородным характером внутренних тепловыделений (удельный вес в общей нагрузке), так и с разным. В первом случае температурный режим всех зданий определяется в ЦТП, во втором – различным и устанавливаться на ИТП. Температурный график для промышленных предприятий должен отличаться от бытового, по которому обычно работают городские теплосети. Для подгонки температурного режима в тепловых пунктах предприятий должны устанавливаться смесительные насосы, которые при единообразии характера тепловыделений по цехам могут быть установлены в одном ЦТП, при отсутствии единообразия – в ИТП.

Проектирование тепловых систем промышленных предприятий должно проводиться с обязательным использованием вторичных энергоресурсов, под которыми понимаются:

  • отходящие от печей горячие газы;
  • продукты технологических процессов (нагретые слитки, шлаки, раскаленный кокс и пр.);
  • низкотемпературные энергоресурсы в виде отработавшего пара, горячей воды от различных охлаждающих устройств и производственные тепловыделения.

Для теплоснабжения обычно используются энергоресурсы третьей группы, которые имеют температуры в пределах от 40 до 130°С. Предпочтительным является их использование для нужд ГВС, поскольку эта нагрузка имеет круглогодичный характер.

При централизованном теплоснабжении тепловой пункт может бытьместным - индивидуальным (ИТП) для теплопотребляющих систем конкретного здания игрупповым - центральным (ЦТП) для систем группы зданий. ИТП размещается в специальном помещении здания, ЦТП чаще всего представляет собой отдельно стоящее одноэтажное строение. Проектирование тепловых пунктов ведётся в соответствии с нормативными правилами.
Роль теплогенератора при независимой схеме присоединения теплопотребляющих систем к наружной тепловой сети выполняет водяной теплообменник.
В настоящее время применяют так называемые скоростные теплообменники различных типов. Кожухотрубный водяной теплообменник состоит из стандартных секций длиной до 4 м. Каждая секция представляет собой стальную трубу диаметром до 300 мм, внутрь которой помещены несколько латунных трубок. В независимой схеме системы отопления или вентиляции греющая вода из наружного теплопровода пропускается по латунным трубкам, нагреваемая - противотоком в межтрубном пространстве, в системе горячего водоснабжения нагреваемая водопроводная вода пропускается по трубкам, а греющая вода из тепловой сети - в межтрубном пространстве. Более совершенный и значительно более компактный, пластинчатый теплообменник, набирается из определённого количества стальных профилированных пластин. Греющая и нагреваемая вода протекает между пластинами противотоком или перекрёстно. Длину и число секций кожухотрубного теплообменника или размеры и число пластин в пластинчатом теплообменнике определяют в результате специального теплового расчета.
Для нагревания воды в системах горячего водоснабжения, особенно в индивидуальном жилом доме, больше подходит не скоростной, а емкостной водонагреватель. Его объём определяется исходя из расчётного количества одновременно работающих точек водоразбора и предполагаемых индивидуальных особенностей водопотребления в доме.
Общим для всех схем, является применение насоса для искусственного побуждения движения воды в теплопотребляющих системах. В зависимых схемах насос помещают на тепловой станции, и он создаёт давление, необходимое для циркуляции воды, как в наружных теплопроводах, так и в местных теплопотребляющих системах.
Насос, действующий в замкнутых кольцах систем, заполненных водой, не поднимает, а только перемещает воду, создавая циркуляцию, и поэтому называется циркуляционным. В отличие от циркуляционного насоса насос в системе водоснабжения перемещает воду, поднимая её к точкам разбора. При таком использовании насос называют повысительным.
В процессах заполнения и возмещения потери (утечки) воды в системе отопления циркуляционный насос не участвует. Заполнение происходит под воздействием давления в наружных теплопроводах, в водопроводе или, если этого давления недостаточно, с помощью специального подпиточного насоса.
До последнего времени циркуляционный насос включался, как правило, в обратную магистраль системы отопления для увеличения срока службы деталей, взаимодействующих с горячей водой. Вообще же для создания циркуляции воды в замкнутых кольцах местоположение циркуляционного насоса безразлично. При необходимости несколько понизить гидравлическое давление в теплообменнике или котле насос может быть включён и в подающую магистраль системы отопления, если его конструкция рассчитана на перемещение более горячей воды. Все современные насосы обладают этим свойством и устанавливаются чаще всего после теплогенератора (теплообменника). Электрическая мощность циркуляционного насоса определяется количеством перемещаемой воды и развиваемым при этом давлением.
В инженерных системах, как правило, применяют специальные бесфундаментные циркуляционные насосы, перемещающие значительное количество воды и развивающие сравнительно небольшое давление. Это бесшумные насосы, соединённые в единый блок с электродвигателями и закрепляемые непосредственно на трубах. В систему включают два одинаковых насоса, действующих попеременно: при работе одного из них второй находится в резерве. Запорная арматура (задвижки или краны) до и после обоих насосов (действующего и бездействующего) постоянно открыты, особенно, если предусмотрено автоматическое их переключение. Обратный клапан в схеме препятствует циркуляции воды через бездействующий насос. Легко монтируемые бесфундаментные насосы иногда устанавливают в системах по одному. При этом резервный насос хранят на складе.
Понижение температуры воды в зависимой схеме со смешением до допустимой происходит при смешении высокотемпературной воды с обратной (охлаждённой до заданной температуры) водой местной системы. Снижение температуры теплоносителя осуществляется путем смешения обратной воды от инженерных систем при помощи смесительного аппарата - насоса или водоструйного элеватора. Насосная смесительная установка имеет преимущество перед элеваторной. Ее КПД выше, в случае аварийного повреждения наружных теплопроводов возможно, как и при независимой схеме присоединения, сохранение циркуляции воды в системах. Смесительный насос можно применять в системах со значительным гидравлическим сопротивлением, тогда как при использовании элеватора потери давления в теплопотребляющей системе должны быть сравнительно небольшими. Водоструйные элеваторы получили широкое распространение благодаря безотказному и бесшумному действию.
Внутреннее пространство всех элементов теплопотребляющих систем (труб, отопительных приборов, арматуры, оборудования и т. д.) заполнено водой. Объём воды в процессе эксплуатации систем претерпевает изменения: при повышении температуры воды он увеличивается, при понижении температуры - уменьшается. Соответственно изменяется внутреннее гидростатическое давление. Эти изменения не должны отражаться на работоспособности систем и, прежде всего, не должны приводить к превышению предела прочности любых их элементов. Поэтому в систему вводится дополнительный элемент - расширительный бак.
Расширительный бак может бытьоткрытым, сообщающимся с атмосферой, и закрытым, находящимся под переменным, но строго ограниченным избыточным давлением. Основное назначение расширительного бака - приём прироста объёма воды в системе, образующегося при её нагревании. При этом в системе поддерживается определённое гидравлическое давление. Кроме того, бак предназначен для восполнения убыли объёма воды в системе при небольшой утечке и при понижении её температуры, для сигнализации об уровне воды в системе и управления действием подпиточных устройств. Через открытый бак удаляется вода в водосток при переполнении системы. В отдельных случаях открытый бак может служить воздухоотводчиком из системы.
Открытый расширительный бак размещают над верхней точкой системы (на расстоянии не менее 1 м) в чердачном помещении или в лестничной клетке и покрывают тепловой изоляцией. Иногда (например, при отсутствии чердака) устанавливают неизолированный бак в специальном утепленном боксе (будке) на крыше здания.
Современная конструкция закрытого расширительного бака представляет собой стальной цилиндрический сосуд, разделённый на две части резиновой мембраной. Одна часть предназначена для воды системы, вторая заполнена в заводских условиях инертным газом (обычно азотом) под давлением. Бак может быть установлен непосредственно на пол котельной или теплового пункта, а также закреплён на стене (например, при стеснённых условиях в помещении).
В крупных теплопотребляющих системах группы зданий расширительные баки не устанавливаются, а гидравлическое давление регулируется при помощи постоянно действующих подпиточных насосов. Эти насосы также возмещают обычно имеющие место потери воды через неплотные соединения труб, в арматуре, приборах и других местах систем.
Помимо рассмотренного выше оборудования в котельной или тепловом пункте размещаются устройства автоматического регулирования, запорно-регулирующая арматура и контрольно-измерительные приборы, с помощью которых обеспечивается текущая эксплуатация системы теплоснабжения. Используемая при этом арматура, а также материал и способы прокладки теплопроводов рассмотрены в разделе "Отопление зданий".