Силовые нагрузки действующие на здания. Виды нагрузок и воздействий на здание. Секционные жилые дома

19.06.2020

В процессе строительства и эксплуатации здание испытывает на себе действие различных нагрузок. Внешние воздействия можно разделить на два вида: силовые и несиловые или воздействия среды.

К силовым воздействиям относятся различные виды нагрузок:

постоянные – от собственного веса (массы) элементов здания, давления грунта на его подземные элементы;

временные (длительные) – от веса стационарного оборудования, длительно хранящихся грузов, собственного веса постоянных элементов здания (например, перегородок);

кратковременные – от веса (массы) подвижного оборудования (например, кранов в промышленных зданиях), людей, мебели, снега, от действия ветра;

особые – от сейсмических воздействий, воздействий в результате аварий оборудования и т.п.

К несиловым относятся:

температурные воздействия , вызывающие изменения линейных размеров материалов и конструкций, которое приводит в свою очередь к возникновению силовых воздействий, а также влияющие на тепловой режим помещения;

воздействия атмосферной и грунтовой влаги , а также парообразной влаги, содержащейся в атмосфере и в воздухе помещений, вызывающие изменение свойств материалов из которых выполнены конструкции здания;

движения воздуха вызывающее не только нагрузки (при ветре), но и его проникновение внутрь конструкции и помещений, изменение их влажностного и теплового режима;

воздействие лучистой энергии солнца (солнечная радиация) вызывающие в результате местного нагрева изменение физико-технических свойств поверхностных слоев материала, конструкций, изменение светового и теплового режима помещений;

воздействие агрессивных химических примесей , содержащихся в воздухе, которые в присутствии влаги могут привести к разрушению материала конструкций здания (явлении коррозии);

биологические воздействия , вызываемые микроорганизмами или насекомыми, приводящие к разрушению конструкций из органических строительных материалов;

воздействие звуковой энергии (шума) и вибрации от источников внутри или вне здания.

По месту приложения усилий нагрузки разделяются на сосредоточенные (например, вес оборудования) и равно мерно распределенные (собственный вес, снег).

По характеру действия нагрузки могут быть статическими , т.е. постоянными по величине во времени и динамическими (ударными).

По направлению – горизонтальные (ветровой напор) и вертикальные (собственный вес).

Т.о. на здание действует самые различные нагрузки по величине, направлению, характеру действия и месту приложения.

Рис. 2.3. Нагрузки и воздействия на здание.

Может получится такое сочетание нагрузок, при котором все они будут действовать в одном направлении, усиливая друг друга. Именно на такие неблагоприятные сочетания нагрузок рассчитывают конструкции здания. Нормативные значения всех усилий, действующих на здание, приведены в ДБН или СНиПе.

Следует помнить, что воздействия на конструкции начинаются с момента их изготовления, продолжаются при транспортировке, в процессе возведения здания и его эксплуатации.

В процессе строительства и во время эксплуатации здание испытывает на себе действие различных нагрузок. Этим силам сопротивляется сам материал конструкции, в нем возникают внутренние напряжения. Поведение строительных материалов и конструкций под воздействием внешних сил и нагрузок изучает строительная механика.

Одни из этих сил действуют на здание непрерывно и называются постоянными нагрузками, другие - лишь в отдельные отрезки времени и называются временными нагрузками.

К постоянным нагрузкам относится собственный вес здания , который в основном состоит из веса конструктивных элементов, составляющих его несущий остов. Собственный вес действует постоянно во времени и по направлению сверху вниз. Естественно, что напряжения в материале несущих конструкций в нижней части здания будут всегда больше, чем в верхней. В конечном счете все воздействие собственного веса передается на фундамент, а через него - на грунт основания. Собственный вес всегда был не только постоянной, но и главной, основной нагрузкой на здание.

Лишь в последние годы строители и конструкторы столкнулись с совершенно новой проблемой: не как надежно опереть здание на грунт, а как его «привязать», заанкерить к земле, чтобы его не оторвали от земли другие воздействия, в основном ветровые усилия. Это произошло потому, что собственный вес конструкций в результате применения новых высокопрочных материалов и новых конструктивных схем все время уменьшался, а габариты зданий росли. Увеличивалась площадь, на которую действует ветер, иначе говоря, парусность здания. И, наконец, воздействие ветра стало более «весомым», чем воздействие веса здания, и здание стало стремиться к отрыву от земли.

является одной из основных временных нагрузок. С увеличением высоты воздействие ветра возрастает. Так, в средней части России нагрузка от ветра (скоростной напор ветра) на высоте до 10 м принимается равным 270 Па, а на высоте 100 м она уже равна 570 Па. В горных районах, на морских побережьях воздействие ветра намного возрастает. Например, в некоторых районах береговой полосы Арктики и Приморья нормативное значение ветрового напора на высоте до 10 м равно 1 кПа. С подветренной стороны здания возникает разряженное пространство, которое создает отрицательное давление - отсос, который увеличивает общее воздействие ветра. Ветер меняет как направление, так и скорость. Сильные порывы ветра создают, кроме того, и ударное, динамическое воздействие на здание, что еще более усложняет условия для работы конструкции.

С большими неожиданностями столкнулись градостроители, когда стали возводить в городах здания повышенной этажности. Оказалось, что улица, на которой никогда не дули сильные ветры, с возведением на ней многоэтажных зданий стала очень ветреной. С точки зрения пешехода, ветер со скоростью 5 м/с уже становится надоедливым: он развевает одежду, портит прическу. Если скорость немного выше - ветер уже поднимает пыль, кружит обрывки бумаг, становится неприятным. Высокое здание является основательной преградой для движения воздуха. Ударяясь об эту преграду, ветер разбивается на несколько потоков. Одни из них огибают здание, другие устремляются вниз, а затем у земли также направляются к углам здания, где и наблюдаются самые сильные потоки воздуха, в 2-3 раза превышающие по своей скорости ветер, который дул бы на этом месте, если бы не было здания. При очень высоких зданиях сила ветра у основания здания может достигать таких размеров, что валит пешеходов с ног.

Амплитуда колебаний высотных зданий достигает больших размеров, что отрицательно влияет на самочувствие людей. Скрип, а иногда и скрежет стального каркаса одного из самых высоких в мире здания Международного торгового центра в Нью-Йорке (высота его 400 м) вызывает тревожное состояние у находящихся в здании людей. Предусмотреть, рассчитать заранее действие ветра при высотном строительстве очень сложно. В настоящее время строители прибегают к экспериментам в аэродинамической трубе. Как и авиастроители! они обдувают в ней модели будущих зданий и в какой-то мере получают реальную картину воздушных токов и их силу.

также относится к временным нагрузкам. Особенно внимательно надо подходить к влиянию снеговой нагрузки на разновысотные здания. На границе между повышенной и пониженной частями здания возникает так называемый «снеговой мешок», где ветер собирает целые сугробы. При переменной температуре, когда происходит поочередное подтаивание и вновь замерзание снега и при этом еще сюда попадают взвешенные частицы из воздуха (пыль, копоть), снеговые, точнее, ледяные массивы становятся особенно тяжелыми и опасными. Снеговой покров из-за ветра ложится неравномерно как при плоских, так и при скатных кровлях, создавая асимметрическую нагрузку, которая вызывает дополнительные напряжения в конструкциях.

К временным относится (нагрузка от людей, которые будут находиться в здании, технологического оборудования, складируемых материалов и т. д.).

Возникают в здании напряжения и от воздействия солнечного тепла и мороза. Это воздействие называется температурно-климатическим . Нагреваясь солнечными лучами, строительные конструкции увеличивают свой объем и размеры. Охлаждаясь во время морозов, они уменьшаются в своем объеме. При таком «дыхании» здания в его конструкциях возникают напряжения. Если здание имеет большую протяженность, эти напряжения могут достичь высоких значений, превышающих допустимые, и здание начнет разрушаться.

Аналогичные напряжения в материале конструкции возникают и при неравномерной осадке здания , которая может произойти не только из-за разной несущей способности основания, но и из-за большой разницы в полезной нагрузке или собственного веса отдельных частей здания. Например, здание имеет многоэтажную и одноэтажную части. В многоэтажной части на перекрытиях расположено тяжелое оборудование. Давление на грунт от фундаментов многоэтажной части будет намного больше, чем от фундаментов одноэтажной, что может вызвать неравномерность осадки здания. Чтобы снять дополнительные напряжения от осадочных и температурных воздействий, здание «разрезают» на отдельные отсеки деформационными швами.

Если здание защищают от температурных деформаций, то шов называется температурным. Он отделяет конструкции одной части здания от другой, за исключением фундаментов, так как фундаменты, находясь в земле, не испытывают температурного воздействия. Таким образом, температурный шов локализует дополнительные напряжения в пределах одного отсека, препятствуя передаче их на соседние отсеки, тем самым препятствуя их сложению и увеличению.

Если здание защищают от осадочных деформаций, то шов называется осадочным. Он отделяет одну часть здания от другой полностью, включая и фундаменты, которые благодаря такому шву имеют возможность перемещаться один по отношению к другому в вертикальной плоскости. При отсутствии швов трещины могли бы возникнуть в неожиданных местах и нарушить прочность здания.

Кроме постоянных и временных существуют еще особые воздействия на здания. К ним относятся:

  • сейсмические нагрузки от землетрясения;
  • взрывные воздействия;
  • нагрузки, возникающие при авариях или поломках технологического оборудования;
  • воздействия от неравномерных деформаций основания при замачивании просадочных грунтов, при оттаивании вечномерзлых грунтов, в районах горных выработок и при карстовых явлениях.

По месту приложения усилий нагрузки разделяются на сосредоточенные (например, вес оборудования) и равномерно распределенные (собственный вес, снег и др.).

По характеру действия нагрузки могут быть статическими, т. е. постоянными по величине во времени, например тот же собственный вес конструкций, и динамическими (ударными), например порывы ветра или воздействие подвижных частей оборудования (молоты, моторы и др.).

Таким образом, на здание действуют самые различные нагрузки по величине, направлению, характеру действия и месту приложения (рис. 5). Может получиться такое сочетание нагрузок, при котором они все будут действовать в одном направлении, усиливая друг друга.

Рис. 5. Нагрузки и воздействия на здание: 1 - ветер; 2 - солнечная радиация; 3 - осадки (дождь, снег); 4 - атмосферные воздействия (температура, влажность, химические вещества); 5 - полезная нагрузка и собственный вес; 6 - особые воздействия; 7 - вибрация; 8 - влага; 9 - давление грунта; 10 - шум

Именно на такие неблагоприятные сочетания нагрузок рассчитывают конструкции здания. Нормативные значения всех усилий, действующих на здание, приведены в СНиПе. Следует помнить, что воздействия на конструкции начинаются с момента их изготовления, продолжаются при транспортировке, в процессе возведения здания и его эксплуатации.

Благовещенский Ф.А., Букина Е.Ф. Архитектурные конструкции. - М., 1985.

Факторы, воздействующие на здания и сооружения делят на:

Внешние воздействия (природные и искусственные: радиация, температура, воздушные потоки, осадки, газы, химические вещества, грозовые разряды, радиоволны, электромагнитные волны, шум, звуковые колебания, биологические вредители, давление грунта, морозное пучение, влага, сейсмические волны, блуждающие токи, вибрации);

Внутренние (технологические и функциональные: нагрузки постоянные и временные, длительные и кратковременные от собственного веса, оборудования и людей; технологические процессы: удары, вибрации, истирания, пролив жидкости; колебания температуры; влажность среды; биологические вредители).

Все эти факторы приводят к ускоренному механическому, физико-химичекому разрушению, в том числе и к коррозии, что приводит к снижению несущей способности отдельных конструкций и всего здания в целом.

Ниже приведена схема влияния внешних и внутренних факторов на здания и сооружения.

При эксплуатации сооружений различают: силовые воздействия нагрузок, агрессивное воздействие окружающей среды.

Агрессивная среда – среда, под влиянием которой изменяется структура свойства материалов, что приводит к снижению прочности.

Изменение структуры и разрушение называется коррозией. Вещество, способствующее разрушению и коррозии – стимулятор. Вещество, затрудняющее разрушение и коррозию – пассиваторы и ингибиторы коррозии.

Разрушение строительных материалов носит различный характер и зависит от взаимодействия химической, электрохимической, физической, физико-химической среды.

Агрессивные среды делятся на газовые, жидкие, твердые.

Газовые среды: это такие соединения как сероуглерод, углекислый, сернистый газ. Агрессивность данной среды характеризуется концентрацией газов, растворимостью в воде, влажностью и температурой.

Жидкие среды: это растворы кислот, щелочей, солей, масло, нефть, растворители. Коррозионные процессы в жидких средах протекают более интенсивно, чем в других.

Твердые среды: это пыль, грунты. Агрессивность данной среды оценивается дисперсностью, растворимостью в воде, гигроскопичностью, влажностью окружающей среды.

Характеристика агрессивной среды:

Сильно агрессивные – кислоты, щелочи, газы – агрессивные газы и жидкости в производственных помещениях;

Средне агрессивные – атмосферный воздух и вода с примесями – воздух с повышенной влажностью (более 75%);

Слабо агрессивные – чистый атмосферный воздух – незагрязненная вредными примесями вода;

Неагрессивные – чистый, сухой (влажностью до 50%) и теплый воздух – атмосферный воздух в сухих и теплых климатических районах.

Воздействие воздушной среды: в атмосфере содержится пыль, грязь, разрушающие здания и сооружения. Загрязнение воздуха в сочетании с влагой приводит к преждевременному износу, растрескиванию и разрушению строительной конструкции.

Вместе с тем в чистой и сухой атмосфере бетон и другие материалы могут сохраняться сотни лет. Наибольшими интенсивными загрязнителями воздуха являются продукты сгорания различных топлив, поэтому в городах, промышленных центрах металлические конструкции коррозируют в 2-4 раза быстрее, чем в сельской местности, где меньше сжигается угля и топлива.

К основным продуктам сгорания большинства видов топлива относятся CO 2 , SO 2 .

При растворении СО 2 в воде образуется углекислота. Это конечный продукт сгорания. Она разрушающе воздействует на бетон и другие строительные материалы. При растворении SO 2 в воде образуется серная кислота.

В дымах накапливается более 100 видов вредных соединений (HNO 3 , H 3 PO 4 , смолистые вещества, несгорающие частицы топлива). В приморских районах в атмосфере находится хлориды, соли серной кислоты, что при влажном воздухе увеличивает агрессивность воздействия на металлические конструкции.

Воздействие грунтовых вод: грунтовые воды представляют собой раствор с изменяющейся концентрацией и химическим составом, что отражается на степени агрессивности его воздействия. Вода в грунте постоянно воздействует с минералами и органическими веществами. Устойчивое обводнение подземных частей здания при перемещении грунтовых вод усиливает коррозию конструкции и выщелачивание извести в бетоне, снижает прочность основания.

Выделяют общекислотную, выщелачивающую, сульфатную, магнезиальную, углекислотную агрессивность грунтовых вод.

Наиболее существенное воздействие оказывают следующие факторы:

· Воздействие влаги: как показал опыт эксплуатации зданий, наибольшее влияние на износ конструкций оказывает влага. Поскольку фундаменты и стены старых реконструированных зданий выполнены в основном из разнородных каменных материалов (известняк, красный кирпич, известковые и цементные растворы) с пористо-капиллярной структурой, при контакте с водой они интенсивно увлажняются, зачастую изменяют свои свойства и в экстремальных случаях разрушаются.

Основным источником увлажнения стен и фундаментов является капиллярный подсос, который приводит к повреждениям конструкций в процессе эксплуатации: разрушению материалов в результате промерзания; образованию трещин из-за набухания и усадки; потере теплоизоляционных свойств; разрушению конструкций под воздействием агрессивных химических веществ, растворенных в воде; развитию микроорганизмов, вызывающих биологическую коррозию материалов.

Процесс санации зданий и сооружений не может быть ограничен обработкой их биоцидным препаратом. Должна быть реализована комплексная программа мероприятий, состоящая из нескольких стадий, а именно:

Диагностика (анализ тепловлажностного режима, ренгеноскопический и биологический анализ продуктов коррозии);

Сушка (при необходимости) помещений, если речь идет о подземных сооружениях, например, подвалах;

Устройство отсечной горизонтальной гидроизоляции (при наличии подсоса почвенной влаги);

Очистка, при необходимости, внутренних поверхностей от высолов и продуктов биологической коррозии;

Лечащая обработка противосолевыми и биоцидными препаратами;

Заделка трещин и протечек специальными гидропломбирующими составами и последующая обработка поверхностей защитными гидроизолирующими препаратами;

Производство отделочных работ.

· Воздействие атмосферных осадков: атмосферные осадки, проникая в грунт, превращаются либо в парообразную, либо в гигроскопическую влагу, удерживающуюся в виде молекул на частицах грунта молекулярными илами, либо в пленочную, поверх молекулярной, либо в гравитационную, свободно перемещающуюся в грунте под действием сил тяжести. Гравитационная влага может доходить до грунтовой воды и, сливаясь с ней, повышать ее уровень. Грунтовая вода, в свою очередь, вследствие капиллярного поднятия перемещается вверх на значительную высоту и обводняет верхние слои грунта. В некоторых условиях капиллярная и грунтовая воды могут сливаться и устойчиво обводнять подземные части сооружений, в результате чего усиливается коррозия конструкций, снижается прочность оснований.

· Воздействие отрицательной температуры: некоторые конструкции, например, цокольные части, находятся в зоне переменного увлажнения и периодического замораживания. Отрицательная температура (если она ниже расчетной или не приняты специальные меры для защиты конструкций от увлажнения), приводящая к замерзанию влаги в конструкциях и грунтах оснований, разрушающе действует на здания. При замерзании воды в порах материала объем ее увеличивается, что создает внутренние напряжения, которые все возрастают вследствие сжатия массы самого материала под влиянием охлаждения. Давление льда в замкнутых порах весьма велико – до 20 Па. Разрушение конструкций в результате замораживания происходит только при полном (критическом) влагосодержании, насыщении материала. Вода начинает замерзать у поверхности конструкций, а поэтому разрушение их под воздействием отрицательной температуры начинается с поверхности, особенно с углов и ребер. Максимальный объем льда получается при температуре – 22С о, когда вся вода превращается в лед. Интенсивность замерзания зависит от объема пор. Камни и бетоны с пористостью до 15% выдерживают 100-300 циклов замораживания. Уменьшение пористости, а следовательно, и количество влаги повышает морозостойкость конструкций. Из сказанного следует, что при замерзании разрушаются те конструкции, которые увлажняются. Защитить конструкции от разрушения при отрицательных температурах – это прежде всего защитить их от увлажнения. Промерзание грунтов в основаниях опасно для зданий, построенных на глинистых и пылеватых грунтах, мелко- и средне-зернистых песках, в которых вода по капиллярам и порам поднимается над уровнем грунтовых вод и находится в связанном виде. Повреждения зданий из-за промерзания и выпучивания оснований могут произойти после многих лет и эксплуатации, если будут допущены срезка грунта вокруг них, увлажнение оснований и действие факторов, способствующих их промерзанию.

· Возведение технологических процессов: каждое здание и сооружение проектируется и строится с учетом взаимодействия предусматриваемых в нем процессов; однако из-за неодинаковой стойкости и долговечности материалов конструкций и различного влияния на них среды износ их неравномерен. В первую очередь разрушаются защитные покрытия стен и полы, окна, двери, кровля, затем стены, каркас и фундаменты. Сжатые элементы больших сечений, работающие при статических нагрузках, изнашиваются медленнее, чем изгибаемые и растянутые, тонкостенные, которые работают при динамической нагрузке, в условиях высокой влажности и высокой температуры. Износ конструкций под действием истирания – абразивный износ полов, стен, углов колонн, ступеней лестниц и других конструкций бывает весьма интенсивным и поэтому сильно влияющим на их долговечность. Он происходит под действием, как природных сил (ветров, песчаных бурь), так и вследствие технологических и функциональных процессов, например из-за интенсивного перемещения больших людских потоков в зданиях общественного назначения.

Описание объекта

Таблица 1.1

Общая характеристика Насосная станция
Год постройки
Общая площадь, м 2 -площадь застройки, м 2 -площадь помещений, м 2
Высота здания, м 3,9
Строительный объем, м 3 588,6
Этажность
Строительные характеристики
Фундаменты Монолитный железобетон
Стены Кирпичные
Перекрытия Железобетонные
Кровля Кровля из рулонных материалов
Полы Цементные
Дверные проемы Деревянные
Внутренняя отделка Штукатурка
Привлекательность (внешний вид) Удовлетворительный внешний вид
Фактический возраст здания
Нормативный срок службы здания
Остаточный срок эксплуатации
Системы инженерного обеспечения
Теплоснабжение Центральное
Горячее водоснабжение Центральное
Канализация Центральная
Питьевое водоснабжение Центральное
Электроснабжение Центральное
Телефон -
Радио -
Сигнализация: -охранная -пожарная наличие наличие
Внешнее благоустройство
Озеленение Зеленые насаждения: газон, кустарники
Подъездные пути Асфальтированная дорога, удовлетворительное состояние

В ходе проектирования нужно учесть всё, чему здание должно сопротивляться, дабы не терять своих эксплуатационных и прочностных качеств. Нагрузками принято считать внешние механические силы, действующие на здание, а воздействиями - внутренние явления. Для уяснения вопроса проклассифицируем все нагрузки и воздействия по следующим признакам.

По продолжительности действия:

  • постоянные - собственная масса конструкции, масса и давление грунта в насыпях или засыпках;
  • длительные - масса оборудования, перегородок, мебели, людей, снеговая нагрузка, сюда же относятся воздействия, обусловленные усадкой и ползучестью строительных материалов;
  • кратковременные - температурные, ветровые и гололёдные климатические воздействия, а также связанные с изменением влажности, солнечной радиацией;
  • особые - нормируемые нагрузки и воздействия (например, сейсмические, при воздействии пожара и пр.).

Среди проектировщиков существует также термин полезная нагрузка, значение которого в нормативных документах не закреплено, но термин бытует в практике строительства. Под полезной нагрузкой подразумевается сумма некоторых временных нагрузок, которые всегда присутствуют в здании: люди, мебель, оборудование. Например, для жилого дома она составляет 150...200 кг/м 2 (1,5...2 мПа), а для офисного - 300...600 кг/м 2 (3...6 мПа).

По характеру работы:

  • статические - собственная масса конструкции, снеговой покров, оборудование;
  • динамические - вибрация, порыв ветра.

По месту приложения усилий:

  • сосредоточенные - оборудование, мебель;
  • равномерно распределённые - масса конструкции, снеговой покров.

По природе воздействия:

  • нагрузки силового характера (механические) - это нагрузки, которые вызывают реактивные силы; к этим нагрузкам относятся все выше приведённые примеры;
  • воздействия несилового характера:
    • перемены температур наружного воздуха, что вызывает линейные температурные деформации конструкций здания;
    • потоки парообразной влаги из помещений - влияют на материал наружных ограждений;
    • атмосферная и грунтовая влага, химически агрессивное воздействие окружающей среды;
    • солнечная радиация;
    • электромагнитное излучение, шум и т.п., влияющие на здоровье человека.

Все нагрузки силового характера закладываются в инженерные расчёты. Влияние воздействий несилового характера также обязательно учитывается при проектировании. Посмотрим, например, как температурное воздействие влияет на конструкцию. Дело в том, что под влиянием температуры конструкция стремится сжаться или расшириться, т.е. измениться в размерах. Этому препятствуют другие конструкции, с которыми данная конструкция связана. Следовательно, в тех местах, где конструкции взаимодействуют, возникают реактивные силы, которые нужно воспринять. Также в протяжённых зданиях необходимо предусмотреть зазоры.

Расчётам подвергаются и другие воздействия: расчёт на паропроницание, теплотехнический расчёт и т.д.