Пустотные перекрытия. Технические характеристики пустотных плит перекрытия. Производство железобетонных пустотных перекрытий

27.05.2019

Технические характеристики пустотных плит перекрытия


Возведение многоэтажных зданий связано не только с разработкой проекта и определением места строительства. Важный момент – правильно выбрать железобетонные конструкции, к которым относятся пустотелые плиты перекрытия. Они используются в качестве связующих элементов при формировании межэтажной основы в постройках сборного типа и сборно-монолитных зданиях.

Повышенная несущая способность железобетонных элементов обеспечивает устойчивость возводимых строений. Перекрытия пустотные усиливаются предварительно напряженными стальными прутьями, эффективно поглощают шумы, обеспечивают надежную теплоизоляцию, обладают повышенной стойкостью к воздействию влаги и температуры.

Применяя плиты пустотные в строительной отрасли важно знать их эксплуатационные характеристики, конструктивные отличия, особенности изготовления, а также уметь расшифровать маркировку пустотной панели и выбрать плиту перекрытия в соответствии с действующей нагрузкой. Остановимся подробно на этих особенностях.

Плиты перекрытия пустотные давно стали самым распространенным способом монтажа этой системы

Пустотелые плиты перекрытия – изготовление и конструкция

Панели перекрытия изготавливаются предприятиями по производству железобетона по различной технологии:

  • безопалубочным путем на специальном оборудовании с применением вибрационной трамбовки. На автоматизированной линии формируются панели пустотные, размеры которых определяются индивидуально путем резки непрерывно перемещающегося бетонного массива. В зависимости от требований клиента определяется длина, на которую разрезается пустотка. Габарит продукции, маркируемой ПБ, не превышает 12 м;
  • путем заливки бетонной смесью стационарно расположенной металлической опалубки длиной до 9 метров. В форме закреплены предварительно напряженные арматурные прутья и стальная сетка. Залитая бетонным раствором конструкция, находящаяся в каркасе, подвергается виброуплотнению и тепловой обработке в пропарочных камерах. Извлечение плиты и дальнейшее перемещение производится с помощью строповочных проушин. Стройматериал обозначается индексом ПК.

Элементы перекрытия пустотные конструктивно представляют собой железобетонный параллелепипед с полостями круглого сечения, выполненными параллельно продольной оси.

Наличие цилиндрических полостей повышает эксплуатационные характеристики:

  • положительно влияет на прочностные характеристики;
  • улучшает теплоизоляционные характеристики;
  • облегчает процесс прокладки инженерных коммуникаций;
  • снижает степень воздействия внешних шумов.

Плиты перекрытия пустотные выпускаются в широкой номенклатуре, но их параметры достаточно жестко нормируются стандартами и строительными нормами

Пустотная панель производится из бетонного раствора тяжелых марок (М300–М400), усиливается стальной сеткой и специальной арматурой класса А3-А4, отличающейся повышенной устойчивостью к коррозионным процессам.

Пустотные плиты перекрытия – характеристика

Основными качествами облегченных пустотелых элементов являются:

  • повышенные прочностные характеристики;
  • уменьшенный по сравнению с полнотелыми конструкциями вес;
  • приемлемая цена;
  • высокая степень надежности;
  • теплоизоляционные свойства;
  • надежная звукоизоляция;
  • стойкость к воздействию огня.

Высокие эксплуатационные характеристики продукции с цилиндрическими полостями способствуют росту их популярности при возведении многоэтажных зданий.

Маркировка пустотных плит перекрытия – расшифровка аббревиатуры

Вся продукция, выпускаемая предприятиями железобетонных изделий, маркируется согласно требованиям стандарта. Это позволяет заказчикам и проектировщикам по маркировке определить необходимые параметры.

Маркировка стандартизована, например, ПБ 12-10-8

Например, продукция с маркировкой ПК 23.15-8 расшифровывается следующим образом:

  • ПК – обозначает плиту перекрытия с круглыми каналами, произведенную методом заливки в опалубку;
  • 23 – округленный размер изделия длиной 2280 мм, выраженный в дециметрах;
  • 15 – соответствует ширине, равной 1490 мм с округлением до дециметров;
  • 8 – допускаемая нагрузка на поверхность, соответствующая для данного стройматериала 800 кгс/м2, не учитывающая собственную массу.

Аналогичным образом можно расшифровать пустотную панель с обозначением ПБ 72.15-12,5:

  • ПБ – соответствует панели с цилиндрическими полостями, изготовленной безопалубочным методом;
  • 72 – округленный до дециметров размер изделия длиной 7180 мм;
  • 15 – соответствует ширине 1490 мм, округленной до дециметров;
  • 12,5 – нагрузка на поверхность, соответствующая для данного изделия 1250 кгс/м2, не учитывающая собственную массу.

Размеры бетонных плит перекрытия

Предназначенные для формирования межэтажного перекрытия плиты изготавливаются согласно действующему стандарту.

На схеме видно, что основными геометрическими параметрами являются длина L, ширина B и высота H

Результаты Голосовать

Где вы предпочли бы жить: в частном доме, или квартире?

Назад

Где вы предпочли бы жить: в частном доме, или квартире?

Назад

Нормативным документом регламентируются следующие параметры:

  • длина изделия, составляющая 1,68–12 м;
  • ширина панели 0,98–1,48 м;
  • толщина плиты, равная 22 см;
  • диаметр цилиндрических полостей, находящихся в интервале 11,4–15,9 см;
  • марка бетона, из которого изготовлена строительная продукция М200–М400;
  • расход бетона, а также стальной арматуры для изготовления продукции;
  • масса конструкции 0,75–5 т;
  • величина расчетного усилия, выраженного в кгс/м2 800–

В зависимости от требований заказчика и области применения длина, ширина, толщина, а также диаметр каналов могут изменяться. Соответствие изделий требованиям государственного стандарта, соблюдение технологии изготовления являются гарантией надежности продукции, применяемой для формирования межэтажных оснований.

Какую нагрузку выдерживает плита перекрытия

Несущая способность пустотных плит перекрытия определяется стандартом, обеспечивается конструкцией изделия, применяемыми при изготовлении материалами, соблюдением технологических требований.

Чтобы определить, какую конструкцию перекрытия монтировать в доме, необходимо провести предварительный расчет, который, прежде всего, опирается на величину нагрузок

Элементы межэтажной основы с цилиндрическими каналами воспринимают следующие виды усилий:

  • постоянно действующие с верхней и нижней части статические нагрузки. Они создаются напольным покрытием, массой стяжки, элементами утепления, весом подвесного потолка, межкомнатных перегородок, колонн, мебели, осветительных приборов;
  • динамические усилия переменного характера, которые создаются перемещающимися по поверхности межэтажного основания людьми, домашними животными и подвижными элементами интерьера (мебелью и предметами на роликоопорах).

По площади приложения действующие усилия делятся следующим образом:

  • локальные или точечные, создаваемые подвешенным к потолку оборудованием или установленными колоннами;
  • распределенные, которая создается подвешенным навесным оборудованием, например, подвесным потолком или установленной на пол мебелью и предметами интерьера.

Довольно часто воздействие распределенных и точечных усилий осуществляется комплексно.

Плиты, усиление которых было нарушено, не смогут выдерживать большую нагрузку

Расчет максимальной нагрузки, которую способна выдержать бетонная панель, выполняют следующим образом:

  1. Разрабатывают детальную схему строения, учитывающую количество опорных элементов и особенности их размещения.
  2. Рассчитывают общую массу конструкций и элементов, воздействующих на несущую поверхность.
  3. Определяют действующие нагрузки путем деления суммарных усилий на количество межэтажных панелей.

При выполнении расчетов в обязательном порядке учитывают массу:

  • межкомнатных перегородок;
  • цементной стяжки;
  • материалов для утепления;
  • напольного покрытия;
  • мебели и оборудования.

На примере опорной конструкции с маркировкой ПК 23.15-8 (габаритом 1490х2280 мм, массой 1180 кг), допускаемая нагрузка на которую составляет 800 кгс/м2, рассмотрим алгоритм расчета:

  1. Определяем площадь основы путем перемножения габаритов 1,49 м х 2,28 м = 3,4 м2.
  2. Вычисляем действующую на квадратный метр основания нагрузку 1180:3,4=347 кг.
  3. Отнимаем от допускаемого стандартом усилия собственную массу 800-347=453 кг.
  4. Суммируем действующий на квадратный метр площади общий вес цементной стяжки, напольного покрытия, мебели, перегородок и людей (допустим, 250 кг).
  5. Сравниваем результат с ранее полученным значением 453-250=103 кг.
  6. Разница в 103 кг свидетельствует о достаточном запасе прочности на квадратный метр площади основания.

Основным правилом надежного устройства плит перекрытия, которое должен содержать чертеж, считается точное соблюдение параметров опоры на стены

Большинство выпускаемых панелей рассчитаны на восприятие стандартной нагрузки, равной 800 кг/м2. Указанное значение является оптимальным для большинства жилых помещений. Однако, при необходимости, можно использовать изделия, способные воспринимать на квадратный метр поверхности нагрузку, равную 1–1,6 тонны.

Плиты пустотные – преимущества продукции

Главными достоинствами популярного строительного материала является:

  • отсутствие необходимости в монтаже промежуточных опорных балок при возведении строительных конструкций;
  • ускоренные темпы выполнения строительных мероприятий;
  • повышенная прочность произведенных промышленным образом изделий;
  • расширенная номенклатура выпускаемой продукции, позволяющая выбрать стройматериал требуемого размера;
  • отсутствие усадки, обеспечивающее соответствие размеров;
  • повышенная плоскостность, облегчающая процесс дальнейшей отделки;
  • устойчивость к воздействию вибрации, повышенной влажности, коррозии;
  • стойкость к повреждению грызунами и различными насекомыми;
  • возможность применения в различных климатических районах;
  • сохранение целостности при сейсмическом воздействии до 9 баллов.

К недостаткам относится только повышенная масса изделий, которые нуждаются в специальном грузоподъемном оборудовании для перемещения.

Итоги

Высокие эксплуатационные характеристики, которые имеют пустотелые элементы, в полном объеме оценили специалисты проектных организаций и профессиональные строители. Это позволяет широко применять их в строительстве. Материал статьи поможет более детально ознакомиться с необходимой в многоэтажном строительстве продукцией.

Введение .

Производство сборного железобетона требует всемерной интенсификации технологических процессов, в частности сокращения длительности и энергоемк о сти тепловой обработки.

Сроки твердения бетона в конструкциях и изделиях, как известно, при пр и менении тепловой обработки существенно сокращаются по сравнению с тверден и ем в обычных температурных условиях, однако намного превышают длительность остальных операций по изготовлению железобетонных изделий. В общем цикле производства тепловая обработка составляет по времени 80 … 85 %, а ее сто и мость составляет значительную часть от общей стоимости изделий и констру к ций. Тепловая обработка определяет к тому же и качество структуры цементного камня в бетоне.

Свыше 90 % сборного железобетона подвергаются пропариванию. На те р мообработку 1 м 3 сборных железобетонных изделий затрачивается от 120 кг пара.

Продолжительность и энергоемкость тепловой обработки сборного жел е зобетона определяются не только принятым способом и режимом интенсификации процесса твердения бетона, но и рядом других факторов – минералогическим с о ставом, активностью и расходом цемента, составом бетона, видом и количеством вводимых в бетонную смесь химических веществ.

В настоящем курсовом проекте рассмотрен процесс производства желез о бетонных плит перекрытия, тепловая обработка которых производится в полиг о нальной камере

Назначение режимов тепловой обработки произведено на основании норм а тивной литературы с учетом вида и класса бетона, активности цемента, толщ и ны изделия, способа подъема теплоты и др. факторов. Для проверки режима прои з веден расчет температур изделия на протяжении всего процесса тепловой обр а ботки.

Теплотехнический расчет установки основан на физических процессах и представляет собой расчет теплового баланса. Баланс состоит из расходной и приходной частей, и наиболее полно отражает происходящие в установке явления теплоо б мена.

На основании всех расчетов спроектированы тепловые сети и технолог и ческие линии по производству изделий с учетом заданных условий производства и проектной мощности. Описаны мероприятия по технике безопасности, охране тр у да, прот и вопожарной технике.


  1. Краткое описание технологического проце с са.

Для изготовления железобетонных плит перекрытия применяются форма к о торая подается на вибрационный стол.

Технология изготовления железобетонных плит включает в себя следующие стадии:

  • смазка форм
  • укладка арматурного каркаса и сборка формы
  • подача бетонной смеси из бетоноукладчика в фо р му
  • уплотнение бетонной смеси.
  • транспортирование формы с помощью конвейера и подъемник – спускателя в полигональную камеру
  • тепловая обработка изделия по заданному режиму
  • подача изделия на пост ра с палубки
  • извлечение плиты из формы
  • освидетельствование и приемка ОТК
  • передача изделия на склад

Свежеотформованную плиту подвергают тепловой обработке путем подачи пара в пропарочную камеру. В целях предотвращения размыва бетона струей пара, поступающего под давлением, на подводящие трубы насаживают перфорированные насадки. При таком способе тепловой обработки не происходит разуплотнения б е тона.


  1. Характеристика изделия и формы.

В данном курсовом проекте в качестве строительного изделия принята плита перекрытия 1200-60-200. Такие плиты изготовляются в соответствии с ГОСТ 26434-85 «Плиты перекрытия железобетонные», и согласно стандарта имеют об о значение 2П60,12.

Плиты должны обладать следующими характеристик а ми:

  • должны быть прочными и трещинастойкими и при испытании их нагруж е нием выдерживать ко н трольные нагрузки
  • материалы применяемые для приготовления бетона, должны удовлетв о рять требованиям действующих стандартов и технических условий на эти материалы.
  • должны удовлетворять требованиям ГОСТ 13015.0:
  • величина отпускной прочности бетона панелей в процентах от марки б е тона по прочности на сжатие должна быть равной 70%
  • Плиты следует и з готовлять из тяжелого бетона по ГОСТ 26434 класс по прочности на сж а тие не ниже В15

Для подачи изделия в камеру применяется форма вагонетка СМЖ – 151

Предельная дальность хода 120м.

Скорость передвижения 32 м/мин

Ширина колеи 820 мм

Габариты 7,49 – 2,5 – 1,4 м

Масса 2,5т

Типоразмер плиты

Координационные размеры плиты, мм

Масса плиты (справочная), т

Длина

Ширина

2П60.12

6000

1200

2П60.24

2400

2П60.30

3000

2П60.36

3600


  1. Состав бетонной смеси.

Согласно ГОСТ 26434-85 «Перекрытия железобетонные» плиты следует и з готовлять из тяжелого бетона по прочности на сжатие В15.

Для обеспечения данного требования применяется бетонная смесь БСГТ П1 В22,5 приготовленная из следующих комп о нентов (на 1 м 3 смеси):

  • цемент марки М500 - 353кг
  • песок  п =2630 кг/м3

фракции: 2,5 - 5 10%

1,25 - 2,5 25%

0,63 - 1,25 25%

0,315 - 0,63 20%

0,14 - 0,315 15%

Менее 0,14 5%

710 кг

  • щебень гранитный r щ =2670 кг/м 3

фракции: 10 - 20 70%

20 - 30 30%

1157 кг

  • вода - 180 кг

Плотность бетонной смеси r бс =2400 кг/м 3

Для производства одной плиты требуется на 1 м 3 бетона и 25 кг стали для каркаса.


  1. Выбор и обоснование режима тепловой обр а ботки.

Для производства изделия назначим следующий те п ловой режим:

  1. Предварительная выдержка 2 ч а са;
  2. Подъем температуры 3 часа;
  3. Изотермическая выдержка 5 часов;
  4. Время охлаждения 2 часа.

Ит о го: 1 2 часов

Для расчета температур воспользуемся критериальными зависимостями т е плопроводности при нестационарных условиях теплопередачи. Бетон рассматр и ваем как инертное тело без учета теплоты, выделяющейся при гидратации ц е мента.

Качественную характеристику скорости изменения температуры тела при неустановившемся режиме учитывают критериальным ко м плексом Фурье:

где

- продолжительность нагрева (охлаждения), ч;

R - определяющий размер изделия, м;

a - коэффициент температуропроводности, м 2 /ч;

где

- коэффициент теплопроводности материала, Вт/(м º С), для твердеющего бет о на  =2,5 Вт/(м º С);

ρ - плотность бетона, кг/м 3 ,

с- теплоемкость материала, кДж/(кг º С),

КДж/(кг º С),

где

с ц,п,щ,в,м - массовые теплоемкости цемента, песка, щебня, воды, металла арматуры соответственно, кДж/(кг º С),

G ц,п,щ,в,м – масса цемента, песка, щебня, воды, металла арматуры соответственно, кг.

цемент

песок

щебень

вода

сталь

с, кДж/(кг º С)

0,84

0,84

0,89

4,19

0,48

G кг.

1157

КДж/(кг º С),

По формуле:

М 2 /ч

По формуле с учетом R =0,1 м. и τ =1,0 ч. имеем:

Зависимость скорости распространения теплоты в изделии от интенсивн о сти внешнего теплообмена учитываем критериальным ко м плексом Био:

где

α- коэффициент теплоотдачи от среды к поверхности обрабатываемого изделия Вт/(м 2 º С);

для α 1 =70, α 2 =80, α 3 =85, α 4 =90 имеем следующие знач е ния Bi :

; ; ; .

При расчете температуры материала в точке х используется критериальная зависимость типа:

где

 - безразмерная температура;

t с - средняя температура среды за соответствующий расчетный п е риод, º С

t н - температура изделия в начале расчетного периода, º С.

Температура на поверхности равна

Температура в центре изделия

Значения безразмерных температур  п и  ц определим по таблицам исходя из рассчитанных выше величин Fo и Bi :

 ц1 =0.75;  ц2 =0,73;  ц3 =0,72;  ц4 =0,71;  п1 =0,31;  п2 =0,29;  п3 =0,27;  п4 =0,25.

Средняя температура изделия за расчетный период определим по фо р муле

, º С

По формулам рассчитаем температуры в центре, на поверхности, а так же средние температуры бетона на 1, 2 и 3 часу режима подъема температ у ры и на протяжении 5-ти часов изотермической выдержки и занесем их в табл и цу.

Подъем температ у ры

Изотермическая выдержка

Q ц

0,75

0,73

0,72

0,71

0,71

0,71

0,71

0,71

Q п

0,31

0,29

0,27

0, 25

0, 25

0, 25

0, 25

0, 25

t п

22,48

40,24

61,36

75,34

78,83

79,71

79,93

79,98

t ц

17,71

25,75

37,91

44,91

55,08

62,31

67,44

71,08

t б ср

19,3

30,58

45,73

55,05

62,99

68,11

71,60

74,05

Для наглядности процесса разогрева бетона и паровоздушной среды построим график изменения температур во вр е мени

При таком тепловом расчете температур температуру изделий получают без учета теплоты гидратации. В реальных условиях температура бетона к концу изотермической выдержки может быть уменьшена на 5…10 º С по отношению к з а данной по режиму.


  1. Определение требуемого количества тепловых агрегатов, их размеров и схемы размещ е ния.

Часовая производительность установки изд/ч

где

N 0 - годовая производительность линии, м 3 ;

V изд - средний объем изделия,6*12*0,2=1,44 м 3

М- число рабочих дней в году;

К- число смен;

Z - продолжительность рабочей смены, ч.

Длина L к= L 1 + L 2 + L 3

где L 1 , L 2 , L 3 – длины зон подъема температуры, изотермической выдержки и охла ж дения соответственно, м

L к =63,83+106,38+42,55=212,76м

Так длина камеры не должна превышать 127м то принимаем две камеры с

L к =212,76/2=106,38м

Где l ф -длина формы - вагонетки, м

L 1 - зазор между формами - вагонетками по длине, м

Высота камеры

n я - количество ярусов в камере

h ф - высота формы вагонетки, м

а- свободный промежуток между формами – вагонетками по высоте, м

h 1 - расстояние от низа формы – вагонетки до пола камеры, определяется высотой рельсового пути от пола камеры и высотой рельса, м

h 2 - расстояние от верхней поверхности изделия до перекрытия, м

Ширина камеры при устройстве прохода по середине

В= b ф +2 b 1 =1.4+0.6=2м

b 1 - допустимый зазор между стенками камеры и формой – вагонеткой, м

При устройстве прохода с боку ширина В увеличивается на 0,6м.

В= 2 + 0,6 = 2,6м

Теплота экзотермии:

Количество теплоты гидратации, выделяемое 1 кг цемента:

М- марка цемента

количество градусо – часов от начала процесса, град/час

В/ц – водоцементное отношение

а – коэффициент.

Определяем количество градусо – часов за период подъема температуры:

Определяем удельную теплоту гидратации за период подъема:

Общее количество теплоты гидратации, выделяемое цементом находящегося в камере:

Определяем повышение средней температуры изделий за счет теплоты гидрат а ции цемента:

Вывод: за счет экзотермии цемента мы обеспечиваем догрев бетона до заданной температуры и данный режим тепловой обработки.


  1. Составление и расчет ура в нения теплового баланса установки.

Тепловой баланс установок непрерывного действия составляется в отдельн о сти для каждой зоны (подъема температуры и изотермической выдержки), при этом расчет производится на усредненную часовую производительность установки.:

КДж

где

Q = g r * i п – часовой расход теплоты, требуемый на тепловую обработку изделия, кДж/ч

β - коэффициент, учитывающий неподвижные потери те п лоты;

N r – Часовая производительность установки,

Q б - количество теплоты, расходуемое на нагрев бетона, кДж;

Q ф - количество теплоты, расходуемое на нагрев металла формы, кДж ;

Q пот - количество теплоты, потерянное установкой в окружающую среду, кДж;

Q к - потери с конденсатом, кДж.

Теплота на нагрев бетона . Количество теплоты, расходуемое на нагрев массы изделия, определим по формуле:

КДж

где с б - средневзвешенная теплоемкость бетонной массы изделия, кДж/(кг º С);

G б - масса изделия, кг;

t н , t к - средние температуры бетона в начале и конце соответствующего периода, º С.

Рассчитаем данную величину по периодам тепловой о б работки:

подъем температуры:

КДж

изотермическая выдержка:

КДж

Теплота на нагрев формы. Количество теплоты, расходуемое на нагрев мета л ла формы определим по выражению:

КДж

где c м - теплоемкость материала формы, кДж/(кг º С);

G ф - масса формы, кг;

t к - конечная температура поверхности бетона изделия в соответствующем пери о де, º С;

t н - начальная температура металла формы, равная в период подъема температуры – температуре воздуха в цеху или на улице, а в период изотермической выдержки – температуре поверхности бетона изделия в конце периода подъема темпер а туры, º С.

Рассчитаем данный показатель по периодам тепловой обрабо т ки

подъем температуры:

КДж

изотермическая выдержка

КДж

Теплота на разогрев конструкций камеры . Теплота на разогрев огражда ю щих конструкции установки для тепловой обработки рассчитывается по формуле:

КДж

где с i - массовая теплоемкость соответствующего слоя конструкции рассматр и ваемого ограждения.

G i - масса рассматриваемого слоя, кг

t к i - средняя конечная температура материала рассматриваемого слоя конструкции, º С;

t н i - начальная температура материала рассматриваемого слоя конструкции º С.

Сопротивление теплопередачи ограждающей конструкции:

Тепло потери на разогрев стен конструкции при Подъеме температуры.

Расчетный вес каждого элемента конструкции стены:

G 1 =58509 кг/м 3

G 2 = 1170.18 кг/м 3

G 3 = 4212.65 кг/м


Потери теплоты на разогрев стен конструкции при Изотермической выдержке

Потери теплоты на разогрев верха конструкции при Подъеме температуры:

расчет температуры на каждом слое ограждения:

Расчетный вес каждого элемента конструкции верха:

G 1 =69147 кг/м 3

G 2 = 1382,94 кг/м 3

G 3 = 4978,58 кг/м

Потери теплоты на разогрев верха конструкции при Изотермической выдержке

Сопротивление теплопередачи пола огражда ю щей конструкции:

Тепло потери на разогрев пола конструкции при Подъеме температуры.

расчет температуры на каждом слое ограждения:

Расчетный вес каждого элемента конструкции пола:

G 1 =110635,2 кг/м 3

G 2 = 22127,04 кг/м 3

Потери теплоты на разогрев пола конструкции при Изотермической выдержке


Потери теплоты в окружающую среду рассчитаем по следующей формуле

Потери теплоты при подъеме температуры:

Потери теплоты в грунт рассчитаем по следующей формуле

Потери теплоты при подъеме температуры

Потери теплоты при изотермической выдержке:

Полученные значения подставляем в уравнение теплового баланса и выражаем ч а совой расход теплоносителя для зоны подъема и изотермической выдержки:

Подъем температуры:

Изотермическая выдержка:

Теплота, теряемая с конденсатом. Теплота, теряемая с конденсатом, ра с считывается по формуле

кДж/ч

с к - теплоемкость конденсата (для воды с к =4,19), кДж/кг º С;

t к - температура конденсата.(70град)

Теплота теряемая на испарением воды:

r - теплота фазового перехода,(2232,2кДж/кг)


  1. Определение часовых и удельных расходов теплоты и теплоносителя по периодам (зонам) тепловой обр а ботки.

Часовой расход теплоносителя для периодов подъема температуры и изоте р мической выдержки определяется по формулам

Кг/ч

Кг/ч

где  Q I ,  Q II ,- суммарные расходы теплоты с учетом коэффициента неучтенных потерь за периоды подъема температуры и изотермической выдержки соотве т ственно, кДж.

 I ,  II - продолжительность каждого периода, ч.

По формулам (18) и (19) час рассчитаем часовые расходы пара

кг/ч,

кг/ч.

Удельный расход теплоносителя на 1 м 3 бетона рассчитывается по выраж е нию

Кг/м 3

где

N r - часовая производительность УНД по бетону, м 3 .

N н - недельная производительность установки, м 3 .

кг/м 3

Удельный расход теплоты на 1 м 3 бетона

КДж

КДж/м 3


  1. Расчет трубопровода.

Диаметр труб отходящих от установок рассчитывается по фо р муле

Средняя плотность теплоносителя на участке:

Средняя плотность теплоносителя:

Диаметр трубопровода для зоны подъема температур:

Диаметр трубопровода для зоны изотермической выдержки:

Диаметр учитывающий подъем температур и изотермическую выдержку:

Принимаем трубу для подъема температур  40

Принимаем трубу для изотермической выдержки  50

Принимаем трубу для подъема температуры и изотермической выдержки  60

Максимальный диаметр  70мм


  1. Предложения по экономии энергоресурсов и повышения качества и з делий .

Тепловую обработку бетонных и железобетонных изделий следует произв о дить с учетом закономерностей тепло- и массопереноса, параметров бетонной смеси и метода тепловлажностной обработки.

Снижение потребления энергоресурсов при запроектированном процессе производства железобетонных плит перекрытия может быть осуществлено за счет повышения термического сопротивления ограждающей конструкции – формы изд е лия.

Также снижения потребления энергоресурсов возможно обеспечить за счет повышения качества и точности применения контрольно-измерительной и запорно-регулирующей арматур.

Наиболее эффективными способами ускорения твердения бетона являются химические добавки – ускорители твердения и комплексные добавки, содержащие в себе суперпластификатор и ускоритель твердения..

Для сокращения производственного цикла и повышения качества бетона можно применить такие методы и режимы тепловой обработки как, например, предварительный паро- и электроразогрев составляющих бетонной смеси или с а мой бетонной смеси с последующим кратковременным во з действием тепла.

Применение предварительного паро- и электроразогрева бетонной смеси позволяет значительно уменьшить время тепловой обработки. Из общего цикла практически полностью исключается время предварительной выдержки и подъема температуры, до 1,5 раз сокращается длительность из о термического прогрева.


  1. Мероприятия по технике безопасности, охране труда и против о пожарной технике.

Охрана труда должна осуществляться в полном соответствии с «Правилами по технике безопасности и производственной санитарии на предприятиях строительной промышле н ности».

Следует подчеркнуть, что поступающие на предприятия рабочие должны допу с каться к работе только после обучения их безопасным приемам работы и инструкт а жа по технике безопасности. Ежеквартально должен проводиться дополнительный инструктаж и ежегодно — повторное обучение технике безопасности непосредс т венно на рабочем ме с те.

На действующих предприятиях необходимо оградить движущиеся части всех м е ханизмов и двигателей, а также электроустановки, прия м ки, люки, площадки и т. п.

Должны быть заземлены электродвигатели, а также разного вида электрическая аппаратура. Необходимо предусматривать соответствующие устройства и уст а новки подъемно-транспортных механизмов для безопасного ведения ремонтных р а бот.

На участке, где ведутся монтажные работы, не производятся другие работы. Очистка, подлежащих монтажу элементов конструкций от грязи и наледи произв о дится до их подъема. Запрещается подъем сборных железобетонных конструкций, не имеющих монтажных петель или меток, обеспечивающих их правильную строповку и монтаж.

Применяемые способы строповки элементов конструкций и оборудования обесп е чивают их подачу к месту установки в положении, близком к проектному. Люди, на элементах конструкций и оборудования, находящихся на весу, отсутствуют. Элеме н ты монтируемых конструкций или оборудования во время перемещения удерживаются от вращения и раскачивания гибкими о т тяжками.

При производстве монтажных (демонтажных) работ в условиях действующего предприятия эксплуатируемые электросети и другие действующие инженерные си с темы в зоне работ, как правило, отключаются и закорачиваются. Оборудование и трубопроводы освобождены от взрывоопасных, горючих и вредных в е ществ.

При производстве монтажных работ для закрепления технологической и мо н тажной оснастки используются оборудование и трубопроводы, а также технологич е ские и строительные конструкции с согласованием с лицами, ответственными за правильную их эксплуатацию.

При надвижке конструкций и оборудования лебедками грузоподъемность тормо з ных лебедок должна быть равна грузоподъемности тяговых, если иные требования не установлены проектом. Распаковка и расконсервация подлежащего монтажу оборуд о вания производится в зонах, отведенных в соответствии с проектом производства работ, и осуществляется на специальных стеллажах или подкладках высотой не м е нее 100мм. При расконсервации оборудования не допускается применение материалов со взр ы во- и пожароопасными свойствами.

Укрупнительная сборка и доизготовление подлежащих монтажу конструкций и оборудования (нарезка резьбы на трубах, гнутье труб, подгонка стыков и тому подо б ное) должны выполняться, как правило, на специально предназначенных для этого местах.

В процессе выполнения сборочных операций, совмещения отверстий и проверка их совпадения в монтируемых деталях производится с использованием специального оборудования. Проверять совпадение отверстий в монтируемых деталях пальцами рук не допускается.

При монтаже оборудования должна быть исключена возможность самопроизвол ь ного или случайного его включения.

При перемещении оборудования расстояние между ним и выступающими частями смонтированного оборудования или других конструкций должны быть по горизонтали не менее 1м, по ве р тикали - 0,5м.

При монтаже оборудования с использованием домкратов должны быть приняты меры, исключающие возможность перекоса или опрокидыв а ния домкратов.


  1. Перечень использованной литерат у ры.
  1. Вознесенский А.А. Тепловые установки в производстве строительных матери а лов и изделий. – М.: Стройиздат, 1964.
  2. Нестеров Л.В, Орлович А.И. Методические указания к курсовому проекту по ди с циплине «Теплотехника и теплотехнического оборудование». - Мн.: БГПА, 1997.
  3. СНБ 2.04.01.-97. Строительная теплотехника. - Мн.: Министерство архитект у ры и строительства РБ, 1997.
  4. ГОСТ 26434-85. Перекрытия железобетонные. - М.: Издательство станда р тов, 1984.
  5. Кокшарев В.Н., Кучеренко А.А. Тепловые установки.- Киев: Высшая школа, 1990.-335 с.
  6. Перегудов В,В., Роговой М.И., Тепловые процессы и установки в технологии строительных изделий и деталей. – М.: Стройиздат, 1983. – 416 с.


Ра
з раб.

Русецкий

Wednesday October 02, 2013 2002-12-07T21:10:00Z

ПЗ

Лист

Пров.

Орлович

24

Изм.

Лист

№ д о кум.

Подпись

Д а та

Тот, кто хотя бы раз имел дело со строительством дома знает, насколько большое значение имеют пустотные железобетонные плиты или панели перекрытия. Многопустотные бетонные плиты перекрытия, по сути, и составляют около 90% от общего веса дома. Плиты перекрытия (ПК) могут сильно различаться и по весу, и по своим размерам, в зависимости от того, в каких конкретно целях их используют.

Конструкционные особенности пустотных плит

Как просто догадаться, внутри железобетонные плиты перекрытия (ПК) являются пустотными, в силу чего и маркируются при продаже как многопустотные. Но отверстия внутри таких плит, вопреки заблуждению, может иметь не только овальную, но и круглую, квадратную и иную форму.



Схема опирания пустотной плиты перекрытия

Впрочем, в большинстве случаев плиты перекрытия (ПК) имеют именно цилиндрические пустотные окружности внутри.

Интересно, что плиты перекрытия (ПК) могут быть и безармированными, и армированными. Железобетонные плиты перекрытия (ПК) будут являться именно армированными.

Такие плиты перекрытия (ПК) хоть и имеют значительно больший вес, что в конечном итоге повышает и нагрузку на здание, и стоимость строительства, однако, имеют большой запас прочности. Монтаж плит перекрытие, именно сам способ монтажа, зависит от того, на какое опирание будут ставиться плиты, ведь опирание - тоже важный критерий.

Например, если опирание плиты недостаточно устойчиво, то это может привести к неприятным последствиям, чего, естественно, необходимо избегать.



Схема укладки пустотной плиты на втором этаже

Характеристика пустотных плит

Размер

От размера пустотной ПК зависит и её конечная стоимость, важное значение, помимо таких параметров, как ширина и длина, имеет также и вес.

Размеры ПК варьируются следующим образом:

  • по длине размер ПК колеблется в диапазоне от 1180 до 9700 миллиметров;
  • по ширине размер ПК колеблется от 990 до 3500 миллиметров.

Наиболее популярными и востребованными являются многопустотные панельные плиты, длина которых составляет 6000 мм, а ширина 1500 мм. Важное значение также имеет высота или толщина панели (правильнее будет говорить о высоте, но строители, как правило, говорят «толщина»).

Так вот, толщина, которую могут иметь многопустотные панели, всегда является неизменной величиной — 220 мм. Большое значение имеет, конечно же, и вес панели перекрытия. Бетонные плиты перекрытия должен поднимать кран, грузоподъёмность которого минимально составляет 4-5 тонн.



Сравнительная таблица координационных размеров пустотных плит перекрытия

Длина и вес панелей имеют важнейшее значение для строительства, длина даже меньший по важности показатель, нежели вес.

Вес

Что касается такого важного параметра, как вес, то здесь всё предельно понятно с первого раза: диапазон выпускаемых в России изделий находится в пределах от 960 килограммов до 4,82 тонн. Вес является главным критерием, по которому определяется способ, с помощью которого будет осуществляться монтаж панелей.

Обычно используют краны, как уже отмечалось выше, с грузоподъёмностью минимум 5 тонн (разумеется, краны должны поднимать тяжесть с некоторым запасом).

Вес панелей одинаковой маркировки может отличаться, но незначительно: ведь если рассматривать вес с точности до одного грамма, на него может повлиять всё что угодно.



Сравнительная характеристика основных марок пустотных плит

Если, например, изделие попало под дождь, то оно априори будет немного тяжелее того изделия, которое под дождь не попало.

Виды нагрузок

Для начала необходимо отметить, что любое перекрытие предполагает наличие 3 следующих частей:

  1. Часть верхняя, с этажом, где живут люди. Соответственно, нагружать панель будет напольное покрытие, разнообразные утеплительные элементы и, конечно же, бетонные стяжки - главная составляющая нагрузки;
  2. Часть нижняя, с наличием потолка, его отделки, осветительных приборов. Кстати, насчёт наличия осветительных приборов скептически относиться не стоит. Во-первых, те же светодиодные лампы требует частичного разрушения плиты перфоратором для прокладки кабеля. Во-вторых, если брать большие помещения, с колоннами и залами, там могут висеть огромные хрустальные люстры, которые дадут большую нагрузку, чем любой другой прибор или вид отделки. Это тоже обязательно надо учитывать;
  3. Конструкционная. Она объединяет сразу и верхнюю и нижнюю части, как бы поддерживая их в воздухе.

Пустотная плита - это и есть конструкционная плита, которая поддерживает в воздухе и верхнюю, и нижнюю часть перекрытия!

Кстати, не стоит сбрасывать со счетов и динамическую нагрузку. Её, как несложно догадаться, создают сами люди, а также передвигаемые ими вещи. Всё это сказывается и на свойствах и состояниях панели.



Схема устройства пустотной плиты с наличием отверстий

Например, если один раз перевезти тяжеленное пианино в небольшом двухэтажном доме с одного место на другое - это нормально, то ежедневное передвижение создаст на плиту многопустотную уже гораздо большее негативное влияние. Упадёт она вряд ли, а вот с вентилируемостью впоследствии могут быть серьёзные проблемы.

По типу распределения нагрузки делятся ещё на 2 группы:

  • распределённые;
  • точечные.

Чтобы понять разницу между двумя этими видами, стоит привести пример. Та же огромная хрустальная люстра, которая весит под одну тону - это нагрузка точечная. А вот натяжной потолок с каркасом по всей поверхности плиты - это уже распределённая нагрузка.



Устройство технологической линии по производству пустотных плит

Но бывает ещё и совмещённая нагрузка, объединяющая точечную и распределённую. Например, наполненная доверху ванна. Сама по себе ванна стоит на ножках, и её давление на ножки - разновидность распределённой нагрузки. А вот стоящие на полу ножки - это уже точечная нагрузка.

От веса пустотной плиты напрямую зависит её стоимость.

Сложновато, но разобраться с этим можно. И нужно! Ведь расчёт на перекрытия и пустотные плиты при строительстве всё равно необходимо будет производить.

Марки пустотных плит

Собственно говоря, марок как таковых пустотные плиты даже не имеют. Речь идёт о маркировке, в которой отражены некоторые параметры. Достаточно привести небольшой пример.



Схема укладки пустотной плиты на ригель

Допустим, панель имеет следующую маркировку: ПК 15-13-10 ПК - означает пустотную плиту; все цифровые обозначения указывают на какие-либо технические параметры.

15 будет означать, что панель имеет длину в примерно 15 дециметров (1,5 метра). Почему примерно? Просто длина может быть 1,498 метра, а на маркировке производили имеют право округлять эту цифру до 1,5 метров (15 дециметров). Цифра 12 означает, что изделие имеет ширину в 10 дециметров. Последняя цифра (в данном случае — 10) наиболее важный показатель.

Это нагрузка, которую может выдержать материал (предельно допустимая). В нашем случае нагрузка по максимуму будет составлять 10 килограммов на 1дм². Обычно строители считают нагрузку в расчёте на метр квадратный, здесь она будет составлять 1000 килограммов на 1м². В общем, всё не так уж и сложно.

Марка панелей всегда имеет вида ПК-XX-XX, если продавцы предлагают другие варианты, то стоит насторожиться.

Расчёт нагрузки

Расчёт предельного воздействия

Расчёт предельного воздействия - обязательное условие при проектировании здания. Размеры и другие параметры панелей определяются ещё старым добротным советским ГОСТ под номером 9561-91.



Устройство пустотной плиты с наличием армированной стяжкой

Для того чтобы определить ту нагрузку, которая будет оказываться на изделие, необходимо на чертеже будущего строения указать вес абсолютно всех элементов, которые будут «давить» на перекрытие. Их суммарный вес и будет являться предельной нагрузкой.

Прежде всего необходимо учесть вес следующих элементов:

  • цементно-песчаные стяжки;
  • перегородки из гипсобетона;
  • масса напольного покрытия или панелей;
  • теплоизоляционные материалы.

Впоследствии все полученные показатели суммируются и разделяются на количество панелей, которые будут присутствовать в доме. Отсюда и можно получить максимальную, предельную нагрузку на каждое конкретное изделие.

Расчёт оптимальной нагрузки

Понятно, что максимально допустимый уровень - это критический показатель, доводить до которого ни в коем случае нельзя. Поэтому лучше всего рассчитывать именно оптимальный показатель. Например, панель весит 3000 кг. Нужна она для площади в 10 м².

Необходимо разделить 3000 на 10. В результате получится, что максимально допустимое значение нагрузки составит 300 килограммов на 1 м². Это маленький показатель, но ведь надо учитывать ещё и вес самого изделия, на который тоже рассчитывалась нагрузка (допустим, её значение равно 800 килограммам на 1м²). От 800 нужно отнять 300, в итоге получается 500 килограммов на 1 м².

Теперь нужно приблизительно прикинуть, сколько будут весить все нагружающие элементы и предметы. Пусть этот показатель будет равняться 200 килограммам на 1 м². От предыдущего показателя (500кг/м²) нужно отнять полученный (200кг/м²). В результате получится показатель в 300 м². Но и это ещё не всё.



Схема устройства пустотной плиты с наличием гидроизоляции

Теперь от этого показателя необходимо отнять вес мебели, отделочных материалов, вес людей, которые постоянно будут находиться в помещении или в доме. «Живой вес» и все элементы, их нагрузка, пусть составляет 150 кг/м². От 300 необходимо отнять 150. В результате всего и получится оптимально допустимый показатель, обозначение которого составит 150 кг/м². Это и будет оптимальная нагрузка.

Преимущества пустотных плит

Среди преимущества данных изделий можно выделить следующие:

  • относительно небольшая нагрузка на периметр всего здания, в отличие от тех же полнотелых изделий;
  • высокие показатели прочности, несмотря на то, что внизу панели являются пустотными;
  • надёжность;
  • осадка дома будет гораздо менее интенсивной, чем при использовании полнотелых изделий (собственно, это преимущество исходит от относительно небольшого веса);
  • относительно небольшая стоимость.

В целом многопустотные панели - это один из главнейших строительных материалов. Сегодня его выпускает всего лишь несколько заводов во всей огромной России. Главное, как уже отмечалось выше - это не дать себя обмануть при покупке.



Схема устройства арматурных блоков в пустотной плите перекрытия

Иногда (такое встречается редко, но всё же) продавцы пытаются реализовать некачественные панели, так называемые облегчённые. Они, например, могут иметь маркировку, где показывается, что изделие рассчитано на нагрузку в 500 килограммов на один квадратный метр, а на деле этот параметр в несколько раз ниже.

Это даже не мошенничество, это - уголовное преступление, которое должно караться по всей строгости закона. Ведь если покупать панель, рассчитанную на меньшую нагрузку, возникает серьёзный риск обрушения строений. Такую ситуацию можно наблюдать не только в провинции, но даже в Москве или Петербурге.

В общем, при покупке подобной продукции нужно быть предельно осторожным. Важно помнить, что любая ошибка при проектировании может иметь даже трагические последствия.

Видео

Можете посмотреть видео, где специалисты детально рассказывают об особенностях различных видов пустотных плит.

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ НОРМАТИВНЫХ ИССЛЕДОВАНИЙ
И НАУЧНО-ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ «ОРГТРАНССТРОЙ»
МИНИСТЕРСТВА ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА

ОПЕРАЦИОННЫЕ ТЕХНОЛОГИЧЕСКИЕ КАРТЫ

ИЗГОТОВЛЕНИЕ ЖЕЛЕЗОБЕТОННЫХ
ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ
ПЛИТ ПЕРЕКРЫТИЯ ПО
ПРОТОЧНО-АГРЕГАТНОЙ ТЕХНОЛОГИИ

Москва 1977

Операционные технологические карты разработаны отделом совершенствования технологии на промышленных предприятиях и охраны природы института «Оргтрансстрой» (исполнители В.В. Юдин) с участием Тульской НИС (исполнитель Я.Б. Брызжев), Ростовской НИС (исполнитель Ю.М. Попов) и Куйбышевской НИС (исполнитель В.И. Худяков) Министерства транспортного строительства.

Редактор В.Т. Михайлов

I. Общие указания

Технологические операционные карты разработаны на основании изучения производства работ при изготовлении пустотных плит перекрытий серии ИИ-04 на Оренбургском, Рязанском и Бесланском заводах ЖБК Главстройпрома Министерства транспортного строительства по поточно-агрегатной технологии.

Карты предназначены для рабочих, бригадиров и инженерно-технических работников.

Плиты перекрытий изготовляются по чертежам, разработанным Московским институтом типового и экспериментального проектирования МИТЭП. Технологические карты могут быть применены при изготовлении аналогичных плит перекрытий связевого варианта серии ИИ-04, разработанных Центральным научно-исследовательским институтом экспериментального проектирования учебных зданий совместно с научно-исследовательским институтом бетона и железобетона Госстроя СССР - НИи ЖБ. Рабочие чертежи утверждены приказом № 173 от 13 августа 1973 г. Госкомитета по гражданскому строительству и архитектуре при Госстрое СССР и введены в действие с 1 октября 1973 года.

В основу технологических карт заложена технология изготовления плиты перекрытия типа ПК8-58-12. Эти же карты могут быть применены и при изготовлении других типов пустотных плит серии ИИ-04.

Техническая характеристика плиты перекрытия ПК8-58-12

Марка бетона - 200

Объем бетона - 0,8 м 3

Расход стали - 39,2 кг

Масса плиты - 2 т

Габаритные размеры (рис. ):

длина (l ) - 5760 мм

ширина (в ) - 1190 мм

высота (h ) - 220 мм

Предельные отклонения от проектных размеров плит перекрытия приняты в соответствии с ГОСТ 13015 -75 «Изделия железобетонные и бетонные»

по длине Δ 1 ± 8 мм

по ширине Δ 2 ± 5 мм

по высоте Δ 3 ± 5 мм

Отклонения от номинальных размеров отверстий в изделии не должны превышать ± 5 мм.

Отклонения от прямолинейности реального профиля поверхности изделия в любом сечении на длине 2 м, характеризуемые величиной наибольшего расстояния от точек реального профиля до прилегающей прямой, не должно превышать:

Число раковин допустимых размеров на любом участке лицевой бетонной поверхности площадью 0,04 м 2 (200×200 мм) не должно превышать - 5.

На лицевых поверхностях изделий не допускаются жировые и ржавые пятна.

Качество гладких бетонных поверхностей должно соответствовать утвержденному эталону изделия.

Эталон изделия согласовывается предприятием-изготовителем с потребителем, проектной организацией, осуществляющей привязку проекта здания или сооружения, и органами государственного архитектурно-строительного контроля.

В бетоне изделия, поставляемого потребителю, трещины не допускаются, за исключением усадочных и других поверхностных технологических трещин, ширина которых не должна превышать 0,1 мм.

Кубиковая прочность бетона к моменту отпуска изделий с завода должна быть в зимних условиях не ниже 100 % проектной, а в теплое время не ниже 70 %, причем завод-изготовитель в этом случае должен гарантировать достижение 100 % прочности в 28-дневном возрасте.

В качестве крупного заполнителя применяется фракционированный щебень, отвечающий требованиям ГОСТ 10268-70.

В качестве мелкого заполнителя используется песок, отвечающий требованиям ГОСТ 10268-70.

Ненапряженная арматура для плит перекрытий принята из стали классов А-1, В-1 в виде сварных сеток и каркасов. Ненапряженная арматура и закладные детали должны отвечать требованиям ГОСТ 10922 -75.

Напрягаемая продольная рабочая арматура проектом предусмотрена для обычного варианта класса А- IV , а для связевого варианта класса А- V .

Арматура натягивается электротермическим способом на упоры поддона с последующей передачей усилий натяжения на бетон после его твердения.

Закладные детали и монтажные петли завод-изготовитель получает централизованно.

Плоские каркасы и арматурные сетки изготавливаются в арматурном цехе в специальных шаблонах путем контактно-точечной сварки на сварочных машинах.

Применение дуговой электросварки вместо контактно-точечной запрещается.

Для изготовления плиты перекрытия предусмотрены проектом марки бетона 200 и 250.

Бетонная смесь должна отвечать требованиям ГОСТ 7473 -61.

В качестве смазки применяются следующие материалы:

эмульсол - 10 %

кальцинированная сода - 0,4 - 0,8 %

вода - 89,6 - 89,2 %

Разрешается применять другие виды смазки в соответствии с инструкциями по их применению.

Тепловлажностная обработка плит перекрытий производится в пропарочной камере ямного типа. Режим тепловлажностной обработки принимается в соответствии с указаниями «Руководства по тепловой обработке бетонных и железобетонных изделий», М., НИИЖБ - ВНИИжелезобетон, 1974.

Для получения 70 % прочности бетона от проектной марки рекомендуется следующий режим тепловлажностной обработки:

выдержка изделий в камере при температуре 20 - 30 °C - 2 ч;

равномерный подъем температуры от 20 - 30 до 75 - 80 °C - 2 ч;

изотермический прогрев при температуре 75 - 80 °C - 4 ч;

снижение температуры от 75 - 80 до 30 °C - 2 ч;

выдержка изделий после пропаривания - 2 ч.

Полный цикл тепловлажностной обработки изделий при указанном режиме продолжается 12 ч.

Относительная влажность в камере должна быть около 100 %.

В зависимости от типа цемента, состава бетонной смеси и отпускной прочности режим тепловлажностной обработки подлежит корректировке лабораторией завода.

Качество плит перекрытия контролируется по рабочим чертежам, а исходных материалов - по действующим стандартам.

При отсутствии заводского паспорта на цемент его полностью испытывают в соответствии с ГОСТ 310-60.

Каждая партия щебня и песка должна иметь паспорт. На заводе-изготовителе производят контрольную проверку качества заполнителей в соответствии с требованиями ГОСТ 8269-64.

При приготовлении бетонной смеси должны проверяться:

правильность взвешивания составляющих;

подвижность (не реже двух раз в смену, а также при каждом изменении влажности заполнителей);

продолжительность перемешивания (не реже раза в смену).

Качество изготовления изделий контролируется маркировкой их, соблюдением допусков, правил приемки, условий складирования и транспортировки, методов испытания и других технических требований в соответствии с ГОСТ 13015 -75.

Технологические карты предусматривают изготовление плит перекрытий двумя звеньями:

Рис. 2 . Схема организации рабочего места:

1 - пост очистки и смазки; 2 - стеллажи для арматурных сеток; 3 - стеллаж для арматурных стержней; 4 - электронагревательная установка; 5 - емкость для смазки; 6 - поддоны; 7 - шкаф для удочки-распылителя; 8 - шкаф для инструмента; 9 - стеллажи для сеток; 10 - стеллажи для каркасов; 11 - стеллажи для петель; 12 - пульт управления; 13 - виброплощадка; 14 - формовая машина; 15 - бетоноукладчик; 16 - бетонораздатчик; 17 - эстакада; 18 - ящик для инструмента; 19 - вибропригруз; 20 - пост выдержки изделий; 21 - пропарочные камеры; 22 - электросварочный трансформатор; 23 - шкаф для сварочных аппаратов; 24 - ящик для инструмента; 25 - пост распалубки

С пульта управления оператором производятся ввод пустотообразователей и сдвижка боковых бортов. Затем оба рабочих устанавливают вертикальные плоские арматурные каркасы, верхние сетки, монтажные петли и фиксаторы защитного слоя. После чего заполняют бетонной смесью формы из бетоноукладчика с разравниванием ее. После укладки бетонной смеси в форму ее уплотняют на виброплощадке при помощи вибропригруза.

После чего оператор с пульта управления выводит пустотообразователи и продольные борты опалубки.

Затем оба рабочих приступают к отделке свежезаформованного изделия и устанавливают поддон с изделием в пропарочную камеру.

Второе звено выполняет операции в следующей очередности: арматурщик 3 разр. заготовляет арматуру на станке С-370, после чего переходит на станок СМ-516А для гнутья сеток и производит гнутье сеток С-5, электросварщик 4 разр. на одноточечной сварочной машине МТП-200 сваривает каркасы и нижние арматурные сетки, затем он переходит на многоточечную сварочную машину МТМС и сваривает сетки С-24.

Изготовление арматурных напрягаемых стержней и монтажных петель в картах не предусмотрено, так как завод получает их централизованно.

Работа машиниста мостового крана оплачивается повременно, поэтому он в состав бригады не входит.

II. Правила техники безопасности, производственной санитарии

При изготовлении плит перекрытий должны соблюдаться «Правила техники безопасности и производственной санитарии при производстве бетонных и железобетонных изделий», М., Оргтрансстрой, 1974.

Для создания благоприятных условий работы в цехе необходимо: рабочие места убирать в процессе работы и к концу смены, используемые инструменты и приспособления размещать на специальных стеллажах в зоне постов.

Смазку форм необходимо хранить около постов распалубки, при переноске и использовании смазки не допускать попадания ее на пол.

Температура в цехе должна поддерживаться 16 - 18 °С при относительной влажности воздуха не менее 60 и не более 80 %.

Рабочие должны быть обеспечены спецодеждой в соответствии с нормами.

В соответствии с санитарными нормами уровень шума должен быть не более 90 дб . Администрация обязана проводить мероприятия по снижению шума в производственном помещении.

Плиты перекрытий с круглыми пустотами складируются в штабель высотой не более 2,5 м.

Стропят плиты за монтажные петли автоматической траверсой.

К изготовлению плит перекрытия допускаются лица не моложе 18 лет, прошедшие медицинское освидетельствование, обучение по установленной программе и изучившие правила техники безопасности и сигнализации.

Рабочие, занятые на изготовлении плит перекрытий должны изучать типовые инструкции по охране труда по профессиям: «Типовая инструкция по технике безопасности для арматурщиков», М., Оргтрансстрой, 1977, «Типовая инструкция по технике безопасности для пропарщиков и автоклавщиков», М., Оргтрансстрой, 1963, «Типовая инструкция по технике безопасности для сварщика, работающего на машинах контактной сварки, и для электросварщиков автоматической и полуавтоматической дуговой сварки», М., Оргтрансстрой, 1971, а также СНиП III -А.11-70, «Техника безопасности в строительстве» раздел 5 «Электросварочные работы».

Глядя на штабеля железобетонных плит, рядовой гражданин не подозревает, сколько важной информации они могут сообщить специалисту – строителю. Это не удивительно, ведь в повседневной жизни мы редко встречаемся с такими конструкциями.

Если же речь идет о новостройке, то заказчику монтажных работ будет полезно знать о том, какие существуют типы и размеры плит перекрытия, а также какова их максимальная несущая способность по ГОСТ.

На первый взгляд, отличия между пустотными плитами перекрытия заключаются только в их длине, толщине и ширине. Однако, технические характеристики этих конструкций гораздо обширнее, поэтому мы рассмотрим их более подробно.

Государственный стандарт – свод законов прочности

Все базовые требования по пустотным плитам перекрытия, включая их назначение и прочностные характеристики, описывает ГОСТ 9561-91.

Прежде всего, в нем указывается градация плит в зависимости от их толщины, диаметра отверстий и количества сторон, которыми они опираются на стены.

Кроме разной толщины и геометрических размеров пустотные плиты перекрытия классифицируют по способу армирования. ГОСТ указывает, что панели, которые опираются на стены 2 или 3 сторонами, должны быть изготовлены с использованием предварительно напряженной арматуры.

Практический вывод, который из этого следует для застройщика, – нельзя пробивать отверстия под инженерные коммуникации, нарушая целостность рабочей арматуры. В противном случае плита может потерять несущую способность (треснуть под нагрузкой или разрушиться).

Пункт 1.2.7 ГОСТ 9561-91 делает важные исключения, разрешая при изготовлении некоторых типов плит не ставить в них напрягаемую арматуру.

Они относятся к таким панелям:

  • Толщиной 220 мм при длине 4780 мм (пустоты диаметром 140 и 159 мм);
  • Толщиной 260 мм, длина менее 5680 мм;
  • Толщиной 220 мм, длина любая (пустоты диаметром 127 мм).

Если вам на объект привезли такие железобетонные плиты перекрытия, а в их паспорте указана ненапрягаемая арматура, не спешите отправлять машину обратно на завод. Эти конструкции соответствуют строительным нормам.

Особенности технологии изготовления

Плиты перекрытия изготавливают разными способами, что отражается на качестве их лицевой поверхности. Плиты марки ПК и ПГ отливают в опалубке, а панели ПБ делают непрерывным способом на конвейерной линии. Последняя технология совершеннее опалубочного изготовления, поэтому поверхность у плит ПБ более ровная и гладкая, чем у панелей марок ПК и ПГ.

Кроме этого, конвейерное производство позволяет делать плиты ПБ любой длины (от 1,8 до 9 метров). Это очень удобно для заказчика, когда речь идет о так называемых «доборных» плитах.

Дело в том, что при раскладке плит на плане здания всегда образуется несколько участков, куда не помещаются стандартные панели. Строители выходят из положения, заполняя такие «белые пятна» монолитным бетоном прямо на объекте. Качество такой самодельной конструкции заметно уступает тому, которое достигается в заводских условиях (виброуплотнение и пропаривание бетона).

Преимущество плит ПК и ПГ перед панелями ПБ состоит в том, что в них можно пробивать отверстия под коммуникации, не опасаясь разрушения конструкции. Причина состоит в том, что диаметр пустот у них составляет минимум 114 мм, что позволяет свободно пропустить канализационный стояк (диаметром 80 или 100 мм).

У плит ПБ отверстия более узкие (60 мм). Поэтому здесь для пропуска стояка приходится перерубать ребро, ослабляя конструкцию. Специалисты утверждают, что такая процедура неприемлема только для высотного строительства. При возведении малоэтажного жилья пробивка отверстий в плитах ПБ допускается.

Преимущества пустотелых железобетонных плит

Их немало и все они достаточно весомые:

  • Снижение веса строительных конструкций;
  • Пустоты в плитах гасят вибрации, поэтому такое перекрытие обладает хорошей звукоизоляцией;
  • Возможность прокладки коммуникаций внутри пустот;
  • Огнестойкость и влагостойкость;
  • Высокая скорость монтажных работ;
  • Долговечность сооружения.

Размеры пустотных плит перекрытия

Здесь все по-максимуму унифицировано для того, чтобы можно было изготовить конструкцию любого монтажного размера. Градация ширины и длины плит идет с шагом от 100 до 500 мм.

Маркировка – паспорт плиты перекрытия

Застройщику не обязательно знать тонкости технологии, с использованием которой изготавливается многопустотная плита перекрытия. Достаточно научиться правильно расшифровывать маркировку.

Ее выполняют в соответствии с ГОСТ 23009 . Марка плиты включает три буквенно-цифровые группы, разделенные дефисами.

Первая группа содержит данные о типе панели, ее длине и ширине в дециметрах (округленных до целого числа).

Во второй группе указывается:

  • Несущая способность плиты или расчетная нагрузка (килопаскали или килограмм-силы на 1 м2);
  • У предварительно напряженных плит указывается класс арматурной стали;
  • Вид бетона (Л — легкий, С – силикатный, тяжелый бетон в маркировке не обозначается).

Третья группа в маркировке содержит дополнительные характеристики, отражающие особые условия применения конструкций (стойкость к агрессивным газам, сейсмическим воздействиям и т.д.). Кроме этого здесь иногда обозначают конструктивные особенности плит (наличие дополнительных закладных деталей).

В качестве примера, поясняющего принцип маркирования пустотных панелей, рассмотрим такую конструкцию:

Панель пустотная тип 1ПК, длина 6280 мм, ширина 1490 мм, рассчитана на нагрузку в 6 кПа (600 кг/м2) и изготовленна из легкого бетона с использованием напрягаемой арматуры класса Ат-V).

Ее маркировка будет выглядеть так: 1ПК63.15-6АтVЛ. Здесь мы видим только две группы символов.

Если плита изготовлена из тяжелого бетона и предназначена для использования в сейсмоопасной зоне (сейсмичность до 7 баллов), то в ее обозначении появляется третья группа символов: 1ПК 63.15-6АтV-С7.

Рассмотренные технические характеристики плит перекрытия определяют область их применения.

Все типы многопустотных панелей рассчитывают, исходя из нормативной нагрузки на перекрытие — 150 кг/м2 (вес людей, оборудования и мебели).

Несущая способность стандартной плиты находится в диапазоне от 600 до 1000 кг/м2. Сравнивая норматив 150 кг/м2 с фактической прочностью панелей, нетрудно увидеть, что запас надежности у них очень высок. Поэтому их можно укладывать во всех видах жилых, производственных и общественных зданий.

Тип плиты

Приведенная толщина плиты, метры

Средняя плотность бетона плиты, кг/м3

Длина плиты, метры

Характеристика здания

1ПК,1ПКТ, 1ПКК

до 7,2 включительно

Жилые дома (звукоизоляция помещений обеспечивается устройством плавающих, пустотных, беспустотных или слоистых полов, а также однослойных полов по стяжке
1ПК
2ПК, 2ПКТ, 2ПКК Жилые дома, в которых звукоизоляция жилых помещений обеспечивается устройством однослойных полов
3ПК, 3ПКТ, 3ПКК
4ПК Общественные и производственные здания
5ПК
6ПК
ПГ
7ПК Жилые здания (малоэтажные и усадебного типа)

В данной таблице содержится приведенная толщина плиты – термин непонятый для новичков. Это не геометрическая толщина панели, а специальный параметр, созданный для оценки экономичности плит. Его получают делением объема бетона, уложенного в плиту, на площадь ее поверхности.

Ориентировочные цены

При строительстве используются десятки типоразмеров пустотных плит, поэтому детальному описанию их цен пришлось бы посвятить отдельную статью. Мы же укажем ценовые параметры наиболее «ходовых» панелей (самовывоз):

  • ПК 30.12-8 – от 4 800 руб./ед.;
  • ПК 30.15-8 – от 5 500 руб./ед.;
  • ПК 40.15-8 – от 7 600 руб./ед.;
  • ПК 48.12-8 – от 7 000 руб./ед.;
  • ПК 51.15-8 – от 9 500 руб./ед.;
  • ПК 54.15-8 – от 9 900 руб./ед.;
  • ПК 60.12-8 – от 8 200 руб./ед.;
  • ПК 60.15-8 – от 10 600 руб./ед.;

Монтаж пустотных плит перекрытия

Главным условием качественной установки панелей, является строгое соблюдение расчетных параметров опирания на стены. Недостаточная площадь опирания приводит к разрушению материала стены, а излишняя – к повышенным теплопотерям через холодный бетон.

Монтаж плит перекрытия должен выполняться с учетом минимально допустимой глубины опирания:

Максимальная глубина заделки плит в стены не должна быть больше 160 мм (кирпич и легкие блоки) и 120 мм (бетон и железобетон).

Перед монтажом у каждой плиты нужно заделать пустоты (легким бетоном на глубину не менее 12 см). Класть панель «на сухую» запрещается. Для равномерной передачи нагрузки на стенах перед укладкой расстилают растворную «постель» толщиной не более 2 см.

Кроме соблюдения нормативных глубин опирания, при монтаже плит перекрытия на хрупкие блоки их газо или пенобетона, под ними следует уложить монолитный бетонный армированный пояс. Он исключает продавливание блоков, но требует хорошего наружного утепления для устранения мостиков холода.

В процессе монтажа следует постоянно контролировать отклонение разности отметок лицевых поверхностей у смежных панелей. Делать это нужно в швах. Не слушайте строителей, которые ставят панели «ступеньками» и говорят вам, что ровнее их положить невозможно.

Строительные нормы устанавливают следующие допуски в зависимости от длины плит:

  • до 4 метров – не более 8 мм;
  • от 4 до 8 метров – не более 10 мм;
  • от 8 до 16 м – не более 12 мм.