Преобразователь сварочный пд. Сварочные преобразователи. Технические данные транзисторных источнтков питания

15.07.2019

Сварочный преобразователь состоит из асинхронного двигателя и генератора постоянного тока, собранных в одном корпусе.

Ротор двигателя и якорь генератора находятся на одном валу. Преобразователь установлен на раме или на колесах.

Генераторы, комплектующие сварочные преобразователи, работают по схемам, показанным на рис. 1.

Генератор с независимой обмоткой возбуждения и размагничивающей последовательной обмоткой (рис. 1,в). Независимая обмотка 1, питающаяся от сети переменного тока через селеновый выпрямитель, создает магнитный поток, индуктирующий на щетках генератора напряжение, необходимое для возбуждения дуги. Падающую характеристику создает размагничивающая обмотка 2, поток которой направлен встречно потоку обмотки 1. Регулирование сварочного тока производится переключением числа витков последовательной обмотки: зажим а - диапазон больших токов, зажим б - диапазон малых токов. В пределах каждого диапазона сварочный ток плавно регулируется реостатом R.

По этой схеме выполнены преобразователи ПСО-120, ПСО-ЗООА, ПД-303, ПСО-500, ПСО-800, ПС-1000-III, АСО-2000.

Генератор с параллельной обмоткой возбуждения и размагничивающей последовательной обмоткой (рис. 1,б). Магнитные полюса этого генератора должны иметь остаточный магнетизм, поэтому их изготовляют из ферромагнитной стали.

Параллельная обмотка возбуждения 1 питается от щеток а - с; магнитный поток этой обмотки индуктирует на щетках а - в напряжение, необходимое для зажигания дуги. Напряжение на щетках а - с не меняется в течение всех стадий сварочного процесса (холостой ход, горение дуги, короткое замыкание). Последовательная обмотка 2 при горении дуги размагничивает генератор, создавая падающую характеристику. Регулирование сварочного тока производится так же, как и в генераторе, описанном выше.

По этой схеме выполнены преобразователи ПД-101, ПС-300-1, ПСО-300М, ПС-500.

Генераторы, построенные по этой схеме, устанавливают на агрегатах с двигателями внутреннего сгорания.

Генератор с расщепленными полюсами (рис. 1,в). На магнитных полюсах этого генератора имеются только параллельные обмотки 1, одна из которых регулируется. Напряжение на щетках а -с не меняется в течение всех стадий сварочного процесса. Падающая характеристика создастся размагничивающим действием потока (реакции) якоря, направленным навстречу магнитному потоку регулируемой обмотки.

Сварочный ток регулируют реостатом R в цепи обмотки возбуждения. В преобразователях этого типа довоенного выпуска (СМГ-2. СУГ-2А, СУГ-2Б и др.) грубая регулировка тока осуществлялась сдвигом щеток: большие токи - сдвиг против вращения якоря, малые токи - сдвиг по вращению.

По этой схеме выполнены преобразователи ПС-300М, ПС-ЗООМ-1, ПС-300Т. В эксплуатации находится значительное количество преобразователей, выпущенных до войны и в послевоенный период: СМГ-2А, СМГ-2Б, СУГ-2А, СУГ-2Б, СУГ-2р и др.

Технические характеристики однопостовых преобразователей приведены в табл. 1.

Таблица 1. Технические характеристики однопостовых сварочных преобразователей с падающей характеристикой

Характеристика

Преобразователи с независимым возбуждением и последовательной размагничивающей обмоткой

ПШ-120 ПСО-300А ПД-303 ПСО-500 П СО-800 AСO-2000 ПС-1000-III
Тип генератора ГСО-120 ГСО-300А - ГСО-500 ГСО-800 СГ-1000-II ГС-1000-III
Номинальный сварочный ток, А 120 300 300 500 800 1000X2 1000
Напряжение холостого хода, В 48-65 55-80 65 58-86 60-90
30-120 75-300 80-300 125-600 200-800 300-1200X2 300-1200
7,3 12,5 10,0 28,0 55 56,0 55,0
2900 2890 2890 2930 1460 1460
К. п. д. преобразователя, % 55 60 - 59 57 59 60
1055 1015 1052 1275 4000 1465
длина 508 770 935 770
ширина 550 590
высота 730 980 996 1080 1190 910
Масса, кг 155 400 331 540 1040 4100 1600

Характеристика Преобразователи с самовозбуждением: и последовательной размагничивающей обмоткой Преобразователи с расщепленными полюсами
ПД-101 ПС-300-1 псо-зоом ПС-500 ПС-300М СУГ-2р-у
Тип генератора ГД-101 ГСО-300 ГСО-ЗООМ ГС-500 СГ -300Л1 СМГ-2Г-Ш
Номинальный сварочный ток, А 125 300 300 500 300 300
Напряжение холостого хода, В 80 75 60 62-80 72
Пределы регулирования сварочного тока, А 15-135 75-320 100-300 120-600 80-340 45- 320
Мощность преобразователя, кВт 7,5 14,0 17,0 28,0 14,0 12,0
Скорость вращения якоря, об/мин 2910 1450 2910 1450 1450 1460
КПД преобразователя, % 60 70 70 55 57 58
Габаритные размеры, мм: длина 1026 1120 1400 1200 1G20
ширина 590 600 770 755 626 1080
высота 838 780 1100 1180
Масса, кг 222 430 350 940 570 550

Примечание. Для всех преобразователей ПР 65%; для ПД-303 и ПСО-ЗООМ - 60%.

Вопрос 1. Устройство и назначение сварочного преобразователя.
Сварочный преобразователь (рис. 43) представляет собой машину, служащую для преобразования переменного тока в постоянный сварочный ток.
Он состоит из сварочного генератора постоянного тока и приводного трехфазного асинхронного электродвигателя 8, сидящих на одном валу и смонтированных в общем корпусе. Сварочный генератор состоит из корпуса 11 с укрепленными на нем магнитными полюсами 10 и приводимого во вращение якоря 12.

Рис. 43. Сварочный преобразователь

Тело якоря набрано из отдельных лакированных пластин электротехнической стали. В продольных пазах его уложены витки обмотки. Рядом с якорем находится коллектор, состоящий из большого числа изолированных друг от друга медных пластинок 1, к которым припаяны начала и концы каждой группы витков якоря.
Магнитное поле внутри генератора создается магнитными полюсами обмоток возбуждения, которые питаются постоянным током от щеток 2 самого генератора. В распределительном устройстве 4 размещены пакетный выключатель, регулировочный реостат 3, вольтметр 6, доски зажимов 5 высокого и низкого напряжения и другая аппаратура. При включении электродвигателя якорь начинает вращаться в магнитном поле и в витках его возникает переменный ток, который с помощью коллектора преобразуется в постоянный.
К коллектору прижимаются угольные щетки 2, с помощью которых постоянный ток снимается с коллектора и подводится к зажимам 5 («+» и «-»). К этим же зажимам присоединяют сварочные провода, подводящие сварочный ток к электроду и изделию. Для охлаждения преобразователя во время его работы на валу имеется вентилятор 7.
Ходовая часть преобразователя состоит из переднего поворотного колеса с тягой 9 и двух задних колес, сидящих на одной оси. Это позволяет передвигать его на небольшое расстояние. Для подъема и перемещения преобразователя предусмотрены два рым-болта.
Сварочный ток регулируется с помощью маховичка 3 реостата: при вращении его по часовой стрелке сварочный ток увеличивается, и наоборот.

Вопрос 2. Наплавочные работы (виды, назначение, технология, материалы).
Наплавка деталей и восстановление изношенных деталей наплавкой - эффективный и экономичный способ продления срока службы деталей и машин.
Наплавку выполняют с помощью сварки, преимущественно дуговой, для наложения необходимого слоя металла на поверхность детали с целью повышения ее стойкости против истирания, повышенных температур, абразивного изнашивания, коррозии и других видов разрушения.
Наплавку применяют для восстановления размеров изношенных деталей и создания слоя металла и поверхности детали, отличающегося по своим свойствам от основного металла детали повышенной износостойкостью, антикоррозионностью, жаростойкостью и другими свойствами.
Наиболее распространены ручная дуговая наплавка покрытыми электродами, наплавка неплавящимися угольным или вольфрамовым электродом в среде защитного газа, наплавка в углекислом газе, под слоем флюса, вибродуговая наплавка.
По степени механизации процесса различают наплавку:
ручную дуговую покрытыми электродами;
полуавтоматическую;
автоматическую.
Материалы для наплавки. Сплавы, применяемые для дуговой наплавки, можно подразделить на:
литые (сормайт);
порошкообразные или зернистые (вокар, висхром-9);
плавленые карбиды и спеченные (карбиды вольфрама и титана).
Для ручной и механизированной наплавки выпускают большое количество различных наплавочных материалов (проволок, лент, электродов, флюсов и др.) различных химических составов и свойств. При выборе наплавляемого металла учитывают химический состав металла наплавляемой детали, условия работы, характер и вид нагрузки, износ, требуемую износостойкость.
Особое внимание при наплавке под флюсом уделяют свойствам флюсов: способствуют ли они формированию наплавленного металла, стабильности горения дуги, какой склонностью обладают к образованию пор в наплавленном металле, какие содержат легирующие элементы.
Наплавку выполняют покрытыми, проволочными и ленточными электродами. При этом ленточный и проволочный электроды могут быть сплошными или в виде порошковой ленты или порошковой проволоки.
Порошковый электрод представляет собой стержень из порошковой проволоки, имеющий толстое основное покрытие. На свойства и состав наплавленного металла влияют изменения состава порошкового наполнителя.
Порошковые электроды более производительные, чем стержневые.
При наплавке порошковым электродом создается защита легирующих элементов за счет более быстрого плавления наполнителя по сравнению со скоростью плавления оболочки электрода.
Наплавку высоколегированных сталей рекомендуется вести под низколегированными флюсами ФЦЛ-2 и АН-20, под бескислородными флюсами БКФ-1, ВКФ-2, под флюсами 48-ОФ-7 и АН-70.
Технология и способы наплавки. Сущность процесса наплавки заключается в использовании теплоты для расплавления присадочного материала и его соединения с основным металлом детали.
Используя возможности дуговой наплавки, на поверхности детали можно получить наплавленный слой любой толщины, любого химического состава с разнообразными свойствами.
Наплавка может производиться на:
плоские;
цилиндрические;
конические;
сферические и другие формы поверхности в один или несколько слоев.
Толщина слоя наплавки может изменяться в широких пределах - от долей миллиметра до сантиметров. При наплавке поверхностных слоев с заданными свойствами, как правило, химический состав наплавленного металла существенно отличается от химического состава основного металла.
Поэтому при наплавке должен выполняться ряд технологических требований.
1. В первую очередь таким требованием является минимальное разбавление наплавленного слоя основным металлом, расплавляемым при наложении валиков. Поэтому в процессе наплавки необходимо получение наплавленного слоя с минимальным проплавлением основного металла, так как в противном случае возрастает доля основного металла в формировании наплавленного слоя. Это приводит к ненужному разбавлению наплавленного металла расплавляемым основным.
2. При наплавке необходимо обеспечение минимальной зоны термического влияния и минимальных напряжений и деформаций.
Это требование обеспечивается за счет уменьшения глубины проплавления, регулированием параметров режима, погонной энергии, увеличением вылета электрода, применением широкой электродной ленты и другими технологическими приемами.
Технология наплавки различных поверхностей предусматривает ряд приемов нанесения наплавленного слоя:
ниточными валиками с перекрытием один другого на 0,3-0,4 их ширины;
широкими валиками, полученными за счет поперечных к направлению оси валика колебаний электрода, электродными лентами и др.
Расположение валиков с учетом их взаимного перекрытия характеризуется шагом наплавки (рис. 44).



Рис. 44. Схема наплавки слоев:
В, h н, h пр - соответственно ширина валика, высота наплавки, глубина проплавления; S н - шаг наплавки

Наплавку криволинейных поверхностей тел вращения выполняют тремя способами (рис. 45):
наплавкой валиков вдоль образующей тела вращения;
по окружностям;
по винтовой линии.


Рис. 45. Наплавка тел вращения:
а - по образующей; б - по окружности; в - по винтовой линии

Наплавку по образующей выполняют отдельными валиками так же, как при наплавке плоских поверхностей.
Наплавка по окружности также выполняется отдельными валиками до полного замыкания начального и конечного участков со смещением их на определенный шаг вдоль образующей.
При винтовой наплавке деталь вращают непрерывно, при этом источник нагрева перемещается вдоль тела со скоростью, при которой одному обороту детали соответствует смещение источника нагрева, равное шагу наплавки.
При наплавке тел вращения необходимо учитывать возможность стекания расплавленного металла в направлении вращения детали. В этом случае источник нагрева смещают в сторону, противоположную направлению вращении (рис. 46).


Рис. 46. Смещение электрода при наплавке тел вращения:
а - наклонно расположенным электродом; б - с вертикальным расположением электрода

Предварительный подогрев наплавляемой детали до температуры 200-250°С уменьшает склонность наплавленного металла к образованию трещин.
Все дефекты в наплавленном металле можно подразделить на наружные и внутренние .
К последним относятся непровар (несплавление наплавленного металла с основным), пористость, трещины и шлаковые включения. Наружные дефекты, к которым относятся раковины и трещины, выявляют визуально.
Режимы наплавки характеризуются следующими параметрами:
при ручной наплавке покрытым электродом в технологии указывают марку электрода, его диаметр, род тока, сварочный ток;
при автоматической наплавке - тип электродного материала (проволока, лента: сплошного сечения, порошковая), ток, напряжение дуги, длину дуги, скорость наплавки;
при наплавке в защитном газе дополнительно указывают защитный газ;
при наплавке под флюсом - марку флюса.
Выбирая способ наплавки, вначале оценивают возможность его применения в данном конкретном случае, затем определяют возможность обеспечения технических требований, предъявляемых к наплавленному материалу, и, наконец, оценивают экономическую эффективность наплавки. При оценке экономической эффективности способа наплавки общую стоимость ручной дуговой наплавки принимают за 100% наплавку под слоем флюса - 74%, а вибродуговую наплавку - 82%.

3. Задача. По условному обозначению на стволах горелок Г1, Г2, ГЗ, Г4 охарактеризуйте их, расшифровав это обозначение.
Г1 - горелка безынжекторная микромощности; Г2 - горелка инжекторная малой мощности; ГЗ - горелка инжекторная средней мощности; Г4 - горелка инжекторная большой мощности.

Источники питания постоянного тока подразделяются на две основные группы:

  • сварочные преобразователи вращающегося типа (сварочные генераторы);
  • сварочные выпрямительные установки (сварочные выпрямители).

Генераторы постоянного тока подразделяются по количеству питаемых постов:

  • однопостовые;
  • многопостовые;

по способу установки:

  • стационарные;
  • передвижные;

по роду привода:

  • генераторы с электрическим двигателем;
  • генераторы с двигателем внутреннего сгорания;

по конструктивному выполнению:

  • однокорпусные;
  • двухкорпусные.

По форме внешних характеристик сварочные генераторы могут быть:

  • с падающими внешними характеристиками;
  • с жесткими и пологопадающими характеристиками;
  • комбинированного типа (универсальные генераторы, при переключении обмоток или регулирующих устройств которых можно получить падающие, жесткие или пологопадающие характеристики).

Наибольшее распространение получили генераторы с падающими внешними характеристиками, работающие по схемам:

  • генераторы с независимым возбуждением, и размагничивающей последовательной обмоткой;
  • генераторы с намагничивающей параллельной и размагничивающей последовательной обмотками возбуждения;
  • генераторы с расщепленными полюсами.

Ни один из трех видов генераторов с падающими внешними характеристиками не выделяется существенными преимуществами как по технологическим, так и по энергетическим и весовым показателям.

Сварочный преобразователь состоит из асинхронного двигателя и генератора постоянного тока, собранных в одном корпусе. Ротор двигателя и якорь генератора находятся на одном валу. Преобразователь устанавливается на раме или на колесах.

Существует несколько видов генераторов. Один из них - генератор с независимой обмоткой возбуждения и размагничивающей последовательной обмоткой. У такого генератора независимая обмотка, питающаяся от сети переменного тока через селеновый выпрямитель, создает магнитный поток, индуктирующий на щетках генератора напряжение, необходимое для возбуждения дуги. Регулирование сварочного тока производится переключением числа витков последовательной обмотки. В пределах каждого диапазона сварочный ток плавно регулируется реостатом.

Вторым типом генератора является генератор с параллельной обмоткой возбуждения и размагничивающей последовательной обмоткой. Магнитные полюса этого генератора должны иметь остаточный магнетизм, поэтому изготавливаются они из ферромагнитной стали. Устанавливаются на агрегатах с двигателями внутреннего сгорания.

Обслуживание сварочных преобразователей. При эксплуатации преобразователей на открытых строительных и монтажных площадках необходимо защищать их от воздействия атмосферных осадков с помощью специальных будок или навесов. Перед пуском преобразователей, длительное время находившихся под воздействием атмосферных осадков, следует проверить сопротивление изоляции обмоток. Особенно тщательного ухода требуют коллектор генератора, щетки и подшипники. Коллектор следует содержать в чистоте и периодически очищать от пыли путем протирки чистой тряпочкой, смоченной в бензине. При нормальном состоянии коллектор не должен иметь следов нагара. При появлении нагара необходимо выяснить причину его возникновения и устранить ее, а коллектор прошлифовать. Поврежденные или изношенные щетки следует заменить новыми и притереть их к коллектору.

Таблица 38. Сварочные преобразователи с падающей характеристикой

Характеристика Преобразователи с независимым возбуждением и последовательной размагничивающей обмоткой
ПСО-120 ПСО-300А ПД-303 ПСО-500 ПСО-800 АСО-2000 ПС-1000-Ш
Тип генератора ГСО-120 ГСО-300А - ГСО-500 ГСО-800 СГ-1000 ГС-1000
Номинальный сварочный ток, А 120 300 300 500 800 1000х2 1000
Напряжение холостого хода, В 48-65 55-80 65 58-86 60-90 - -
30-120 75-300 80-300 125-600 200-800 300-1200 300-1200
7,3 12,5 10,0 28,0 55 56,0 55,0
2900 2890 2890 2930 - 1460 1460
К.п.д. преобразователя, % 55 60 - 59 57 59 60
Габаритные размеры, мм:
длина 1055 1015 1052 1275 - 4000 1465
ширина 550 590 508 770 - 93,5 770
высота 730 980 996 1080 - 1190 910
Масса, кг 155 400 331 540 1040 4100 1600

Таблица 39. Сварочные преобразователи с жесткими характеристиками и универсальные

Характеристика Тип
ПСГ-350 ПСГ-500-1 ПСУ-300 ПСУ-500-2
с падающей характеристикой с жесткой характеристикой с падающей характеристикой с жесткой характеристикой
Тип генератора ГСГ-350 ПСГ-500-1 ГСУ-300 ГСУ-500-2
Номинальный сварочный ток, А 350 500 300 500 - -
Напряжение холостого хода, В 15-35 18-42 48 16-36 20-48 16-32
Пределы регулирования сварочного тока, А 50-350 60-500 75-300 - 120-500 60-500
ПР, % 60 60 65 60 65 60
Номинальное напряжение, В 30 40 30 30 40 40
Пределы регулирования напряжения, В 15-35 16-40 - 10-35 26-40 16-40
Скорость вращения якоря, об/мин. 2900 2930 2930 2890 - -
Мощность преобразователя, кВт 14 28 28 10
Габаритные размеры, мм:
длина 1085 1052 1160 1055
ширина 555 590 490 580
высота 980 1013 740 920
Масса, кг 400 500 315 545

Таблица 40. Неисправности сварочных преобразователей, причины их вызывающие, и способы устранения

Неисправности Причины появления Способ устранения
Генератор не дает напряжения Размагничивание генератора Намагнитить полюса генератора, подключив обмотки возбуждения к источнику постоянного тока
Генератор не дает напряжения Сильное загрязнение коллектора Очистить коллектор стеклянной мелкой бумагой и протереть тряпкой, смоченной в бензине
Генератор не дает напряжения Обрыв в цепи обмотки возбуждения Устранить обрыв в цепи
Генератор не дает напряжения Плохое прижатие щеток, питающих обмотку возбуждения Проверить пружины нажатия щеток и устранить возможное заедание щеток в щеткодержателе
Перегрев обмотки статора Перегрузка сварочного генератора Устранить перегрузку
Перегрев обмотки статора Большое падение напряжения в проводах питания двигателя Устранить падение напряжения
Перегрев обмотки статора
Обрыв в цепи одной из фаз Устранить обрыв в цепи
Не запускается асинхронный двигатель Неправильное соединение фаз обмотки Исправить соединение фаз обмоток
Искрение и значительный нагар в одном месте коллектора Обрыв обмотки якоря или плохая пайка ее соединения Ликвидировать обрыв и улучшить качество пайки соединений обмотки
Нагрев якоря Короткое замыкание части витков якоря Тщательно очистить коллектор от загрязнения
Обгорание группы пластин коллектора Биение коллектора или заедание щетки в щеткодержателе Проверить индикатором коллектор на биение. При биении свыше 0,03 мм необходимо коллектор проточить на токарном станке. Устранить заедание щетки, подогнав ее по обойме щеткодержателя

Оглавление книги Следующая страница>>

§ 10. Устройство и обслуживание сварочных преобразователей. .

Для питания электрической дуги постоянным током выпускаются передвижные и стационарные сварочные преобразователи. На рис. 17 показано устройство однопостового сварочного преобразователя ПСО-500, выпускаемого серийно нашей промышленностью.

Рис. 17. Схема сварочного преобразователя ПСО-500 :

1 - корпус, 2 - электродвигатель, 3 - вентилятор, 4 - катушка полюсов, 5 - якорь генератора, 6 - коллектор, 7 - токосъемник, 8 - маховичок для регулирования тока, 9 - сварочные зажимы, 10 - амперметр, 11 - пакетный выключатель, 12 - коробка пускорегулирующей и контрольной аппаратуры преобразователя

Однопостовой сварочный преобразователь ПСО-500 состоит из двух машин: из приводного электродвигателя 2 и сварочного генератора ГСО-500 постоянного тока, расположенных в общем корпусе 1. Якорь 5 генератора и ротор двигателя расположены на общем валу, подшипники которого установлены в крышках корпуса преобразователя. На валу между электродвигателем и генератором находится вентилятор 3, предназначенный для охлаждения агрегата во время его работы. Якорь генератора набран из тонких пластин электротехнической стали толщиной до 1 мм и снабжен продольными пазами, в которых уложены изолированные витки обмотки якоря. Концы обмотки якоря припаяны к соответствующим пластинам коллектора 6. На полюсах магнитов насажены катушки 4 с обмотками из изолированной проволоки, которые включаются в электрическую цепь генератора.

Генератор работает по принципу электромагнитной индукции. При вращении якоря 5 его обмотка пересекает магнитные силовые линии магнитов, в результате чего в обмотках якоря наводится переменный электрический ток, который с помощью коллектора 6 преобразуется в постоянный; с щеток токосъемника 7 при нагрузке в сварочной цепи ток течет с коллектора к зажимам 9.

Пускорегулирующая и контрольная аппаратура преобразователя смонтирована на корпусе 1 в общей коробке 12.

Преобразователь включается пакетным включателем 11. Величина тока возбуждения и режим работы сварочного генератора плавно регулируются реостатом в цепи независимого возбуждения маховичком 8. С помощью перемычки, соединяющей дополнительный зажим с одним из положительных выводов от последовательной обмотки, можно устанавливать сварочный ток до 300 и 500 А. Работа генератора на токах, превышающих верхние пределы (300 и 500 А), не рекомендуется, так как возможен перегрев машины и нарушение системы коммутации. Величина сварочного тока определяется амперметром 10, шунт которого включен в цепь якоря генератора, смонтированного внутри корпуса преобразователя.

Обмотки генератора ГСО-500 выполняются из меди или алюминия. Алюминиевые шины армируют медными пластинками. Для защиты от радиопомех, возникающих при работе генератора, применен емкостный фильтр из двух конденсаторов.

Перед пуском преобразователя в работу необходимо проверить заземление корпуса; состояние щеток коллектора; надежность контактов во внутренней и внешней цепях; штурвал реостата повернуть против часовой стрелки до упора; проверить, не касаются ли концы сварочных проводов друг друга; установить перемычку на доске зажимов соответственно требуемой величине сварочного тока (300 или 500 А).

Пуск преобразователя осуществляется включением двигателя в сеть (пакетным выключателем 11). После подсоединения к сети необходимо проверить направление вращения генератора (если смотреть со стороны коллектора, ротор должен вращаться против часовой стрелки) и в случае необходимости поменять местами провода в месте их подключения к питающей сети.

Сварочный преобразователь представляет собой комбинацию электродвигателя переменного тока и сварочного генераторапостоянного тока. Электрическая энергия сети переменного тока преобразуется в механическую энергию электродвигателя, вращает вал генератора и преобразуется в электрическую энергию постоянного сварочного тока. Поэтому КПД преобразователя невелик: из-за наличия вращающихся частей они менее надежны и удобны в эксплуатации по сравнению с выпрямителями. Однако для строительно-монтажных работ использование генераторов имеет преимущество по сравнению с другими источниками благодаря их меньшей чувствительности к колебаниям сетевого напряжения.

Для питания электрической дуги постоянным током выпускаются передвижные и стационарные сварочные преобразователи. На рис. 11 показано устройство одно-постового сварочного преобразователя ПСО-500, выпускаемого серийно нашей промышленностью.

Рис.1 Схема сварочного преобразователя ПСО-500

2-Электродвигатель

3-Вентелятор

4-Катушки полюсов

5-Якорь полюсов

6-Коллектор

7-Токо съемники

8- Маховичок для регулирования тока

9-сварочные клеммы

10-Амперметр

11-Пакетный выключатель

12-Коропка пускарегулирующей и контрольной аппаратуры преобразователя

Однопостовой сварочный преобразователь состоит из двух машин: из приводного электродвигателя 2 и сварочного гене­ратора постоянного тока, расположенных в общем корпусе 1. Якорь 5 генератора и ротор электродвигателя расположены на общем валу, подшипники которого установлены в крышках корпуса преобразователя. На валу между электродвигателем и генератором находится вентилятор 3, предназначенный для охлаждения агрегата во время его работы. Якорь генератора набран из тонких пластин электротехнической стали толщиной до 1 мм и снабжен продольными пазами, в которых уло­жены изолированные витки обмотки якоря. Концы обмотки якоря припаяны к соответствующим пластинам коллектора 6. На полюсах магнитов насажены катушки 4 с обмотками из изолированной проволоки, которые включаются в электри­ческую цепь генератора.

Генератор работает по принципу электромагнитной индук­ции. При вращении якоря 5 его обмотка пересекает магнитные силовые линии магнитов, в результате чего в обмотках якоря наводится переменный электрический ток, который при помощи коллектора 6 преобразуется в постоянный; с щеток токосъем­ника 7, при нагрузке в сварочной цепи, ток течет с коллек­тора к зажимам 9.

Пускорегулирующая и контрольная аппаратура преобразо­вателя смонтирована на корпусе 1 в общей коробке 12.

Преобразователь включается пакетным выключателем 11. Плавное регулирование величины тока возбуждения и регу­лирование режима работы сварочного генератора производят реостатом в цепи независимого возбуждения маховичком8. С помощью перемычки, соединяющей дополнительный зажим с одним из положительных выводов от последовательной обмотки, можно устанавливать сварочный ток для работы до 300 и до 500 А. Работа генератора на токах, превышающих верхние пределы (300 и 500 А), не 2эекомендуется, так как возможен перегрев машины и нарушится система комму­тации.

Величина сварочного тока определяется амперметром 10, шунт которого включен в цепь якоря генератора, смонтиро­ванного внутри корпуса преобразователя.

Обмотки генератора выполняют из меди или алюминия. Алюминиевые шины армируют медными пластинками. Для защиты от радиопомех, возникающих при работе генератора, применен емкостный фильтр из двух конденсаторов.

Перед пуском преобразователя в работу необходимо про­верить заземление корпуса; состояние щеток коллектора; на­дежность контактов во внутренней и внешней цепи; штурвал реостата повернуть против часовой стрелки до упора; проверить, не касаются ли концы сварочных проводов друг друга; уста­новить перемычку на доске зажимов соответственно требуемой величине сварочного тока (300 или 500 А).

Пуск преобразозателя осуществляется включением двига­теля в сеть (пакетным выключателем 11). После подсоеди­нения к сети необходимо проверить направление вращения генератора (если смотреть со стороны коллектора, ротор должен вращаться против часовой стрелки) и в случае необходимости поменять местами провода в месте их подключения к пита­ющей сети.

Для пояснения принципа работы сварочного преобразователя рассмотрим упрощенную электрическую схему преобразователя ПСО-500 (рис. 2). Асинхронный электродвигатель 1 с коротко-замкнутым ротором имеет три обмотки статора, включенные по схеме «звезда» (380 в). Пакетный выключатель 2 служит для включения электродвигателя в сеть трехфазного переменного тока напряжением 380 в. Четырех полюсный сварочный генератор 8 имеет обмотку 5 независимого возбуждения и последовательную размагничивающую обмотку 7, обеспечивающую падающую внешнюю характеристику генератора. Обмотки 5 и 7 расположены на разных полюсах. Независимая обмотка возбуждения 5 питается постоянным током от селенового выпрямителя 4, включенного в сеть питания обмоток электродвигателя через стабилизатор напряжения (однофазный трансформатор) 3 и включается одновременно с пуском электродвигателя.

Сварочный ток регулируется реостатом 6, включенным в цепь независимой обмотки возбуждения 5. Величина тока измеряется амперметром 9. Сварочная цепь подключается к зажимам доски 10, на которой имеется перемычка, переключающая секции последовательной обмотки 7 на два диапазона сварочного тока: до 300 а и до 500 а. Конденсаторы 11 устраняют радиопомехи, возникающие при работе преобразователя.

(Рис.2) Принципиальная электрическая схема сварочного преобразователя ПСО-500

1- Асинхронный электродвигатель

2- Пакетный выключатель

3- Стабилизатор напряжения

4- Селеновый выпрямитель

5-обмотка независимым возбуждением

6- Регулируемый реостат

7- Последовательная размагничивающая обмотка

8- Четырех полюсный сварочный генератор

9-Амперметр

10- зажимы доски

11- Конденсаторы

Принципиальная электрическая схема сварочного генератора с независимым возбуждением и размагничивающей последовательной обмоткой.

На рис.3 Дана схема генератора ГСО-500 с независимым возбуждением и размагничивающей последовательной обмоткой. Намагничивающая обмотка независимого возбуждения питается током от отдельного источника (сети переменного тока через полупроводниковый селеновый выпрямитель), а размагничивающая включена последовательно с обмоткой якоря так, что создаваемый ею магнитный поток Ф р направлен навстречу магнитному потоку Ф нв обмотки возбуждения. Ток I нв в обмотке возбуждения, а следовательно, и величину магнитного потока Ф нв в ней можно плавно изменять с помощью реостата R. Последовательная размагничивающая обмотка обычно секционирована, что позволяет применять ступенчатое регулирование сварочного тока изменением числа действующих ампер-витков в обмотке. Напряжение холостого хода генератора определяется током в обмотке независимого возбуждения. При увеличении сварочного тока I св возрастает магнитный поток Ф р в размагничивающей обмотке, который, действуя встречно потоку Ф нв обмотки независимого возбуждения, уменьшает напряжение в сварочной цепи, создавая падающую внешнюю характеристику генератора (рис. 146).

Изменяют внешние характеристики регулированием тока в обмотке независимого возбуждения и переключением числа витков размагничивающей обмотки. По этой схеме работают сварочные генераторы преобразователей ПСО-120, ПСО-800. Для получения жесткой внешней характеристики последовательные размагничивающие обмотки переключаются так, чтобы они действовали согласованно с обмоткой независимого возбуждения. По такой схеме работают генераторы преобразователей ПСГ-350 и ПСГ-500.

(Рис.3)схема Генератора с независимым возбуждением и размагничивающей последовательной обмоткой.