Понятие о множественной регрессии. классическая линейная модель множественной регрессии (клммр). определение параметров уравнения множественной регрессии методом наименьших квадратов. Модель множественной регрессии

22.09.2019

В предыдущих разделах было упомянуто о том, что вряд ли выбранная независимая переменная является единственным фактором, который повлияет на зависимую переменную. В большинстве случаев мы можем идентифицировать более одного фактора, способного влиять каким-то образом на зависимую переменную. Так, например, разумно предположить, что расходы цеха будут определяться количеством отработанных часов, использованного сырья, количеством произведенной продукции. По видимому, нужно использовать все факторы, которые мы перечислили для того, чтобы предсказать расходы цеха. Мы можем собрать данные об издержках, отработанном времени, использованном сырье и т.д. за неделю или за месяц Но мы не сможем исследовать природу связи между издержками и всеми другими переменными посредством корреляционной диаграммы. Начнем с предположений о линейной связи, и только если это предположение будет неприемлимо, попробуем использовать нелинейную модель. Линейная модель для множественной регрессии:

Вариация у объясняется вариацией всех независимых переменных, которые в идеале должны быть независимы друг от друга. Например, если мы решим использовать пять независимых переменных, то модель будет следующей:

Как и в случае простой линейной регрессии мы получаем по выборке оценки и т.д. Наилучшая линия для выборки:

Коэффициент а и коэффициенты регрессии вычисляются с помощью минимальности суммы квадратов ошибок Для дальнейшего регрессионной модели используют следующие предположения об ошибка любого данного

2. Дисперсия равна и одинакова для всех х.

3. Ошибки независимы друг от друга.

Эти предположения те же, что и в случае простой регрессии. Однако в случае они ведут к очень сложным вычислениям. К счастью, выполня вычисления, позволяя нам сосредоточиться на интерпретации и оценке торной модели. В следующем разделе мы определим шаги, которые необх предпринять в случае множественной регрессии, но в любом случае мы полагаться на компьютер.

ШАГ 1. ПОДГОТОВКА ИСХОДНЫХ ДАННЫХ

Первый шаг обычно предполагает обдумать, как зависимая переменная быть связана с каждой из независимых переменных. Нет смысла нительные переменные х, если они не дают возможность объяснения вариа Вспомним, что наша задача состоит в объяснить вариацию изменения независимой переменкой х. Нам необходимо рассчитать коэффид корреляции для всех пар переменных при условии независимости наблк друг от друга. Это даст нам возможность определить, связаны х с у линей! же нет, независимы ли между собой. Это важно в множественной регр Мы можем вычислить каждый из коэффициентов корреляции, как пока: разделе 8.5, чтобы посмотреть, насколько их значения отличны от нуля нужно выяснить, нет ли высокой корреляции между значениями незавю переменных. Если мы обнаружим высокую корреляцию, например, между х то маловероятно, что обе эти переменные должны быть включены в оконч модель.

ШАГ 2. ОПРЕДЕНИЕ ВСЕХ СТАТИСТИЧЕСКИ ЗНАЧИМЫХ МОДЕЛ

Мы можем исследовать линейную связь между у и любой комбинацией переменных. Но модель имеет силу только в том случае, если значимая линейная связь между у и всеми х и если каждый коэффи регрессии значимо отличен от нуля.

Мы можем оценить значимость модели в целом, используя того, мы должны использовать -критерий для каждого коэффициента регр чтобы определить, значимо ли он отличен от нуля. Если коэффициент сии не значимо отличается от нуля, то соответствующая независимая перем не помогает в прогнозе значения у и модель не имеет силы.

Полная процедура заключается в том, чтобы установить множествениу нейную регрессионную модель для всех комбинаций независимых переме. Оценим каждую модель, используя F-критерий для модели в целом и -кри для каждого коэффициента регрессии. Если F-критерий или любой из -кря! незначимы, то эта модель не имеет силы и не может быть использована.

модели исключаются из рассмотрения. Этот процесс занимает очень много времени. Например, если у нас имеются пять независимых переменных, то возможно построение 31 модели: одна модель со всеми пятью переменными, пять моделей, включающие четыре из пяти переменных, десять - с тремя переменными, десять - с двумя переменными и пять моделей с одной.

Можно получить множественную регрессию не исключая последовательно независимые переменные, а расширяя их круг. В в этом случае мы начинаем с построения простых регрессий для каждой из независимых переменных поочередно. Мы выбираем лучшую из этих регрессий, т.е. с наивысшим коэффициентом корреляции, затем добавляем к этому, наиболее приемлемому значению переменной у вторую переменную. Этот метод построения множественной регрессии называется прямым.

Обратный метод начинается с исследования модели, включающей все независимые переменные; в нижеприведенном примере их пять. Переменная, которая дает наименьший вклад в общую модель, исключается из рассмотрения, остается только четыре переменных. Для этих четырех переменных определяется линейная модель. Если же эта модель не верна, исключается еще одна переменная, дающая наименьший вклад, остается три переменных. И этот процесс повторяется со следующими переменными. Каждый раз, когда исключается новая переменная, нужно проверять, чтобы значимая переменная не была удалена. Все эти действия нужно производить с большим вниманием, так как можно неосторожно исключить нужную, значимую модель из рассмотрения.

Не важно, какой именно метод используется, может быть несколько значимых моделей и каждая из них может иметь огромное значение.

ШАГ 3. ВЫБОР ЛУЧШЕЙ МОДЕЛИ ИЗ ВСЕХ ЗНАЧИМЫХ МОДЕЛЕЙ

Эта процедура может бьгть рассмотрена с помощью примера, в котором определились три важнейших модели. Первоначально было пять независимых переменных но три из них - - исключены из всех моделей. Эти переменные не помогают в прогнозировании у.

Поэтому значимыми моделями оказались:

Модель 1: у прогнозируется только

Модель 2: у прогнозируется только

Модель 3: у прогнозируется вместе.

Для того, чтобы сделать выбор из этих моделей, проверим значения коэффициента корреляции и стандартного отклонения остатков Коэффициент множественной корреляции - есть отношение "объясненной" вариации у к общей вариации у и вычисляется так же, как и коэффициент парной корреляции для простой регрессии при двух переменных. Модель, которая описывает связь между у и несколькими значениями х, имеет множественный коэффициент корреляции который близок к и значение очень мало. Коэффициент детерминации который часто предлагается в ППП, описывает процент изменяемости у, которая обменяется моделью. Модель имеет значение в том случае, когда близко к 100%.

В данном примере мы просто выбираем модель с наибольшим значением и наименьшим значением Предпочтительной моделью оказалась модель следующем шаге необходимо сравнить модели 1 и 3. Различие между этими моделями состоит во включении переменной в модель 3. Вопрос в том повышает ли значительно точность предсказания значения у или же нет! Следующий критерий поможет ответить нам на этот вопрос - это частный F-критерий. Рассмотрим пример, иллюстрирующий всю процедуру построения множественной регрессии.

Пример 8.2. Руководство большой шоколадной фабрики заинтересовано в построении модели для того, чтобы предсказать реализацию одной из своих уже долго существующих торговых марок. Были собраны следующие данные.

Таблица 8.5. Построение модели для прогноза объема реализации (см. скан)

Для того чтобы модель была полезной и имела силу, мы должны отвергнуть Но и принять Значение F-критерия есть соотношение двух величин, описанных выше:

Этот критерий с одним хвостом (односторонний), потому, что средний квадрат, обусловленный регрессией, должен быть больше, чтобы мы могли принять . В предыдущих разделах, когда мы использовали F-критерий, критерии были двусторонние, так как во главу угла ставилось большее значение вариации, каким бы оно ни было. В регрессионном анализе нет выбора - наверху (в числителе) всегда вариация у по регрессии. Если она меньше, чем вариация по остаточной величине, мы принимает Но, так как модель не объясняет изменений у. Это значение F-критерия сравнивается с табличным:

Из таблиц стандартного распределения F-критерия:

В нашем примере значение критерия:

Поэтому мы получили результат с высокой достоверностью.

Проверим каждое из значений коэффициентов регрессии. Предположим, что компьютер сосчитал все необходимые -критерии. Для первого коэффициента гипотезы формулируются так:

Время не помогает объяснить изменение продаж при условии, что остальные переменные присутствуют в модели, т.е.

Время дает существенный вклад и должно быть включено в модель, т. е.

Проведем испытание гипотезы на -ном уровне, пользуясь двусторонним -критерием при:

Граничные значения на данном уровне:

Значение критерия:

Рассчитанные значения -критерия должны лежать вне указанных границ для того, чтобы мы смогли отвергнуть гипотезу

Рис. 8.20. Распределение остатков для модели с двумя переменными

Оказалось восемь ошибок с отклонениями 10% или более от фактического объема продаж. Наибольшая из них - 27%. Будет ли размер ошибки принят компанией при планировании деятельности? Ответ на этот вопрос будет зависеть от степени надежности других методов.

8.7. НЕЛИНЕЙНЫЕ СВЯЗИ

Вернемся к ситуации, когда у нас всего две переменные, но связь между ними нелинейная. На практике многие связи между переменными являются криволинейными. Например, связь может быть выражена уравнением:

Если связь между переменными сильная, т.е. отклонение от криволинейной модели относительно небольшое, то мы сможем догадаться о природе наилучшей модели по диаграмме (полю корреляции). Однако трудно применить нелинейную модель к выборочной совокупности. Было бы легче, если бы мы могли манипулировать нелинейной моделью в линейной форме. В первых двух записанных моделях функциям могут быть присвоены разные имена, и тогда будет использоваться множественная модель регрессии. Например, если модель:

лучше всего описывает связь между у и х, то перепишем нашу модель, используя независимые переменные

Эти переменные рассматриваются как обыкновенные независимые переменные, даже если мы знаем, что и х не могут быть независимы друг от друга. Лучшая модель выбирается так же, как и в предыдущем разделе.

Третья и четвертая модели рассматриваются по-другому. Тут мы уже встречаемся с необходимостью так называемой линейной трансформации. Например, если связь

то на графике это будет изображено кривой линией. Все необходимые действия могут быть представлены следующим образом:

Таблица 8.10. Расчет

Рис. 8.21. Нелинейная связь

Линейная модель, при трансформированной связи:

Рис. 8.22. Линейная трансформация связи

В общем, если исходная диаграмма показывает, что связь может быть изображена в форме: то представление у против X, где определит прямую линию. Воспользуемся простой линейной регрессией для установления модели: Рассчитанные значения а и - лучшие значения а и (5.

Четвертая модель, приведенная выше, включает трансформацию у с использованием натурального логарифма:

Взяв логарифмы по обеих сторон уравнения, получим:

поэтому: где

Если , то - уравнение линейной связи между Y и х. Пусть - связь между у и х, тогда мы должны трансформировать каждое значение у взятием логарифма по е. Определяем простую линейную регрессию по х для того, чтобы найти значения А и Антилогарифм записан ниже.

Таким образом, метод линейной регрессии может быть применен к нелинейным связям. Однако в этом случае требуется алгебраическое преобразование при записи исходной модели.

Пример 8.3. Следующая таблица содержит данные об общем годовом объеме производства промышленной продукции в определенной стране за период

На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. Например, спрос на некоторое благо определяется не только ценой данного блага, но и ценами на замещающие и дополняющие блага, доходом потребителей и многими другими факторами. В этом случае вместо парной регрессии рассматривается множественная регрессия

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и в ряде других вопросов экономики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике. Основной целью множественной регрессии является построение модели с большим числом факторов, а также определение влияния каждого фактора в отдельности и совокупного их воздействия на моделируемый показатель.

Множественный регрессионный анализ является развитием парного регрессионного анализа в случаях, когда зависимая переменная связана более чем с одной независимой переменной. Большая часть анализа является непосредственным расширением парной регрессионной модели, но здесь также появляются и некоторые новые проблемы, из которых следует выделить две. Первая проблема касается исследования влияния конкретной независимой переменной на зависимую переменную, а также разграничения её воздействия и воздействий других независимых переменных. Второй важной проблемой является спецификация модели, которая состоит в том, что необходимо ответить на вопрос, какие факторы следует включить в регрессию (1), а какие - исключить из неё. В дальнейшем изложение общих вопросов множественного регрессионного анализа будем вести, разграничивая эти проблемы. Поэтому вначале будем полагать, что спецификация модели правильна.

Самой употребляемой и наиболее простой из моделей множественной регрессии является линейная модель множественной регрессии:

y=α"+β 1 "x 1 + β 2 "x 2+…+ β p "x p +ε (2)

По математическому смыслу коэффициенты β" j в уравнении (2) равны частным производным результативного признака у по соответствующим факторам:

Параметр а" называется свободным членом и определяет значение у в случае, когда все объясняющие переменные равны нулю. Однако, как и в случае парной регрессии, факторы по своему экономическому содержанию часто не могут принимать нулевых значений, и значение свободного члена не имеет экономического смысла. При этом, в отличие от парной регрессии, значение каждого регрессионного коэффициента β" j равно среднему изменению у при увеличении x j на одну единицу лишь при условии, что все остальные факторы остались неизменными. Величина Î представляет собой случайную ошибку регрессионной зависимости.

Попутно отметим, что наиболее просто можно определять оценки параметров β" j , изменяя только один фактор x j , оставляя при этом значения других факторов неизменными. Тогда задача оценки параметров сводилась бы к последова­тельности задач парного регрессионного анализа по каждому фактору. Однако такой подход, широко используемый в естественнонаучных исследованиях, (физических, химических, биологических), в экономике является неприемлемым. Экономист, в отличие от экспериментатора - естественника, лишен возможности регулировать отдельные факторы, поскольку не удаётся обеспечить равенство всех прочих условий для оценки влияния одного исследуемого фактора.

Получение оценок параметров α ׳ , b 1 ’ , b 2 ’ , …, b p уравнения регрессии (2) - одна из важнейших задач множественного регрессионного анализа. Самым распространенным методом решения этой задачи является метод наименьших квадратов (МНК). Его суть состоит в минимизации суммы квадратов отклонений наблюдаемых значений зависимой переменной у от её значений получаемых по уравнению регрессии. Поскольку параметры а " , b 1 ’ , b 2 ’ , …, b p являются неизвестными константами, вместо теоретического уравнения регрессии (2), оценивается так называемоеэмпирическое уравнение регрессии, которое можно представить в виде:

Здесь a, b 1 , b 2 ,.. b p - оценки теоретических значений α", β 1 ", β 2 " ",…, β р ", или эмпирические коэффициенты регрессии, е -- оценка отклонения ε. Тогда расчетное выражение имеет вид:

Пусть имеется п наблюдений объясняющих переменных и соответствующих им значений результативного признака:

, (5)

Для однозначного определения значений параметров уравнения (4) объем выборки п должен быть не меньше количества параметров, т.е. п≥р+1 . В противном случае значения параметров не могут быть определены однозначно. Если п=р+1 , оценки параметров рассчитываются единственным образом без МНК простой подстановкой значений (5) в выражение (4). Получается система (р+1) уравнений с таким же количеством неизвестных, которая решается любым способом, применяемым к системам линейных алгебраических уравнений (СЛАУ). Однако с точки зрения статистического подхода такое решение задачи является ненадежным, поскольку измеренные значения переменных (5) содержат различные виды погрешностей. Поэтому для получения надежных оценок параметров уравнения (4) объём выборки должен значительно превышать количество определяемых по нему параметров. Практически, как было сказано ранее, объём выборки должен превышать количество параметров при x j в уравнении (4) в 6-7 раз.

Для проведения анализа в рамках линейной модели множественной регрессии необходимо выполнение ряда предпосылок МНК. В основном это те же предпосылки, что и для парной регрессии, однако здесь нужно добавить предположения, специфичные для множественной регрессии:

5°. Спецификация модели имеет вид (2).

6°. Отсутствие мультиколлинеарности: между объясняющими переменными отсутствует строгая линейная зависимость, что играет важную роль в отборе факторов при решении проблемы спецификации модели.

7°. Ошибки ε i , , имеют нормальное распределение (ε i ~ N(0, σ)) . Выполнимость этого условия нужна для проверки статистических гипотез и построения интервальных оценок.

При выполнимости всех этих предпосылок имеет место многомерный аналог теоремы Гаусса - Маркова: оценки a,b 1 , b 2 ,... b p , полученные по МНК, являются наиболее эффективными (в смысле наименьшей дисперсии) в классе линейных несмещенных оценок.

Классический метод наименьших квадратов (МНК) для модели множественной регрессии. Свойства оценок МНК для модели множественной регрессии и показатели качества подбора регрессии: коэффициент множественной корреляции, коэффициенты частной корреляции, коэффициент множественной детерминации

Мультиколлинœеарность факторов. Признаки мультиколлинœеарности и способы ее устранения. Гомоскедастичность и гетероскедастичность остатков. Графический метод обнаружения гетероскедастичности. Причины и последствия гетероскедастичности.

МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

На любой экономический показатель чаще всœего оказывает влияние не один, а несколько факторов. В этом случае вместо парной регрессии рассматривается множественная регрессия

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и в ряде других вопросов экономики. Сегодня множественная регрессия – один из наиболее распространенных методов в эконометрике. Основной целью множественной регрессии является построение модели с большим числом факторов, а также определœение влияния каждого фактора в отдельности и совокупного их воздействия на моделируемый показатель.

Множественный регрессионный анализ является развитием парного регрессионного анализа в случаях, когда зависимая переменная связана более чем с одной независимой переменной. Большая часть анализа является непосредственным расширением парной регрессионной модели, но здесь также появляются и некоторые новые проблемы, из которых следует выделить две. Первая проблема касается исследования влияния конкретной независимой переменной на зависимую переменную, а также разграничения её воздействия и воздействий других независимых переменных. Второй важной проблемой является спецификация модели, которая состоит в том, что крайне важно ответить на вопрос, какие факторы следует включить в регрессию (1), а какие – исключить из неё.

Самой употребляемой и наиболее простой из моделœей множественной регрессии является линœейная модель множественной регрессии:

Параметр α принято называть свободным членом и определяет значение y в случае, когда всœе объясняющие переменные равны нулю. При этом, как и в случае парной регрессии, факторы по своему экономическому содержанию часто не могут принимать нулевых значений, и значение свободного члена не имеет экономического смысла. При этом, в отличие от парной регрессии, значение каждого регрессионного коэффициента равно среднему изменению y при увеличении x j на одну единицу лишь при условии, что всœе остальные факторы остались неизменными. Величина ε представляет собой случайную ошибку регрессионной зависимости.

Получение оценок параметров уравнения регрессии (2) – одна из важнейших задач множественного регрессионного анализа. Самым распространенным методом решения этой задачи является метод наименьших квадратов (МНК). Его суть состоит в минимизации суммы квадратов отклонений наблюдаемых значений зависимой переменной y от её значений , получаемых по уравнению регрессии.

Пусть имеется n наблюдений объясняющих переменных и соответствующих им значений результативного признака:

Для однозначного определœения значений параметров уравнения (4) объём выборки n должен быть не меньше количества параметров, ᴛ.ᴇ. . В противном случае значения параметров не бывают определœены однозначно. В случае если n=p +1, оценки параметров рассчитываются единственным образом без МНК простой подстановкой значений (5) в выражение (4). Получается система (p +1) уравнений с таким же количеством неизвестных, которая решается любым способом, применяемым к системам линœейных алгебраических уравнений (СЛАУ). При этом с точки зрения статистического подхода такое решение задачи является ненадежным, поскольку измеренные значения переменных (5) содержат различные виды погрешностей. По этой причине для получения надежных оценок параметров уравнения (4) объём выборки должен значительно превышать количество определяемых по нему параметров. Практически, как было сказано ранее, объём выборки должен превышать количество параметров при x j в уравнении (4) в 6-7 раз.

Линейная модель множественной регрессии - понятие и виды. Классификация и особенности категории "Линейная модель множественной регрессии" 2017, 2018.

Парная регрессия используется при моделировании, если влиянием других факторов, воздействующих на объект исследования можно пренебречь.

Например, при построении модели потребления того или иного товара от дохода, исследователь предполагает, что в каждой группе дохода одинаково влияние на потребление таких факторов, как цена товара, размер семьи, ее состав. Однако, уверенности в справедливости данного утверждения нет.

Прямой путь решения такой задачи состоит в отборе единиц совокупности с одинаковыми значениями всех других факторов, кроме дохода. Он приводит к планированию эксперимента – метод, который используется в естественнонаучных исследованиях. Экономист лишен возможности регулировать другие факторы. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство прочих условий для оценки влияния одного исследуемого фактора.

Как поступить в этом случае? Надо выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии.

Такого рода уравнения используется при изучении потребления.

Коэффициенты b j – частные производные у по факторами х i

При условии, что все остальные х i = const

Рассмотрим современную потребительскую функцию (впервые 30е годы предложил Кейнс Дж.М.) как модель вида С = f(y,P,M,Z)

c- потребление. у – доход

P – цена, индекс стоимости.

M – наличные деньги

Z – ликвидные активы

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функций издержек производства, в макроэкономических вопросах и других вопросах эконометрики.

В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого их них в отдельности, а также совокупное воздействие на моделируемый показатель.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя два круга вопросов:

1. Отбор факторов;

2. Выбор уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Требования к факторам, включаемым во множественную регрессию:

1. они должны быть количественно измеримы, если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости: районы должны быть проранжированы).

2. факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, когда R у x 1

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются интерпретируемыми.

В уравнение предполагается, что факторы х 1 и х 2 независимы друг от друга, r х1х2 = 0, тогда параметр b 1 измеряет силу влияния фактора х 1 на результат у при неизменном значении фактора х 2 . Если r х1х2 =1, то с изменением фактора х 1 фактор х 2 не может оставаться неизменным. Отсюда b 1 и b 2 нельзя интерпретировать как показатели раздельного влияния х 1 и х 2 и на у.

Пример, рассмотрим регрессию себестоимости единицы продукции у (руб.) от заработной платы работника х (руб.) и производительности труда z (ед. в час).

у = 22600 - 5x - 10z + e

коэффициент b 2 = -10, показывает, что с ростом производительности труда на 1 ед. себестоимость единицы продукции снижается на 10 руб. при постоянном уровне оплаты.

Вместе с тем параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии при переменной х обусловлено высокой корреляцией между х и z (r х z = 0,95). Поэтому роста заработной платы при неизменности производительности труда (не учитывая инфляции) быть не может.

Включенные во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строиться модель с набором р факторов, то для нее рассчитывается показатель детерминации R 2 , которая фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р факторов. Влияние других неучтенных в модели факторов оценивается как 1-R 2 c соответствующей остаточной дисперсией S 2 .

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшается.

R 2 p +1 ≥ R 2 p и S 2 p +1 ≤ S 2 p .

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включенный в анализ фактор x р+1 не улучшает модель и практически является лишним фактором.

Если для регрессии, включающей 5 факторов R 2 = 0,857, и включенный 6 дало R 2 = 0,858, то нецелесообразно включать в модель этот фактор.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической не значимости параметров регрессии по критерию t-Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости.

Отбор факторов производиться на основе теоретико-экономического анализа. Однако, он часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов осуществляется в две стадии:

на первой – подбирают факторы, исходя из сущности проблемы.

на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Коэффициенты интеркоррелиции (т.е. корреляция между объясняющими переменными) позволяют исключить из моделей дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если r xixj ≥0,7.

Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, т.е. r х ixj = 0, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Рассмотрим матрицу парных коэффициентов корреляции при изучении зависимости у = f(x, z, v)

y x z V
Y
X 0,8
Z 0,7 0,8
V 0,6 0,5 0,2

Очевидно, факторы x и z дублируют друг друга. В анализ целесообразно включит фактор z, а не х, так как корреляция z с у слабее чем корреляция фактора х с у (r у z < r ух), но зато слабее межфакторная корреляция (r zv < r х v)

Поэтому в данном случае в уравнение множественной регрессии включает факторы z и v . По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Но наиболее трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарности факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК. Если рассмотренная регрессия у = a + bx + cx + dv + e, то для расчета параметров, применяется МНК:

S y = S факт +S e

или
=
+

общая сумма = факторная + остаточная

Квадратов отклонений

В свою очередь, при независимости факторов друг от друга, выполнимо равенство:

S = S x +S z + S v

Суммы квадратов отклонения, обусловленных влиянием соответствующих факторов.

Если же факторы интеркоррелированы, то данное равенство нарушается.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующего:

· затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл;

· оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарных факторов будем использовать определитель матрицы парных коэффициентов корреляции между факторами. Если бы факторы не коррелировали между собой, то матрица парных коэффициентов была бы единичной.

y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + e

Если же между факторами существует полная линейная зависимость, то:

Чем ближе к 0 определитель, тем сильнее межколлинеарность факторов и ненадежны результаты множественной регрессии. Чем ближе к 1, тем меньше мультиколлинеарность факторов.

Оценка значимости мультиколлинеарности факторов может быть проведена методами испытания гипотезы 0 независимости переменных H 0:

Доказано, что величина
имеет приближенное распределение с степенями свободы. Если фактически значение превосходит табличное (критическое) то гипотеза H 0 отклоняется. Это означает, что , недиагональные коэффициенты указывают на коллинеарность факторов. Мультиколлинеарность считается доказанной.

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов. Для этого в качестве зависимой переменной рассматривается каждый из факторов. Чем ближе значение R 2 к 1, тем сильнее проявляется мультиколлинеарность. Сравнивая между собой коэффициенты множественной детерминации и т.п.

Можно выделить переменные, ответственные за мультиколлинеарность, следовательно, решить проблему отбора факторов, оставляя в уравнения факторы с минимальной величиной коэффициента множественной детерминации.

Существует ряд походов преодоления сильной межфакторной корреляции. Самый простой путь устранения МК состоит в исключении из модели одного или несколько факторов.

Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Если y = f(x 1 , x 2 , x 3), то возможно построение следующего совмещенного уравнения:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 12 x 1 x 2 + b 13 x 1 x 3 + b 23 x 2 x 3 + e.

Это уравнение включает взаимодействие первого порядка (взаимодействие двух факторов).

Возможно включение в уравнение взаимодействий и более высокого порядка, если будет доказано их статистически значимость по F-критерию

b 123 x 1 x 2 х 3 – взаимодействие второго порядка.

Если анализ совмещенного уравнения показал значимость только взаимодействия факторов х 1 и х 3 , то уравнение будет имеет вид:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 13 x 1 x 3 + e.

Взаимодействие факторов х 1 и х 3 означает, что на разных уровнях фактора х 3 влияние фактора х 1 на у будет неодинаково, т.е. оно зависит от значения фактора х 3 . На рис. 3.1 взаимодействие факторов представляет непараллельными линями связи с результатом у. И наоборот, параллельные линии влияние фактора х 1 на у при разных уровнях фактора х 3 означают отсутствие взаимодействия факторов х 1 и х 3 .

(х 3 =В 2)
(х 3 =В 1)
(х 3 =В 1)
(х 3 =В 2)
у
у
1
х 1
а
б
у
у
Х 1
Х 1

Рис 3.1. Графическая иллюстрация взаимодействия факторов.

а - х 1 влияет на у, причем это влияние одинаково при х 3 =В 1 , так и при х 3 =В 2 (одинаковый наклон линий регрессии), что означает отсутствие взаимодействия факторов х 1 и х 3 ;

б – с ростом х 1 результативный признак у возрастает при х 3 =В 1 , с ростом х 1 результативный признак у снижается при х 3 =В 2 . Между х 1 и х 3 существует взаимодействие.

Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений (комбинации азота и фосфора).

Решению проблемы устранения мультиколлинеарности факторов может помочь и переход к устранениям приведенной формы. С этой целью в уравнение регрессии производится подстановка рассматриваемого фактора через выражение его из другого уравнения.

Пусть, например, рассматривается двухфакторная регрессия вида a + b 1 x 1 + b 2 x 2 , для которой x 1 и x 2 обнаруживают высокую корреляцию. Если исключить один из факторов, то мы придем к уравнению парной регрессии. Вместе с тем можно оставить факторы в модели, но исследовать данное двухфакторное уравнение регрессии совместно с другим уравнением, в котором фактор (например х 2) рассматривается как зависимая переменная. Предположим, известно, что . Постановляя это уравнение в искомое вместо х 2 , получим:

Если , то разделив обе части равенства на , получаем уравнение вида:

,

которое представляет собой приведенную форму уравнения для определения результативного признака у. Это уравнение может быть представлено в виде:

К нему для оценки параметров может быть применен МНК.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Походы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно разным методикам. В зависимости от того, какая методика построение уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построение уравнения множественной регрессии :

· метод исключения;

· метод включения;

· шаговый регрессионный анализ.

Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты – отсев факторов из полного его отбора (метод исключение), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется процедура отсева фактора. При отборе факторов рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6-7 раз меньше объема совокупности, по которой строит регрессии. Если это отношение нарушено, то число степеней свободы остаточной вариаций очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а F-критерий меньше табличного значения.

Классическая линейная модель множественной регрессии (КЛММР):

где y – регрессанд; x i – регрессоры; u – случайная составляющая.

Модель множественной регрессии является обобщением модели парной регрессии на многомерный случай.

Независимые переменные (х) предполагаются не случайными (детерминированными) величинами.

Переменная х 1 = x i 1 = 1 называется вспомогательной переменной для свободного члена и еще в уравнениях она называется параметром сдвиги.

«y» и «u» в (2) являются реализациями случайной величины.

Называется также параметром сдвига.

Для статистической оценки параметров регрессионной модели необходим набор (множество) данных наблюдений независимых и зависимых переменных. Данные могут быть представлены в виде пространственных данных или временных рядов наблюдений. Для каждого из таких наблюдений согласно линейной модели можно записать:

Векторно-матричная запись системы (3).

Введем следующие обозначения:

вектор-столбец независимой переменной (регрессанда)

размерность матрицы (n·1)

Матрица наблюдений независимых переменных (регрессоров):

размер (n×k)

Вектор-столбец параметров:

- матричная запись системы уравнений (3). Она проще и компактнее.

Сформируем предпосылки, которые необходимы при выводе уравнении для оценок параметров модели, изучения их свойств и тестирования качества модели. Эти предпосылки обобщают и дополняют предпосылки классической модели парной линейной регрессии (условия Гаусса – Маркова).

Предпосылка 1. независимые переменныене случайны и измеряются без ошибок. Это означает, что матрица наблюдений Х – детерминированная.

Предпосылка 2. (первое условие Гаусса – Маркова): Математическое ожидание случайной составляющей в каждом наблюдении равно нулю.

Предпосылка 3. (второе условие Гаусса – Маркова): теоретическая дисперсия случайной составляющей одинакова для всех наблюдений.

(Это гомоскедастичность)

Предпосылка 4. (третье условие Гаусса – Маркова): случайные составляющие модели не коррелированны для различных наблюдений. Это означает, что теоретическая ковариация

Предпосылки (3) и (4) удобно записать, используя векторные обозначения:

матрица - симметричная матрица. - единичная матрица размерности n, верхний индекс Т – транспонирование.

Матрица называется теоретической матрицей ковариаций (или ковариационной матрицей).

Предпосылка 5. (четвертое условие Гаусса – Маркова): случайная составляющая и объясняющие переменные не коррелированны (для модели нормальной регрессии это условие означает и независимость). В предположении, что объясняющие переменные не случайные, эта предпосылка в классической регрессионной модели всегда выполняется.

Предпосылка 6 . коэффициенты регрессии – постоянные величины.

Предпосылка 7 . уравнение регрессии идентифицируемо. Это означает, что параметры уравнения в принципе оцениваемы, или решение задачи оценивания параметров существует и единственно.

Предпосылка 8 . регрессоры не коллинеарны. В таком случае матрица наблюдений регрессоров должна быть полного ранга. (ее столбцы должны быть линейно независимы). Данная предпосылка тесно связана с предыдущей, так как при применении для оценивания коэффициентов МНК ее выполнение гарантирует идентифицируемость модели (если количество наблюдений больше количества оцениваемых параметров).

Предпосылка 9. Количество наблюдений больше количества оцениваемых параметров, т.е. n>k.

Все эти 1-9 предпосылки одинаково важны, и только при их выполнении можно применять классическую регрессионную модель на практике.

Предпосылка о нормальности случайной составляющей . При построении доверительных интервалов для коэффициентов модели и прогнозов зависимой переменной, проверки статистических гипотез относительно коэффициентов, разработке процедур для анализа адекватности (качества) модели в целом необходимо предположение о нормальном распределении случайной составляющей. С учетом этой предпосылки модель (1) называется классической многомерной линейной моделью регрессии.

Если предпосылки не выполняются, то необходимо строить так называемые обобщенные модели линейной регрессии. От того, насколько корректно (правильно) и осознанно используются возможности регрессионного анализа, зависит успех эконометрического моделирования, и, в конечном счете, обоснованность принимаемых решений.

Для построения уравнения множественной регрессии чаще используются следующие функции

1. линейная: .

2. степенная: .

3. экспоненциальная: .

4. гипербола:

В виду четкой интерпретации параметров наиболее широко используются линейная и степенная функции. В линейной множественной регрессии параметры при Х называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизменном значении других факторов, закрепленных на среднем уровне.

Пример . Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

где у – расходы семьи за месяц на продукты питания, тыс.руб.;

х 1 – месячный доход на одного члена семьи, тыс.руб.;

х 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при томже размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Параметр а - не имеет экономической интерпретации.

При изучении вопросов потребления коэффициенты регрессии рассматривают как характеристики предельной склонности к потреблению. Например, если функции потребления С t имеет вид:

С t = a+b 0 R t + b 1 R t -1 +e,

то потребление в период времени t зависит от дохода того же периода R t и от дохода предшествующего периода R t -1 . Соответственно коэффициент b 0 обычно называют краткосрочной предельной склонностью к потреблению. Общим эффектом возрастания как текущего, так и предыдущего дохода будет рост потребления на b= b 0 + b 1 . Коэффициент b рассматривается здесь как долгосрочная склонность к потреблению. Так как коэффициенты b 0 и b 1 >0, то долгосрочная склонность к потреблению должна превосходить краткосрочную b 0 . Например, за период 1905 – 1951 гг. (за исключением военных лет) М.Фридман построил для США следующую функцию потребления: С t = 53+0,58 R t +0,32 R t -1 с краткосрочной предельной склонностью к потреблению 0,58 и с долгосрочной склонностью к потреблению 0,9.

Функция потребления может рассматриваться также в зависимости от прошлых привычек потребления, т.е. от предыдущего уровня потребления

С t-1: С t = a+b 0 R t +b 1 С t-1 +e,

В этом уравнении параметр b 0 также характеризует краткосрочную предельную склонность к потреблению, т.е. влияние на потребление единичного роста доходов того же периода R t . Долгосрочную предельную склонность к потреблению здесь измеряет выражение b 0 /(1- b 1).

Так, если уравнение регрессии составило:

С t = 23,4+0,46 R t +0,20 С t -1 +e,

то краткосрочная склонность к потреблению равна 0,46, а долгосрочная – 0,575 (0,46/0,8).

В степенной функции
коэффициенты b j являются коэффициентами эластичности. Они показывают, на сколько процентов изменяется в среднем результат с изменением соответствующего фактора на 1% при неизменности действия других факторов. Этот вид уравнения регрессии получил наибольшее распространение в производственных функциях, в исследованиях спроса и потребления.

Предположим, что при исследовании спроса на мясо получено уравнение:

где у – количество спрашиваемого мяса; х 1 – его цена; х 2 – доход.

Следовательно, рост цен на 1% при том же доходе вызывает снижение спроса на мясо в среднем на 2.63%. Увеличение дохода на 1% обуславливает при неизменных ценах рост спроса на 1.11%.

В производственных функциях вида:

где P – количество продукта, изготавливаемого с помощью m производственных факторов (F 1 , F 2 , ……F m).

b – параметр, являющийся эластичностью количества продукции по отношению к количеству соответствующих производственных факторов.

Экономический смысл имеют не только коэффициенты b каждого фактора, но и их сумма, т.е. сумма эластичностей: В = b 1 +b 2 +……+b m . Эта величина фиксирует обобщенную характеристику эластичности производства. Производственная функция имеет вид

где Р – выпуск продукции; F 1 – стоимость основных производственных фондов; F 2­ ­ - отработано человеко-дней; F 3 – затраты на производство.

Эластичность выпуска по отдельным факторам производства составляет в среднем 0,3% с ростом F 1 на 1% при неизменном уровне других факторов; 0,2% - с ростом F 2­ ­ на 1% также при неизменности других факторов производства и 0,5% с ростом F 3 на 1% при неизменном уровне факторов F 1 и F 2 . Для данного уравнения В = b 1 +b 2 +b 3 = 1. Следовательно, в целом с ростом каждого фактора производства на 1% коэффициент эластичности выпуска продукции составляет 1%, т.е. выпуск продукции увеличивается на 1%, что в микроэкономике соответствует постоянной отдаче на масштаб.

При практических расчетах не всегда . Она может быть как больше, так и меньше 1. В этом случае величина В фиксирует приближенную оценку эластичности выпуска с ростом каждого фактора производства на 1% в условиях увеличивающейся (В>1) или уменьшающейся (В<1) отдачи на масштаб.

Так, если
, то с ростом значений каждого фактора производства на 1% выпуск продукции в целом возрастает приблизительно на 1.2%.

При оценке параметров модели по МНК мерой (критерием) количества подгонки эмпирической регрессионной модели к наблюдаемой выборке служит сумма квадратов ошибок (остатков).

Где е = (e1,e2,…..e n) T ;

Для уравнения применили равенство: .

Скалярная функция;

Система нормальных уравнений (1) содержит k линейных уравнений относительно k неизвестных i = 1,2,3……k

= (2)

Перемножив (2) получим развернутую форму записи систем нормальных уравнений

Оценка коэффициентов

Стандартизированные коэффициенты регрессии, их интерпретация. Парные и частные коэффициенты корреляции. Множественный коэффициент корреляции. Множественный коэффициент корреляции и множественный коэффициент детерминации. Оценка надежности показателей корреляции.

Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.

Так, для уравнения система нормальных уравнений составит:

Ее решение может быть осуществлено методом определителей:

, ,…, ,

где D – главный определитель системы;

Dа, Db 1 , …, Db p – частные определители.

а Dа, Db 1 , …, Db p получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Возможен и иной подход в определении параметров множественной регрессии, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:

где - стандартизованные переменные , для которых среднее значение равно нулю , а среднее квадратическое отклонение равно единице: ;

Стандартизованные коэффициенты регрессии.

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных вида

Решая ее методом определителей, найдем параметры – стандартизованные коэффициенты регрессии (b-коэффициенты).

Стандартизованные коэффициенты регрессии показывают, на сколько сигм изменится в среднем результат, если соответствующий фактор х i изменится на одну сигму при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии b I сравнимы между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Пример. Пусть функция издержек производства у (тыс. руб.) характеризуется уравнением вида

где х 1 – основные производственные фонды;

х 2 – численность занятых в производстве.

Анализируя его, мы видим, что при той же занятости дополнительный рост стоимости основных производственных фондов на 1 тыс. руб. влечет за собой увеличение затрат в среднем на 1,2 тыс. руб., а увеличение численности занятых на одного человека способствует при той же технической оснащенности предприятий росту затрат в среднем на 1,1 тыс. руб. Однако это не означает, что фактор х 1 оказывает более сильное влияние на издержки производства по сравнению с фактором х 2 . Такое сравнение возможно, если обратиться к уравнению регрессии в стандартизованном масштабе. Предположим, оно выглядит так:

Это означает, что с ростом фактора х 1 на одну сигму при неизменной численности занятых затрат на продукцию увеличиваются в среднем на 0,5 сигмы. Так как b 1 < b 2 (0,5 < 0,8), то можно заключить, что большее влияние оказывает на производство продукции фактор х 2 , а не х 1 , как кажется из уравнения регрессии в натуральном масштабе.

В парной зависимости стандартизованный коэффициент регрессии есть не что иное, как линейный коэффициент корреляции r xy . Подобно тому, как в парной зависимости коэффициент регрессии и корреляции связаны между собой, так и в множественной регрессии коэффициенты «чистой» регрессии b i связаны со стандартизованными коэффициентами регрессии b i , а именно:

(3.1)

Это позволяет от уравнения регрессии в стандартизованном масштабе

(3.2)

переход к уравнению регрессии в натуральном масштабе переменных.

МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

1. ОТБОР ФАКТОРОВ В МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ОЦЕНКА ПАРАМЕТРОВ МОДЕЛИ

При построении модели множественной регрессии для отображения зависимости между объясняемой переменной Y и независимыми (объясняющими) переменнымиX 1 ,X 2 , …,X k могут использоваться показательная, параболическая и многие другие функции. Однако наибольшее распространение получили модели линейной взаимосвязи, когда факторы входят в модель линейно.

Линейная модель множественной регрессии имеет вид

где k – количество включенных в модель факторов.

Коэффициент регрессии a j показывает, на какую величину в среднем изменится результативный признакY , если переменнуюX j увеличить на единицу измерения, т.е. является нормативным коэффициентом.

Анализ уравнения (1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи уравнения:

где Y – это вектор зависимой переменной размерности, представляющий собойn наблюдений значенийy i ;X – матрицаn наблюдений независимых переменныхX 1 , X 2 , …, X k , размерность матрицыX равна

; а - подлежащий оцениванию вектор неизвестных параметров

Таким образом,

Уравнение (1) содержит значения неизвестных параметров

. Эти величины оцениваются на основе выборочных

наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки.

Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид

Оценка параметров модели множественной регрессии проводится с помощью метода наименьших квадратов. Формулу для вычисления

параметров регрессионного уравнения приведем без вывода:

Отбор факторов, включаемых в регрессию – один из важнейших этапов построения модели регрессии. Подходы к отбору факторов могут быть разные: один из них основан на анализе матрицы коэффициентов парной корреляции, другой – на процедурах пошагового отбора факторов.

Перед построением модели множественной регрессии вычисляются парные коэффициенты линейной корреляции между всеми исследуемыми переменными Y ,X 1 , X 2 , …, X m , и из них формируется матрица

Вначале анализируют коэффициенты корреляции, отражающие тесноту связи зависимой переменной со всеми включенными в анализ факторами, с целью отсева незначимых переменных.

Затем переходят к анализу остальных столбцов матрицы с целью выявления мультиколлинеарности.

Ситуация, когда два фактора связаны между собой тесной линейной связью (парный коэффициент корреляции между ними превышает по абсолютной величине 0,8), называется коллинеарностью факторов . Коллинеарные факторы фактически дублируют друг друга в модели, существенно ухудшая ее качество.

Наибольшие трудности возникают при наличии мультикоминеарности факторов, когда тесной связью одновременно связаны несколько факторов, т.е. когда нарушается одна из предпосылок регрессионного анализа, состоящая в том, что объясняющие переменные должны быть независимы.

Под мультиколлинеарностью понимается высокая взаимная коррелированность объясняющих переменных, которая приводит к линейной зависимости нормальных уравнений. Мультиколлинеарность может

приводит к невозможности решения соответствующей системы нормальных уравнений и получения оценок параметров регрессионной модели;

стохастической , когда между хотя бы двумя объясняющими переменными существует тесная корреляционная связь. В этом случае определитель матрицы не равен нулю, но очень мал. Экономическая интерпретация параметров уравнения регрессии при этом затруднена, так как некоторые из его коэффициентов могут иметь неправильные с точки зрения экономической теории знаки и неоправданно большие значения. Оценки

параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Мультиколлинеарность может возникать в силу разных причин. Например, несколько независимых переменных могут иметь общий временной тренд, относительно которого они совершают малые колебания.

Существует несколько способов для определения наличия или отсутствия мультиколлинеарности:

анализ матрицы коэффициентов парной корреляции. Явление мультиколлинеарности в исходных данных считают установленным, если коэффициент парной корреляции между двумя переменными больше 0,8:

исследование матрицы. Если определитель матрицы близок к нулю, это свидетельствует о наличии мультиколлинеарности.

Для выявления второй ситуации служит тест на мультиколлинеарность Фаррара-Глоубера. С помощью этого теста проверяют, насколько значимо определитель матрицы парных коэффициентов корреляции отличается от единицы. Если он равен нулю, то столбцы матрицыX линейно зависимы и вычислить оценку коэффициентов множественной регрессии по методу наименьших квадратов становится невозможно.

Этот алгоритм содержит три вида статистических критериев проверки наличия мультиколлинеарности:

1) всего массива переменных (критерий «хи-квадрат»);

2) каждой переменной с другими переменными (F -критерий);

3) каждой пары переменных (t -тест).

2) Вычислить наблюдаемое значение статистики Фаррара-Глоубера по формуле

Эта статистика имеет распределение (хи-квадрат).

3) Фактическое значение -критерия сравнить с табличным значением

при 0,5k (k – 1) степенях свободы и уровне значимостиα . ЕслиFG набл больше табличного, то в массиве объясняющих переменных

существует мультиколлинеарность.

2. Проверка наличия мультиколлинеарности каждой переменной другими переменными (F - критерий ):

где c ij – диагональные элементы матрицыC.

3) Фактические значения F -критериев сравнить с табличным значением

при v 1 =k ,v 2 =n – k – 1 степенях свободы и уровне значимостиα , гдеk

– количество факторов. Если F j >F табл , то соответствующая j -я независимая переменная мультиколлинеарна с другими.

3. Проверка наличия мультиколлинеарности каждой пары переменных (t -

тест).

1) Вычислить коэффициент детерминации для каждой переменной:

2) Найти частные коэффициенты корреляции:

где c ij - элемент матрицыС . содержащийся в i -й строке и j -м столбце;c ii иc jj – диагональные элементы матрицыС .

3) Вычислить t -критерии:

4) Фактические значения критериев t ij сравнить с табличнымt табл при (n –

мультиколлинеарность.

Разработаны различные методы устранения или уменьшения мультиколлинеарности. Самый простой из них, но не всегда самый эффективный, состоит в том, что из двух объясняющих переменных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом какую переменную оставить, а какую удалить из анализа, решают исходя из экономических соображений.

Для устранения мультиколлинеарности можно также:

добавить в модель важный фактор для уменьшения дисперсии случайного члена;

изменить или увеличить выборку;

преобразовать мульти коллинеарные переменные и др.

Другой метод устранения или уменьшения мультиколлинеарности – использование стратегии шагового отбора, реализованной в ряде алгоритмов пошаговой регрессии.

Наиболее широкое применение получили следующие схемы построения уравнения множественной регрессии:

метод включения – дополнительное введение фактора;

метод исключения – отсев факторов из полного его набора.

В соответствии с первой схемой признак включается в уравнение в том случае, если его включение существенно увеличивает значение множественного коэффициента корреляции. Это позволяет последовательно отбирать факторы, оказывающие существенное влияние на результативный признак даже в условиях мультиколлинеарности системы признаков, отобранных в качестве аргументов. При этом первым в уравнение включается фактор, наиболее тесно коррелирующий сY вторым – тот фактор, который в паре с первым из отобранных дает максимальное значение множественного коэффициента корреляции, и т.д. Существенно, что на каждом шаге получают новое значение множественного коэффициента (большее, чем на предыдущем шаге); тем самым определяется вклад каждого отобранного фактора в объясненную дисперсиюY.

Вторая схема пошаговой регрессии основана на последовательном исключении факторов с помощью t -критерия. Она заключается в том, что после построения уравнения регрессии и оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьшее по модулю значение t -критерия. После этого получают новое уравнение множественной регрессии и снова производят оценку значимости всех оставшихся коэффициентов регрессии. Если и среди них окажутся незначимые, то опять исключают фактор с наименьшим значением t -критерия. Процесс исключения факторов останавливается на том шаге, при котором все регрессионные коэффициенты значимы.

Ни одна из этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов.

Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а F -критерий меньше табличного значения.

2. ОЦЕНКА КАЧЕСТВА МНОЖЕСТВЕННОЙ РЕГРЕССИИ

Качество модели регрессии проверяется на основе анализа остатков регрессии ε. Анализ остатков позволяет получить представление, насколько хорошо подобрана сама модель и насколько правильно выбран метод опенки коэффициентов. Согласно общим предположениям регрессионного анализа остатки должны вести себя как независимые (в действительности – почти независимые) одинаково распределенные случайные величины.

Исследование полезно начинать с изучения графика остатков. Он может показать наличие какой-то зависимости, не учтенной в модели. Скажем, при подборе простой линейной зависимости междуY иX график

остатков может показать необходимость перехода к нелинейной модели (квадратичной, полиномиальной, экспоненциальной) или включения в модель периодических компонент.

График остатков хорошо показывает и резко отклоняющиеся от модели наблюдения – выбросы. Подобным аномальным наблюдениям надо уделять особо пристальное внимание, так как они могут грубо искажать значения оценок. Чтобы устранить эффект выбросов, надо либо удалить эти точки из анализируемых данных (эта процедура называется цензурированием), либо применять методы оценивания параметров, устойчивые к подобным грубым отклонениям.

Качество модели регрессии оценивается по следующим направлениям:

проверка качества уравнения регрессии;

проверка значимости уравнения регрессии;

анализ статистической значимости параметров модели;

проверка выполнения предпосылок МНК.

Для проверки качества уравнения регрессии вычисляют коэффициент множественной корреляции (индекс корреляции) R и коэффициент детерминацииR 2 . Чем ближе к единице значения этих характеристик, тем выше качество модели.