Побочный продукт фотосинтеза. Как происходит фотосинтез

16.04.2019

Процесс фотосинтеза является одним из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, именно это явление и называют фотосинтезом. И что самое важное, в процессе фотосинтеза происходит выделение , жизненно необходимого для существования жизни на нашей удивительной планете.

История открытия фотосинтеза

История открытия явления фотосинтеза уходит своими корнями на четыре века в прошлое, когда в далеком 1600 году некий бельгийский ученый Ян Ван Гельмонт поставил не сложный эксперимент. Он поместил веточку ивы (предварительно записав ее начальный вес) в мешок, в котором также находилось 80 кг земли. А затем на протяжении пяти лет растение поливалось исключительно водой. Каким же было удивление ученого, когда по прошествии пяти лет вес растения увеличился на 60 кг, при том, что масса земли уменьшилась всего лишь на 50 грамм, откуда взялась столь внушительная прибавка в весе, так и оставалось для ученого загадкой.

Следующий важный и интересный эксперимент, ставший преддверием к открытию фотосинтеза, был поставлен английским ученым Джозефом Пристли в 1771 году (любопытно, что по роду своей профессии мистер Пристли был священником англиканской церкви, но в историю вошел именно как выдающийся ученый). Что же сделал мистер Пристли? Он поместил мышь под колпак и через пять дней та умерла. Затем он снова поместил еще одну мышь под колпак, но в этот раз вместе с мышкой под колпаком была веточка мяты и в результате мышь осталась живой. Полученный результат навел ученого на мысль, о том, что существует некий процесс, противоположный дыханию. Еще одним важным выводом этого эксперимента стало открытие кислорода, как жизненно необходимого всем живим существам (первая мышка умерла от его отсутствия, вторая же выжила, благодаря веточке мяты, которая в процессе фотосинтеза как раз создала кислород).

Так был установлен факт, что зеленые части растений способны выделять кислород. Затем уже в 1782 году швейцарский ученый Жан Сенебье доказал, что углекислый газ под воздействием света разлагается в зеленых растений – фактически была открыта еще одна сторона фотосинтеза. Затем еще через 5 лет французский ученый Жак Бусенго обнаружил, что поглощение растениями воды происходит и при синтезе органических веществ.

И финальным аккордом в череде научных открытий связанных с явлением фотосинтеза стало открытие немецкого ботаника Юлиуса Сакса, которому в 1864 году удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции 1:1.

Значение фотосинтеза в жизни человека

Если представить образно, то лист любого растения можно сравнить с маленькой лабораторией, окна которой выходят на солнечную сторону. В этой самой лаборатории идет образование органических веществ и кислорода, являющегося основой для существования органической жизни на Земле. Ведь без кислорода и фотосинтеза на Земле просто бы не существовало жизни.

Но если фотосинтез столь важен для жизни и выделения кислорода, то как живут люди (да и не только люди), например в пустыне, где минимум зеленых растений, или например, в индустриальном городе, где деревья редкость. Дело в том, что на долю наземных растений приходится всего 20% выделяемого в атмосферу кислорода, остальные же 80% выделяются морскими и океанскими водорослями, недаром ведь мировой океан порой называю «легкими нашей планеты».

Формула фотосинтеза

Общую формулу фотосинтеза можно записать следующим образом:

Вода + Углекислый газ + Свет > Углеводы + Кислород

А вот такой вид имеет формула химической реакции фотосинтеза

6СО 2 + 6Н 2 О = С6Н 12 О 6 + 6О 2

Значение фотосинтеза для растений

А теперь попробуем ответить на вопрос, для чего нужен фотосинтез растениям. В действительности обеспечение кислородом атмосферы нашей планеты, далеко не единственная причина протекания фотосинтеза, этот биологический процесс жизненно необходим не только людям и животным, но и самим растениям, ведь органические вещества, которые образуются в ходе фотосинтеза, составляют основу жизнедеятельности растений.

Как происходит фотосинтез

Главным двигателем фотосинтеза является хлорофилл – специальный пигмент, содержащийся в клетках растений, который помимо всего прочего отвечает за зеленую окрасу листьев деревьев и прочих растений. Хлорофилл представляет собой сложное органическое соединение, обладающее к тому же важным свойством – способностью к поглощению солнечного света. Поглощая его, именно хлорофилл приводит в действие ту маленькую биохимическую лабораторию, содержащуюся в каждом маленьком листочке, в каждой травине и каждой водоросли. Далее происходит фотосинтеза (формулу смотрите выше) в ходе которой и происходит преображение воды и углекислого газа в необходимые растениям углеводы и необходимый всему живому кислород. Механизмы фотосинтеза являются гениальным творением природы.

Фазы фотосинтеза

Также процесс фотосинтеза состоит из двух стадий: светлой и темновой. И ниже мы детально напишем о каждой из них.

Световая фаза фотосинтеза

Эта фаза осуществляется на тилакойдов. Что же такое эти тиалакойды? Тилакойды это структуры, находящиеся внутри хлоропластов и ограниченные мембраной.

Порядок процессов световой фазы фотосинтеза выглядит так:

  • Свет попадает на молекулу хлорофилла, поглощается зеленым пигментом, чем приводит его в возбужденное состояние. Электрон, который входит в эту молекулу переходит на более высокий уровень и берет участие в процессе синтеза.
  • Идет расщепление воды, во время которого протоны, под действием электронов преобразуются в атомы водорода, которые впоследствии расходуются на синтез углеводов.
  • На последнем этапе световой фазы фотосинтеза происходит синтез АТФ (Аденозинтрифосфат). АТФ представляет собой органическое вещество, играющее роль своего рода аккумулятора энергии в биологических процессах.

Темновая фаза фотосинтеза

Эта фаза фотосинтеза протекает в стромах хлоропластов. Именно в ее ходе происходит выделение кислорода, а также синтез глюкозы. Можно подумать исходя из названия, что темновая фаза фотосинтеза происходит исключительно в темное время суток. На самом деле это не так, синтез глюкозы происходит круглосуточно, просто на этом этапе энергия света больше не расходуется и попросту она не нужна.

Фотосинтез, видео

И в завершение интересное образовательное видео про фотосинтез.

Фотосинтез - это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах.

Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С0 2 , из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, - это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Основная роль фотосинтезирующих организмов:

1) трансформация энергии солнечного света в энергию химических связей органических соединений;

2) насыщение атмосферы кислородом;

В результате фотосинтеза на Земле образуется 150 млрд. т. органического веществаи выделяется около 200 млрд. т свободногокислородав год. Он препятствует увеличению концентрацииCO2в атмосфере, предотвращая перегрев Земли (парниковый эффект).

Созданная фотосинтезом атмосфера защищает живое от губительного коротковолнового УФ-излучения (кислородно-озоновый экран атмосферы).

В урожай сельскохозяйственных растений переходит лишь 1-2% солнечной энергии, потери обусловлены неполным поглощением света. Поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с высокой эффективностью фотосинтеза, созданию благоприятной для светопоглощения структуры посевов. В связи с этим особенно актуальными становятся разработка теоретических основ управления фотосинтезом

Значение фотосинтеза гигантское. Отметим лишь, что он поставляет топливо (энергию) и атмосферный кислород, необходимые для существования всего живого. Следовательно, роль фотосинтеза является планетарной.

Планетарность фотосинтеза определяется также тем, что благодаря круговороту кислорода и углерода (в основном) поддерживается современный состав атмосферы, что в свою очередь определяет дальнейшее поддержание жизни на Земле. Можно сказать далее, что энергия, которая запасается в продуктах фотосинтеза, есть по существу основной источник энергии, которым сейчас располагает человечество.

Суммарная реакция фотосинтеза

СО 2 2 О = (СН 2 О) + О 2 .

Химию фотосинтеза описывают следующими уравнениями:

Фотосинтез – 2 группы реакций:

    световая стадия (зависят от освещенности)

    темновая стадия (зависит от температуры).

Обе группы реакций протекают одновременно

Фотосинтез происходит в хлоропластах зеленых растений.

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений.

Этого оказывается достаточно, чтобы сместить спектр поглощения молекулы.

Молекула хлорофилла поглощает фотоны в фиолетовой и синей, а затем в красной части спектра, и не взаимодействует с фотонами в зеленой и желтой части спектра.

Поэтому хлорофилл и растения выглядят зелеными – они попросту никак не могут воспользоваться зелеными лучами и оставляют их гулять по белу свету (делая его тем самым зеленее).

Пигменты фотосинтеза располагаются на внутренней стороне мембраны тилакоидов.

Пигменты организованы в фотосистемы (антенные поля по улавливанию света) – содержащие по 250–400 молекул разных пигментов.

Фотосистема состоит из:

    реакционного центра фотосистемы (молекула хлорофилла а),

    антенных молекул

Все пигменты в фотосистеме способны передавать друг другу энергию возбужденного состояния. Энергия фотона, поглощенная той или иной молекулой пигмента, переносится на соседнюю молекулу, пока не достигнет реакционного центра. Когда резонансная система реакционного центра переходит в возбужденное состояние, она передает два возбужденных электрона молекуле-акцептору и тем самым окисляется и приобретает положительный заряд.

У растений:

    фотосистема 1 (максимум поглощения света на длине волны 700 нм - Р700)

    фотосистема 2 (максимум поглощения света на длине волны 680 нм - Р680

Различия в оптимумах поглощения обусловлены небольшими различиями в структуре пигментов.

Две системы работают сопряженно, как конвейер, состоящий из двух частей и называющийся нециклическим фотофосфорилированием .

Суммарное уравнение для нециклического фотофосфорилирования :

Ф - условное обозначение остатка фосфорной кислоты

Цикл начинается с фотосистемы 2.

1) антенные молекулы улавливают фотон и передают возбуждение молекуле активного центра Р680;

2) возбужденная молекула Р680 отдает два электрона кофактору Q при этом она окисляется и приобретает положительный заряд;

Кофактор (cofactor). Кофермент или любое другое вещество, необходимое для выполнения ферментом его функции

Коферменты (коэнзимы) [от лат. co (cum) - вместе и ферменты], органические соединения небелковой природы, участвующие в ферментативной реакции в качестве акцепторов отдельных атомов или атомных групп, отщепляемых ферментом от молекулы субстрата, т.е. для осуществления каталитического действия ферментов. Эти веществава, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую молекулярную массу и, как правило, термостабильны. Иногда под Коферментами подразумевают любые низкомолекулярные вещества, участие которых необходимо для проявления каталитического действия фермента, в т. ч. и ионы, напр. К + , Mg 2+ и Мn 2+ . Располагаются оферменты. в активном центре фермента и вместе с субстратом и функциональными группами активного центра образуют активированный комплекс.

Для проявления каталитической активности большинству ферментов необходимо наличие кофермента. Исключение составляют гидролитические ферменты (например, протеазы, липазы, рибонуклеаза), выполняющие свою функцию в отсутствие кофермента.

Молекула восстанавливается Р680 (под действием ферментов),. При этом вода диссоциирует на протоны и молекулярный кислород, т.е. вода является донором электронов, который обеспечивает восполнение электронов в Р 680.

ФОТОЛИЗ ВОДЫ - расщепление молекулы воды, в частности в процессе фотосинтеза. Вследствие фотолиза воды образуется кислород, выделяющийся зелеными растениями на свету.

ФОТОСИНТЕЗ – это

фотосинтез – это углеводы .

Общая характеристика

I Световая фаза

1. Фотофизический этап

2. Фотохимический этап

II Темновая фаза

3.

ЗНАЧЕНИЕ

4. Озоновый экран.

Пигменты фотосинтезирующих растений, их физиологическая роль.

· Хлорофилл – это зелёный пигмент, обуславливающий окраску зелёного цвета растению, при его участии обусловлен процесс фотосинтеза. По химическому строению это Mg-комплекс различных тетрапирролов. Хлорофиллы имеют порфириновое строение, структурно близки к гему.

В пиррольных группировках хлорофилла имеются системы, чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обуславливающиеся поглощение определённых лучей солнечного спектра и его окраску. D порфировые ядра составляют 10 нм, а длина фитольного остатка 2 нм.

Молекулы хлорофилла полярно, её порфириновое ядро обладает гидрофильными свойствами, а фитольный конец гидрофобными. Это свойство молекулы хлорофилла обуславливают определённое расположение её в мембранах хлоропласта.

Порфириновая часть молекулы связана с белком, а фитольная часть погружена в липидный слой.

Хлорофилл живой интактной клетки обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связано с наличием в молекуле хлорофилла сопряжённых двойных связей с подвижными п-элктронами и атомами N с неопределёнными электронами.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) избирательно поглощать энергию света,

2) запасать ее в виде энергии электронного возбуждения,

3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений.

· Каротиноиды- это жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды имеют максимальное поглощение в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции в отличие от хлорофилла.

К каротиноидам относятся 3 группы соединения:

Оранжевые, или красные каротины;

Жёлтые ксантофиллы;

Каротиноидные кислоты.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Поглощение света в качестве дополнительных пигментов;

2) Защита молекул хлорофилла от необратимого фотоокисления;

3) Тушение активных радикалов;

4) Участвуют в фототропизме, т.к. способствуют направлению роста побега.

· Фикобилины – это красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Фикобилины состоят из 4-х последовательных пиррольных колец. Фикобилины являются хромофорными группами глобулиновых белков, который называется фикобилинпротеинами. Он делятся на:

- фикоэритрины – белки красного цвета;

- фикоцианин – синеголубые белки;

- алофикоцианин – синие белки.

Все они обладают флуоресценирущей способностью. Фикобилины имею максимальное поглощение в оранжевых, жёлтых и зелёных частях спектра света и позволяют водорослям полнее использовать свет, проникающий в воду.

На глубине 30 м полностью исчезают красные лучи

На глубине 180 м – жёлтые

На глубине 320 м – зелёные

На глубине более 500 м не проникают синие и фиолетовые лучи.

Фикобилины – это дополнительные пигменты примерно 90% энергии света, поглощающего фикобилинами передаётся на хлорофилл.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектр.

2) Фикобилины выполняют у водорослей функции светособирающего комплекса.

3) У растений имеется фикобилин-фитохрм, он не участвет в фотосинтезе, но является фоторецептором красного света и выполняет регуляторную функцию в клетках растений.

Сущность фотофизического этапа. Фотохимический этап. Циклический и нециклический транспорт электронов.

Сущность фотофизического этапа

Фотофизический этап наиболее важный, т.к. осуществляет переход и преобразование энергии одной системы в другую (в живую из неживой).

Фотохимический этап

Фото-химически реакции фотосинтеза – это реакции в которых энергия света преобразуется в энергию химических связей в первую очередь в энергию фосфорных связей АТФ . Именно АТФ обеспечивает течение всех процессов, одновременно под действием света происходит разложение воды, образуется восстановленный НАДФ и выделяется О2 .

Энергия поглощенных квантов света стекается от сотен молекул пигментов свето-собирающего комплекса к одной молекула-хлорофилла-ловушке отдавая электрон акцептору – окисляется. Электрон поступает в электронно-транспортную цепь, предполагается, что свето-собирающий комплекс состоит из 3-х частей:

· главного антенного компонента

· двух фото фиксирующих систем.

Комплекс антенного хлорофилла погружен в толщу мембраны тилакоидов хлоропластов совокупность антенных молекул пигментов и реакционного центра составляет фотосистему в процессе фотосинтеза принимает участие 2 фотосистемы:

· установленно, что фотосистема 1 включает светофокусирующие пигменты и реакционный центр 1 ,

· фотосистема 2 включает светофокусирующие пигменты и реакционный центр 2 .

Хлорофилл-ловушка фотосистемы 1 поглощает свет с длинной волны700нм . Во второй системе 680нм . Свет поглащается рздельно этими двумя фотосистемами и нормальное осуществление фотосинтеза требует их одновременного участия. Перенос по цепи переносчиков включает ряд окислительно-восстновительных реакций при которых происходит перенос либо атома водорода, либо электронов.

Различают два типа потока электронов:

· циклический

· нециклический.

При циклическом потоке электроны от молекулы хлорофилла передаются к акцептору от молекулы хлорофилла и возвращаются к ней обратно , при нециклическом потоке происходит фотоокисление воды и передача электрона от воды к НАДФ , выделяемая в ходе окислительно-восстановительных реакций энергия частично используется на синтез АТФ.

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Фотосистема II

Фотосистема - совокупность ССК, фотохимического реакционного центра и переносчиков электрона. Светособирающий комплекс II содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр фотосистемы II представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофилла a с максимумом поглощения при 680 нм (П680). На него в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется и возбуждённая молекула П680 становится сильным восстановителем (E0=-0,7 В).

П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС II и далее на пластохиноны, транспортируемые в восстановленной форме к b6f комплексу. Одна молекула пластохинона переносит 2 электрона и 2 протона, которые берутся из стромы.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав ФС II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутритилакоидного пространства и полученные 4 протона выбрасываются в него.

Таким образом, суммарный результат работы ФС II - это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве и 2 восстановленных пластохинонов в мембране.

Фотосинтетическое фосфорилирование. Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала. Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса.

Фотосинтетическое фосфорилирование - синтез АТФ из АДФ и неорганического фосфора в хлоропластах, сопряженный с транспортом электронов, индуцируемым светом.

Соответственно двум типам потока электронов различают циклическое и нециклическое фотофосфорилирование.

Перенос электронов по цепи циклического потока сопряжен с синтезом двух макроэргичесих связей АТФ. Вся энергия света, поглощенная пигментом реакционного центра фотосистемы I, расходуется только на синтез АТФ. При циклическом Ф. ф. не образуются восстановительные эквиваленты для углеродного цикла и не выделяется O2. Циклическое Ф. ф. описывается уравнением:

Нециклическое Ф. ф. сопряжено с потоком электронов от воды через переносчики фотосистем I и II НАДФ +. Энергия света в этом процессе запасается в макроэргических связях АТФ, восстановленной форме НАДФН2 и молекулярном кислороде. Суммарное уравнение нециклического Ф. ф. следующее:

Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала

Хемиосмотическая теория. Переносчики электронов локализованы в мембранах асимметрично. При этом последовательно чередуются переносчики электронов (цитохромы) с переносчиками электрона и протона (пластохиноны). Молекула пластохинона сначала принимает два электрона: ПХ + 2е - -> ПХ -2 .

Пластохинон - производное хинона, в полностью окисленном состоянии содержит два атома кислорода, соединенных с углеродным кольцом двойными связями. В полностью восстановленном состоянии атомы кислорода в бензольном кольце соединяются с протонами: с образованием электрически нейтральной формы: ПХ -2 + 2Н + -> ПХН 2 . Протоны выделяются в пространство внутри тилакоида. Таким образом, при переносе пары электронов от Хл 680 на Хл 700 во внутреннем пространстве тилакоидов накапливаются протоны. В результате активного переноса протонов из стромы во внутритилакоидное пространство на мембране создается электрохимический потенциал водорода (ΔμН +), имеющий две составляющие: химическую ΔμН (концентрационную), возникающую в результате неравномерного распределения ионов Н + по разным сторонам мембраны, и электрическую, обусловленную противоположным зарядом разных сторон мембраны (благодаря накоплению протонов с внутренней стороны мембраны).

__________________________________________________________________________

Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса

Структурно-функциональная организация. Сопряжение диффузии протонов через мембрану осуществляется макромолекулярным ферментным комплексом, называемым АТФ-синтазой или сопрягающим фактором . Этот комплекс по форме напоминает гриб и состоит из двух частей - факторов сопряжения: круглой шляпки F 1 , выступающей с наружной стороны мембраны (в ней располагается каталитический центр фермента), и ножки погруженной в мембрану. Мембранная часть состоит из полипептидных субъединиц и формирует в мембране протонный канал, по которому ионы водорода попадают к фактору сопряжения F 1 . Белок F 1 представляет белковый комплекс, который состоит из мембраны, при этом он сохраняет способность катализировать гидролиз АТФ. Изолированный F 1 не способен синтезировать АТФ. Способность синтезировать АТФ - это свойство единого комплекса F 0 -F 1 , встроенного в мембрану. Связано это с тем, что работа АТФ-синтазы при синтезе АТФ сопряжена с переносом через нее протонов. Направленный транспорт протонов возможен только в том случае, если АТФ-синтаза встроена в мембрану.

Механизм работы. Существуют две гипотезы относительно механизма фосфорилирования (прямой механизм и косвенный). Согласно первой гипотезе фосфатная группа и АДФ связываются с ферментом в активном участке комплекса F1. Два протона перемещаются через канал по градиенту концентрации и соединяются с кислородом фосфата, образуя воду. Согласно второй гипотезе, (косвенный механизм), АДФ и неорганический фосфор соединяются в активном центре фермента спонтанно. Однако образовавшаяся АТФ прочно связана с ферментом, и для ее освобождения требуется энергия. Энергия доставляется протонами, которые, связываясь с ферментом, изменяют его конформацию, после чего АТФ высвобождается.

С4 путь фотосинтеза

С 4 -путь фотосинтеза или цикл Хетча-Слэка

Австралийскими учеными М. Хетчем и К. Слэком был описан С 4 -путь фотосинтеза, характерный для тропических и субтропических растений однодольных и двудольных 16 семейств (сахарный тростник, кукуруза и др.). Большинство самых злостных сорняков – С4 растения, а большинство сельскохозяйственных культур относятся к С3-растениям. Листья этих растений содержат хлоропласты двух типов: обычные в клетках мезофилла и крупные хлоропласты, не имеющие гран и фотосистемы II, в клетках обкладки, окружающих проводящие пучки.

В цитоплазме клеток мезофилла фосфоэнолпируваткарбоксилаза присоединяет СО 2 к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она транспортируется в хлоропласты, где восстанавливается до яблочной кислоты при участии НАДФН (фермент НАДФ+-зависимая малатдегидрогеназа). В присутствии ионов аммония щавелевоуксусная кислота превращается в аспарагиновую кислоту (фермент - аспартатаминотрансфераза). Яблочная и (или) аспарагиновая кислоты переходят в хлоропласты клеток обкладки, декарбоксилируются до пировиноградной кислоты и СО 2 . СО 2 включается в цикл Кальвина, а пировиноградная кислота переносится в клетки мезофилла, где превращается в фосфоэнолпировиноградную кислоту.

В зависимости от того, какая кислота – малат или аспартат – транспортируется в клетки обкладки, растения делят на два типа: малатный и аспартатный. В клетках обкладки эти С4-кислоты декарбоксилируются, что происходит у разных растений происходит с участием различных ферментов: НАДФ+-зависимой малатдегидрогеназы декарбоксилирующей (НАДФ+-МДГ), НАД+-зависимой малатдегидрогеназы декарбоксилирующей (малик-энзим, НАД+-МДГ) и ФЭП-карбоксикиназы (ФЕП-КК). Поэтому растения делят еще на три подтипа: НАДФ+-МДГ-растения, НАД+-МДГ-растения ФЕП-КК-растения.

Такой механизм позволяет растениям фотосинтезировать при закрытых из-за высокой температуры устьицах. Кроме того, продукты цикла Кальвина образуются в хлоропластах клеток обкладки, окружающих проводящие пучки. Это способствует быстрому оттоку фотоассимилятов и тем самым повышает интенсивность фотосинтеза.

Фотосинтез по типу толстянковых (суккулентов)-САМ путь.

В сухих местах существуют растения-суккуленты, у которых устьица открыты ночью и закрыты днем для уменьшения транспирации. В настоящее время этот тип фотосинтеза обнаружен у представителей 25 семейств.

У суккулентов (кактусов и растений сем. толстянковых (Crassulaceae ) процессы фотосинтеза разделены не в пространстве, как у других С 4 -растений, а во времени. Этот тип фотосинтеза получил название CAM (crassulation acid metabolism)-путь. Устьица днем обычно закрыты, что предотвращает потерю воды в ходе транспирации, и открыты ночью. В темноте СО 2 поступает в листья, где фосфоэнолпируваткарбоксилаза присоединяет его к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она восстанавливается НАДФН-зависимой малатдегидрогеназой до яблочной кислоты, которая накапливается в вакуолях. Днем яблочная кислота переходит из вакуоли в цитоплазму, где декарбоксилируется с образованием СО 2 и пировиноградной кислоты. СО 2 диффундирует в хлоропласты и включается в цикл Кальвина.

Итак, темновая фаза фотосинтеза разделена во времени: СО 2 поглощение ночью, а восстанавливается днем, из ЩУК образуется малат, карбоксилирование в тканях происходит дважды: ночью карбоксилируется ФЕП, днем РуБФ.

В САМ-растения делят на два типа: НАДФ-МДГ-растения, ФЕП-КК-растения.

Как С4, САМ-тип является дополнительным, поставляющим СО 2 в С3-цикл у растений, приспособившихся к жизни в условиях повышенных температур или недостатка влаги. У некоторых растений этот цикл функционирует всегда, у других – только в неблагоприятных условиях.

Фотодыхание.

Фотодыхание – это активируемый светом процесс выделения СО 2 и поглощения О 2 .(НИ К ФОТОСИНТЕЗУ,НИ К ДЫХАНИЮ НЕ ОТНОСИТСЯ). Так как первичным продуктом фотодыхания является гликолевая кислота, оно еще называется гликолатным путем. Фотодыхание усиливается при низком содержании СО 2 и высокой концентрации О 2 в воздухе. В этих условиях рибулозобисфаткарбоксилаза хлоропластов катализирует не карбоксилирование рибулозо-1,5-дифосфата, а его расщепление на 3-фосфоглицериновую и 2-фосфогликолевую кислоты. Последняя дефосфорилируется с образованием гликолевой кислоты.

Гликолевая кислота из хлоропласта переходит в пероксисому, где окисляется гликолатоксидазой до глиоксиловой кислоты. Образующаяся при этом перекись водорода разлагается каталазой, присутствующей в пероксисоме. Глиоксиловая кислота аминируется, превращаясь в глицин. Глицин транспортируется в митохондрию, где из двух молекул глицина синтезируется серин и освобождается СО 2 .

Серин может поступать в пероксисому и под действием аминотрансферазы передает аминогруппу на пировиноградную кислоту с образованием аланина, а сам превращается в гидроксипировиноградную кислоту. Последняя при участии НАДФН восстанавливается в глицериновую кислоту. Она переходит в хлоропласты, где включается в цикл Кальвина и образуется 3 ФГА.

Дыхание растений

Живая клетка представляет собой открытую энергетическую систему, она живёт и сохраняет свою индивидуальность за счет постоянного притока энергии. Как только этот приток прекращается, наступает дезорганизация и смерть организма. Энергия солнечного света, запасенная при фотосинтезе в органическом веществе, вновь высвобождается и используется на самые различные процессы жизнедеятельности.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается,- это дыхание и брожение. Дыхание - это аэробный окислительный распад органических соединений на простые неорганические, сопровождаемый выделением энергии. Брожение - анаэробный процесс распада органических соединений на более простые, сопровождаемый выделением энергии. В случае дыхания акцептором электрона служит кислород, в случае брожения - органические соединения.

Суммарное уравнение процесса дыхания:

С6Н1206 + 602 -> 6С02 + 6Н20 + 2824 кДж.

Пути дыхательного обмена

Существуют две основные системы и два основных пути превращения дыхательного субстрата, или окисления углеводов:

1) гликолиз + цикл Кребса (гликолитический); Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз. Первая фаза - анаэробная (гликолиз), вторая фаза - аэробная. Эти фазы локализованы в различных компартментах клетки. Анаэробная фаза гликолиз - в цитоплазме, аэробная фаза - в митохондриях. Обычно химизм дыхания начинают рассматривать с глюкозы. Вместе с тем в растительных клетках глюкозы мало, поскольку конечными продуктами фотосинтеза являются сахароза как основная транспортная форма сахара в растении или запасные углеводы (крахмал и др.). Поэтому, чтобы стать субстратом дыхания сахароза и крахмал должны гидролизоваться с образованием глюкозы.

2) пентозофосфатный (апотомический). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от факторов среды. Процесс дыхания растений осуществляется во всех внешних условиях, при которых возможна жизнь. Растительный организм не имеет приспособлений к регуляции температуры, поэтому процесс дыхания осуществляется при температуре от -50 до +50°С. Нет приспособлений у растений и к поддержанию равномерного распределения кислорода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена и к еще большему разнообразию ферментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в организме. Изменение пути дыхательного обмена приводит к глубоким изменениям во всем метаболизме растений.

Энергитическая

11 АТФ образуется в результате работы ЦК и дыхательной и 1 АТФ в результате субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

1 оборот ЦК в аэробных условиях приводит к образованию 12 АТФ

Интегративная

На уровне ЦК объединяются пути катаболизма белков жиров и углеводов. цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

Амфиболическая

Метаболиты ЦК являются ключевыми на их уровне могут идти переключение с одного вида обмена на другой.

13.ЭТЦ: Компоненты локализация. Механизм окислительного фосфорилирования. Хемиосмотическая теория Митчела.

Электрон-транспортная цепь - это цепь редокс-агентов, определенным образом расположенных в мембране хлоропластов, осуществляющих фотоиндуцируемый транспорт электронов от воды к НАДФ + . Движу­щей силой транспорта электронов по ЭТЦ фотосинтеза являются окислитель­но-восстановительные реакции в реакционных центрах (РЦ) двух фотосистем (ФС). Первичное разделение зарядов в РЦ ФС1 приводит к образованию сильного восстановителя А0, окислительно-восстановительный потенциал кото­рого обеспечивает восстановление НАДФ + через цепь промежуточных пере­носчиков. В РЦ ФС2 фотохимические реакции ведут к образованию сильного окислителя П680, который вызывает ряд окислительно-восстановительных ре­акций, приводящих к окислению воды и выделению кислорода. Восстановле­ние П700, образованного в РЦ ФС1, происходит за счет электронов, мобили­зованных из воды фотосистемой II, при участии промежуточных переносчи­ков электронов (пластохинонов, редокс-кофакторов цитохромного комплекса и пластоцианина). В отличие от первичных фотоиндуцированных реакций раз­деления зарядов в реакционных центрах, идущих против термодинамического градиента, перенос электрона на других участках ЭТЦ идет по градиенту окис­лительно-восстановительного потенциала и сопровождается высвобождением энергии, которая используется на синтез АТФ.

компоненты ЭТЦ митохондрий расположены в следующем порядке:

Пара электронов от НАДH или сукцината передается по ЭТЦ до кислорода, который, восстанавливаясь и присоединяя два протона, образует воду.

Определение и общая характеристика фотосинтеза, значение фотосинтеза

ФОТОСИНТЕЗ – это процесс образования органических веществ из CO2 и H2O на свету, при участии фотосинтетических пигментов.

С биохимической точки зрения, фотосинтез – это окислительно-восстановительный процесс превращения устойчивых молекул неорганических веществ СО2 и Н2О в молекулы органических веществ – углеводы .

Общая характеристика

6CO 2 + 6H 2 O → C 6 H 12 O 6 + O 2

Процесс фотосинтеза состоит из двух фаз и нескольких этапов, которые идут последовательно.

I Световая фаза

1. Фотофизический этап – происходит во внутренней мембране хлоропластов и связан с поглощением солнечной энергии пигментными системами.

2. Фотохимический этап – проходит во внутренней мембране хлоропластов и связан с преобразованием солнечной энергии в химическую энергию АТФ и НАДФН2 и фотолизом воды.

II Темновая фаза

3. Биохимический этап или цикл Кальвина – проходит в строме хлоропластов. На этом этапе углекислый газ восстанавливается до углеводов.

ЗНАЧЕНИЕ

1. Обеспечение постоянства СО2 в воздухе. Связывание СО 2 в ходе фотосинтеза в значительной мере компенсирует его выделение в результате других процессов (дыхание, брожение, деятельность вулканов, производственная деятельность человечества).

2. Препятствует развитию парникового эффекта. Часть солнечного света отражается от поверхности Земли в виде тепловых инфракрасных лучей. СО 2 поглощает инфракрасное излучение и тем самым сохраняет тепло на Земле. Повышение содержания СО 2 в атмосфере может способствовать увеличению температуры, то есть создавать парниковый эффект. Однако высокое содержание СО 2 в воздухе активирует фотосинтез и, следовательно, концентрация СО 2 в воздухе опять уменьшится.

3. Накопление кислорода в атмосфере. Первоначально в атмосфере Земли кислорода было очень мало. Сейчас его содержание составляет 21 % по объему воздуха. В основном, этот кислород является продуктом фотосинтеза.

4. Озоновый экран. Озон (О 3) образуется в результате фотодиссоциации молекул кислорода под действием солнечной радиации на высоте около 25 км. Защищает всё живое на Земле от губительных лучей.

Фотосинтезом называют процесс, результатом которого является образование и выделение кислорода клетками растений и некоторыми видами бактерий.

Основное понятие

Фотосинтез - это не что иное, как цепочка уникальных физико-химических реакций. В чем же он заключается? Зеленые растения, а также некоторые бактерии поглощают солнечные лучи и преобразовывают их в электромагнитную энергию. Конечным результатом фотосинтеза является энергия химических связей разнообразных органических соединений.

В растении, которое осветили солнечные лучи, в определенной последовательности происходят окислительно-восстановительные реакции. Вода и водород, представляющие собой доноров-восстановителей, перемещаются в виде электронов к акцептору-окислителю (углекислому газу и ацетату). В результате образуются восстановленные соединения углеводов, а также кислород, который и выделяют растения.

История изучения фотосинтеза

На протяжении многих тысячелетий человек был убежден в том, что питание растения происходит по его корневой системе через почву. В начале шестнадцатого века голландским натуралистом Яном Ван Гельмонтом был проведен эксперимент с выращиванием растения в горшке. После взвешивания почвы до посадки и после того как растение достигло определенных размеров, им был сделан вывод о том, что все представители флоры получают питательные вещества в основном из воды. Этой теории придерживались ученые в течение двух последующих столетий.

Неожиданное для всех, но правильное предположение о питании растений было сделано в 1771 г. химиком из Англии Джозефом Пристли. Поставленные им опыты убедительно доказали, что растения способны очистить воздух, который ранее был не пригоден для дыхания человека. Несколько позже был сделан вывод о том, данные процессы невозможны без участия солнечного света. Ученые выяснили, что зеленые листочки растений не просто превращают полученный ими углекислый газ в кислород. Без этого процесса невозможна их жизнь. В совокупности с водой и минеральными солями углекислый газ служит пищей растениям. В этом заключено основное значение фотосинтеза для всех представителей флоры.

Роль кислорода для жизни на Земле

Опыты, которые были проведены английским химиком Пристли, помогли человечеству объяснить, почему воздух на нашей планете остается пригодным для дыхания. Ведь жизнь поддерживается, несмотря на существование огромного количества живых организмов и горение бесчисленного количества огней.

Возникновение жизни на Земле миллиарды лет назад было попросту невозможно. Атмосфера нашей планеты не содержала в себе свободного кислорода. Все изменилось с появлением растений. Весь находящийся сегодня в атмосфере кислород - это результат фотосинтеза, происходящего в зеленых листьях. Данный процесс изменил облик Земли и дал толчок к развитию жизни. Это бесценное значение фотосинтеза было до конца осознано человечеством лишь в конце 18 века.

Не является преувеличением утверждение, что само существование людей на нашей планете зависит от того, каково состояние растительного мира. Значение фотосинтеза заключено в его ведущей роли для протекания различных биосферных процессов. В глобальных масштабах эта удивительная физико-химическая реакция приводит к образованию органических веществ из неорганических.

Классификация процессов фотосинтеза

В зеленом листе происходит три важных реакции. Они и представляют собой фотосинтез. Таблица, в которую заносят данные реакции, применяется при изучении биологии. В ее строки вносят:

Фотосинтез;
- газообмен;
- испарение воды.

Те физико-химические реакции, которые происходят в растении при свете дня, позволяют зеленым листикам выделять двуокись углерода и кислород. В темное время суток - только первый из этих двух компонентов.

Синтез хлорофилла в некоторых растениях происходит даже при слабом и рассеянном освещении.

Основные этапы

Различают две фазы фотосинтеза, которые тесно связаны между собой. На первом этапе энергия лучей света преобразуется в высокоэнергетические соединения АТФ и универсальные восстановители НАДФН. Эти два элемента являются первичными продуктами фотосинтеза.

На втором (темновом) этапе полученные АТФ и НАДФН используются для фиксации углекислоты вплоть до ее восстановления в углеводы. Две фазы фотосинтеза имеют различия не только во времени. Они происходят и в различном пространстве. Тому, кто изучает по биологии тему "фотосинтез", таблица с точным указанием характеристик двух фаз поможет в более точном понимании процесса.

Механизм выработки кислорода

После поглощения растениями углекислого газа в них происходит синтез питательных веществ. Данный процесс осуществляется в зеленых пигментах, называемых хлорофиллами, под воздействием солнечных лучей. Основными составляющими этой удивительной реакции являются:

Свет;
- хлоропласты;
- вода;
- углекислый газ;
- температура.

Последовательность фотосинтеза

Выработка растениями кислорода осуществляется поэтапно. Основными стадиями фотосинтеза являются следующие:

Поглощение света хлорофиллами;
- разделение хлоропластами (внутриклеточными органоидами зеленого пигмента) полученной из почвы воды на кислород и водород;
- перемещение одной части кислорода в атмосферу, а другой - для осуществления дыхательного процесса растениями;
- образование молекул сахара в белковых гранулах (пиреноидах) растений;
- производство крахмалов, витаминов, жиров и т.д. в результате смешивания сахара с азотом.

Несмотря на то, что для осуществления фотосинтеза необходим солнечный свет, данная реакция способна протекать и при искусственном освещении.

Роль растительного мира для Земли

Основные процессы, происходящие в зеленом листе, уже достаточно полно изучила наука биология. Значение фотосинтеза для биосферы огромно. Это единственная реакция, приводящая к росту количества свободной энергии.

В процессе фотосинтеза каждый год происходит образование ста пятидесяти миллиардов тонн вещества органического типа. Кроме того, за указанный период растениями выделяется практически 200 млн. тонн кислорода. В связи с этим можно утверждать, что роль фотосинтеза огромна для всего человечества, так как данный процесс служит основным источником энергии на Земле.

В процессе уникальной физико-химической реакции происходит круговорот углерода, кислорода, а также многих других элементов. Из этого вытекает еще одно немаловажное значение фотосинтеза в природе. Данной реакцией поддерживается определенный состав атмосферы, при котором возможна жизнь на Земле.

Процесс, происходящий в растениях, ограничивает количество углекислого газа, не позволяя ему скапливаться в увеличенных концентрациях. Это также немаловажное значение фотосинтеза. На Земле благодаря зеленым растениям не создается так называемого парникового эффекта. Флора надежно защищает нашу планету от перегрева.

Растительный мир как основа питания

Немаловажна роль фотосинтеза для лесного и сельского хозяйства. Растительный мир является питательной базой для всех гетеротрофных организмов. Однако значение фотосинтеза кроется не только в поглощении зелеными листьями углекислого газа и получения такого готового продукта уникальной реакции, как сахар. Растения способны преобразовывать азотистые и серные соединения в вещества, из которых слагаются их тела.

Как же это происходит? Каково значение фотосинтеза в жизни растений? Данный процесс осуществляется посредством получения растением ионов нитратов. Эти элементы находятся в почвенной воде. В растение они попадают благодаря корневой системе. Клеточки зеленого организма перерабатывают ионы нитратов в аминокислоты, из которых слагаются белковые цепочки. В процессе фотосинтеза образуются и компоненты жиров. Они для растений являются важными запасными веществами. Так, в семенах многих плодов находится питательное масло. Этот продукт важен и для человека, так как находит применение в пищевой и сельскохозяйственной промышленности.

Роль фотосинтеза в получении урожая

В мировой практике работы сельскохозяйственных предприятий широко используются результаты изучения основных закономерностей развития и роста растений. Как известно, основой формирования урожая является фотосинтез. Его интенсивность, в свою очередь, зависит от водного режима культур, а также от их минерального питания. Каким же образом человек добивается увеличения плотности посевов и размеров листьев для того, чтобы растение максимально использовало энергию Солнца и забирало углекислый газ из атмосферы? Для этого оптимизируются условия минерального питания и водоснабжения сельскохозяйственных культур.

Научно доказано, что урожайность зависит от площади зеленых листьев, а также от интенсивности и длительности протекающих в них процессов. Но в то же время увеличение плотности посевов приводит к затенению листьев. К ним не может пробиться солнечный свет, и из-за ухудшения вентиляции воздушных масс в малых объемах поступает углекислый газ. В итоге происходит снижение активности процесса фотосинтеза и уменьшается продуктивность растений.

Роль фотосинтеза для биосферы

По самым приблизительным подсчетам, только автотрофные растения, обитающие в водах Мирового океана, ежегодно превращают от 20 до 155 млрд. тонн углерода в органическое вещество. И это при том, что энергия солнечных лучей используется ими лишь на 0,11%. Что касается наземных растений, то они ежегодно поглощают от 16 до 24 млрд. тонн углерода. Все эти данные убедительно говорят о том, насколько велико значение фотосинтеза в природе. Только в результате данной реакции атмосфера восполняется необходимым для жизни молекулярным кислородом, который необходим для горения, дыхания и разнообразной производственной деятельности. Некоторые ученые полагают, что в случае повышения содержания углекислого газа в атмосфере происходит увеличение скорости фотосинтеза. При этом атмосфера пополняется недостающим кислородом.

Космическая роль фотосинтеза

Зеленые растения являются посредниками между нашей планетой и Солнцем. Они улавливают энергию небесного светила и обеспечивают возможность существования жизни на нашей планете.

Фотосинтез представляет собой процесс, о котором можно говорить в космических масштабах, так как он в свое время способствовал преображению образа нашей планеты. Благодаря реакции, проходящей в зеленых листьях, энергия солнечных лучей не рассеивается в пространстве. Она переходит в химическую энергию вновь образованных органических веществ.

Человеческому обществу продукты фотосинтеза нужны не только для пищи, но и для осуществления хозяйственной деятельности.

Однако человечеству важны не только те лучи солнца, которые падают на нашу Землю в настоящее время. Крайне необходимы для жизни и осуществления производственной деятельности те продукты фотосинтеза, которые были получены миллионы лет назад. Они находятся в недрах планеты в виде пластов каменного угля, горючего газа и нефти, торфяных месторождений.

— синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО 2 + 6Н 2 О + Q света → С 6 Н 12 О 6 + 6О 2 .

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d ), главным является хлорофилл a . В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы . У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы .

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н 2 О + Q света → Н + + ОН — .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы.ОН:

ОН — → .ОН + е — .

Радикалы.ОН объединяются, образуя воду и свободный кислород:

4НО. → 2Н 2 О + О 2 .

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н 2:

2Н + + 2е — + НАДФ → НАДФ·Н 2 .

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н 2 ; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО 2 + 24Н + + АТФ → С 6 Н 12 О 6 + 6Н 2 О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С 3 - и С 4 -фотосинтез.

С 3 -фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С 3) соединения. С 3 -фотосинтез был открыт раньше С 4 -фотосинтеза (М. Кальвин). Именно С 3 -фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С 3 -фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О 2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО 2 . В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО 2 . Фотодыхание приводит к понижению урожайности С 3 -растений на 30-40% (С 3 -растения — растения, для которых характерен С 3 -фотосинтез).

С 4 -фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С 4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С 4 -растениями . В 1966 году австралийские ученые Хэтч и Слэк показали, что у С 4 -растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С 4 -растениях стали называть путем Хэтча-Слэка .

Для С 4 -растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой . В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО 2 и, самое главное, не взаимодействует с О 2 . В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО 2 и НАДФ·Н 2 .

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО 2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С 3 -фотосинтезе.

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом . К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH 3 → HNO 2 → HNO 3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H 2 S + ½O 2 → S + H 2 O, H 2 S + 2O 2 → H 2 SO 4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

    Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»