Оборудование для отопления и котельной. Подбор котла для отопления (отопительного оборудования). Котельная в частном доме – основные виды

03.03.2019

При создании системы обогрева загородного жилья в первую очередь разрабатывают проект входящей в ее состав котельной. Без этого обеспечить эффективное распространение тепла по всему зданию практически невозможно. В то время как входящее в ее состав котельное оборудование станет удачным решением проблемы с отоплением. И чтобы правильно подобрать приборы для частного дома, следует учесть некоторые нюансы и воспользоваться определенными рекомендациями.

Назначение котельной

Под частной котельной подразумевают комплекс приборов, предназначенных для обеспечения загородного жилья отоплением и горячей водой. Его монтаж необходим в тех случаях, когда:

  • использование централизованной отопительной системы в частном доме невозможно из-за большого расстояния до ближайшей магистрали. В этом случае чаще всего применяют котлы на твердом топливе (для электрического агрегата нет необходимости устраивать котельные);
  • требуется самостоятельное регулирование температуры теплоносителя, которая в обычной системе отопления зависит от централизованной подачи и не позволяет ни сэкономить, уменьшив потребление газа, ни, наоборот, повысить температуру в помещении (например, в сильный мороз), пренебрегая расходами.

Преимуществом этого мини-комплекса является не только возможность установки времени и интенсивности работы отопления по усмотрению пользователя.


Если речь идет не о газовых котлах (способных работать еще и на жидком газе), то система с использованием собственной котельной представляет собой энергонезависимое оборудование, на которое не влияют перебои с газоснабжением и различные профилактические работы коммунальных служб.

Особенности монтажа

В системах водяного отопления частного или загородного дома производится монтаж оборудования, работающего на газе (обычном и сжиженном), дизтопливе, электричестве и твердом топливе (включая дрова, пеллеты, кокс, торф и уголь).

При этом электрическое оборудование не требует установки отдельного комплекса, так как уже само по себе представляют собой автономную систему.

А котлы на дизельном топливе используются очень редко из-за дороговизны обслуживания и по причине низкой экологичности.


Таким образом, чаще всего проект организации системы отопления частного жилья предусматривает монтаж именно газовых или твердотопливных котельных.

Отопление, при котором применяется газовое оборудование и необходимо наличие центральной магистрали, является самым выгодным вариантом обогрева частного дома. Дороже обходится монтаж своими руками и эксплуатация системы, в которой энергоносителем выступает тот же газ, но уже сжиженный. Хотя эффективность обеспечения жилья теплом и в этом случае остается на хорошем уровне, за счет чего газовые котельные применяются чаще остальных.


Проект помещения для такого комплекса должен создаваться при соблюдении следующих правил:

  • оборудование мощностью до 30 кВт может устанавливаться в одной из комнат здания. При большей производительности для него требуется уже отдельное строение;
  • для котельной необходимо помещение, расположенное обязательно на первом этаже и имеющее объем не менее 15 кубометров. Если же котел установлен, например, на кухне частного дома, минимальные размеры комнаты возрастают вдвое;
  • в помещении необходима эффективная вентиляция, а отделка стен должна иметь огнестойкость не менее 0,75 ч (качественная штукатурка или кафель);
  • между котлом и полом устраивают подложку, выступающую за края оборудования на 10 см по всему периметру. А до ближайших предметов мебели расстояние должно быть не меньше 0,7–1 м.


Желательно, чтобы монтаж котла выполнялся на подиуме высотой от 0,2 м, заливаемом отдельно от общего фундамента. Пол помещения устраивается из негорючего материала – например, цементной стяжки. Если мини-комплекс из-за своей высокой мощности располагается в отдельном строении, оно не должно иметь общих стен с жилым домом.

Оборудование на твердом топливе

Монтаж твердотопливных котлов стал более выгодным после роста цен на газообразное топливо и другие виды углеводородных энергоносителей.


При их обустройстве своими руками необходимо учитывать, что для нормальной работы оборудования диаметры дымохода и патрубка котла должны совпадать. Это часто приводит к значительной высоте трубы, требуемой для создания достаточного для отвода дымовых газов напора.

В котельной обязательно должна устраиваться вытяжная вентиляция с площадью вытяжки не меньшей 8 кв. см на каждый кВт мощности оборудования (24 кв. см для котла, установленного в подвале).


Слой штукатурки стен должен иметь толщину от 3 см и выше. Под котлом укладывают стальной лист.

Площадь отдельного помещения должна быть не меньшей 8 кв. м, а высота потолков – от 2,5 м.

Устройство котельных

Так как проект котельной может предусматривать их установку и в жилом здании, и отдельно, требования для оборудования тоже отличаются. Так, если комплекс расположен в одной из комнат дома, в некоторых случаях (например, при наличии шумящей наддувной горелки) может понадобиться дополнительная звукоизоляция.


В то время как котлы, устанавливаемые в отдельных постройках, являются самым безопасным и практичным вариантом, хотя и требуют сравнительно больших капитальных вложений.

Основное оборудование, необходимое для работы системы отопления, как правило, не зависит ни от расположения помещения, ни даже от вида топлива, используемого для его работы. Практически все котельные состоят из следующих элементов:


  • отопительного котла;
  • бойлера (водонагревателя);
  • расширительного бака;
  • распределительных коллекторов;
  • дымоходов;
  • системы безопасности и подпитки котлов;
  • труб и запорной арматуры.

Котлы в этом комплексе являются генераторами тепла. В них происходит сгорание топлива, за счет которого теплоноситель (обычно вода, реже – антифриз) нагревается и подается в систему водяного отопления и в бойлер (при его наличии), необходимый для обеспечения жилья горячей водой.


Внутри такого устройства циркулирует нагретая жидкость, повышающая температуру воды, идущей на бытовые нужды.

Баки и коллекторы

Назначением расширительных баков является компенсация избыточного давления теплоносителя для устранения опасности создания в отопительной системе частного дома аварийной ситуации, при которой может произойти разрыв труб.


А распределительный коллектор, состоящий из насоса, гидравлического разделителя и гребенки, необходим для правильной циркуляции теплоносителя и его равномерное поступление в различные контуры системы (горячее водоснабжение, радиаторы, «теплые полы»).

Дымоходы и системы безопасности

Дымоходы необходимы для отведения из помещения котельной продуктов сгорания. От того, как выполнен их монтаж и подобраны параметры, зависит не только безопасность, но и эффективность работы котлов.


А задачами систем подпитки и безопасности является контроль давления циркулирующей по трубопроводам жидкости. Только первая предотвращает снижение напора из-за утечек и испарения, а вторая, наоборот, его повышение, удаляя воздух из труб.

Автоматика и арматура

Автоматика, устанавливаемая в мини котельных частного дома, необходима для работы оборудования (включения, отключения, установки требуемых параметров воздуха) в отсутствие человека и обеспечения дополнительной безопасности систем отопления и горячего водоснабжения.

Она может зависеть от электроснабжения (в этом случае котел способен работать самостоятельно до нескольких суток) или иметь механические регуляторы. Трубы и запорная арматура требуются для обеспечения циркуляции воды в системе.

Сепарационные устройства. Влажный насыщенный пар, получаемый в барабане котлоагрегатов низкого и среднего давлений, может уносить с собой капли котловой воды, содержащей растворенные в ней соли. В котлоагрегатах высокого и сверхвысокого давлений загрязнение пара обусловливается еще и дополнительным уносом солей кремниевой кислоты и соединений натрия, которые растворяются в паре.

Примеси, уносимые с паром, откладываются в пароперегревателе, что крайне нежелательно, так как может привести к пережогу труб пароперегревателя. Поэтому пар перед выходом из барабана котла подвергается сепарации, в процессе которой капли котловой воды отделяются и остаются в барабане. Сепарация пара осуществляется в специальных сепарирующих устройствах, в которых создаются условия для естественного или механического разделения воды и пара.

Естественная сепарация происходит вследствие большой разности плотностей воды и пара. Механический инерционный принцип сепарации основан на различии инерционных свойств водяных капель и пара при резком увеличении скорости и одновременном изменении направления или закручивания потока влажного пара.

На рис. 19.22 показаны принципиальные схемы сепарирующих устройств. На рис. 19.22,а показан принцип естественной сепарации. Гашение большой скорости потока пароводяной смеси, вытекающей из подводящих экранных труб, происходит в объеме воды, которая находится в барабане. Скорость пара в барабане над уровнем воды незначительна (0,3 - 0,5 м/с), что способствует сепарации капель воды и пара.

В схеме, показанной на рис. 19.22,б, пароводяная смесь направляется на сплошной отбойный щит. Вода стекает по листу, а пар поступает в паровое пространство и, проходя через пароприемный дырчатый лист, выводится из барабана. В этой схеме механическая сепарация сочетается с естественной в паровом объеме барабана.

Внутри барабанный циклон, показанный на рис. 19.22,г, служит для интенсивного закручивания потока пароводяной смеси. Под действием центробежных сил вода отбрасывается на стенку сепаратора и в виде пленки стекает в водяной объем.

Циклонный принцип сепарации отличается высокой эффективностью. При большой нагрузке парового объема барабана применяют выносные циклоны , к которым подключается часть труб испарительной поверхности котлоагрегата.

Рис. 19.22. Схемы сепарационных устройств.

а - погружной дырчатый щит: 1 - дырчатый щит; 2 - пароприемный дырчатый щит; б - отбойные и распределительные щиты; 1 - отбойный щит; 2 - пароприемный дырчатый щит; в - жалюзийный сепаратор; 1 - отбойный щит; 2 - жалюзийный сепаратор; 3 - пароприемный дырчатый щит; г - циклонный сепаратор; 1 - циклон; 2 - пароприемный дырчатый щит.

Рис. 19.23. Схема промывки пара питательной водой.

1 - щит с промывочными корытами; 2 - жалюзийный сепаратор; 3 - пароприемный щит; 4 - место отвода пара; 5 - место подвода питательной воды (5а - на промывку; 5б - под уровень); 6 - место подвода пароводяной смеси из испарительных труб; 7 - опускные трубы; 8 - дырчатый щит.

Выносные циклоны размещаются вне котлоагрегата (см. рис. 19.18).

Высокая степень очистки пара достигается при пленочной сепарации. Принцип пленочной сепарации основан на образовании устойчивой пленки при слиянии мельчайших капель воды в момент соприкасания потока влажного пара с каким - либо препятствием (вертикальная или горизонтальная плоскости и т.п.). Схема пленочного жалюзийного сепаратора, показанного на рис. 19.22,в, дает представление о методе пленочной сепарации. На стенках волнистых каналов образуется пленка воды, через потолочный дырчатый лист которая стекает вниз, а пар направляется к выходу из барабана.

Рассмотренные схемы методов получения чистого пара обеспечивают степень сухости х = 0,98 - 0,99. Для более тонкой очистки пара от примесей его очищают питательной водой. Схема промывки пара показана на рис. 19.23.

Перед промывкой пар проходит естественную сепарацию в паровом объеме, а затем барботирует через слой питательной воды, в которой содержится очень мало солей. В результате интенсивного массообмена соли задерживаются питательной водой. Унос капель питательной воды не представляет уже большой опасности для работы пароперегревателя.

Вспомогательное оборудование котельной установки - тягодутьевые устройства . Для нормальной работы котельного агрегата необходимы непрерывная подача воздуха для горения топлива и непрерывное удаление продуктов сгорания.

В современных котельных установках широко распространена схема с разрежением по газоходам. К недостаткам этой схемы следует отнести наличие присосов воздуха в газоходы через неплотности в ограждениях и работу дымососов на запыленных газах. Достоинство такой схемы - отсутствие выбивания и утечек дымовых газов в помещение котельной, так как воздух в топку нагнетает вентилятор, а дымовые газы удаляет дымосос. В последнее время в мощных энергетических котельных установках широко применяется схема с наддувом. Топка и весь газовый тракт находятся под давлением 3 - 5 кПа. Давление создается мощными вентиляторами ; дымосос отсутствует. Основной недостаток этой схемы - трудности, связанные с обеспечением надлежащей герметичности топки и газоходов котельного агрегата.

При движении газов по газоходам возникают потери напора вследствие аэродинамического сопротивления трению и местных сопротивлений (трубные пучки, сужения, повороты и т. д.). Суммарная потеря напора на отдельном участке складывается из потери на трение ∆h тр и потери на преодоление местного сопротивления ∆ h мест, т. е.

здесь λ - коэффициент трения; l,d экв - длина и эквивалентный диаметр участка; р - плотность газа; w - скорость газа; § м - коэффициент местного сопротивления.

При движении газов в вертикальных газоходах необходимо учитывать естественный напор, возникающий вследствие разности плотностей горячих дымовых газов и окружающего воздуха. Этот напор, называемый самотягой (∆h сам), в подъемных газоходах направлен на преодоление сопротивлений, а в опускных препятствует движению и является отрицательной величиной.

В целом для котельной установки потери напора составляют

∆Н = ∆h т + ∑∆h тр + ∑∆h мест + ∆h сам (19.25)

где ∆h т - разрежение, поддерживаемое в верхней части топки (20 - 40 Па).

Величину ∆Н определяют по нормам аэродинамического расчета котельных агрегатов. Преодоление ∆Н осуществляется тягой, которая может быть естественной и искусственной. Естественная тяга создается дымовыми трубами, а искусственная - с помощью специальных центробежных вентиляторов (дымососов). Для мощных котлоагрегатов используют дымососы осевого типа. Естественная тяга обусловливается разностью плотностей горячих дымовых газов и холодного окружающего воздуха. Высота столбов горячих газов и холодного воздуха при этом принимается одинаковой (рис. 19.24).

Рис. 19.24. К расчету естественной таги, создаваемой дымовой грубой.

Максимальная тяга, создаваемая трубой, должна быть на 20% выше суммарной потери напора. Дымовые трубы бывают кирпичными, железобетонными и стальными. При высоте до 80 м наибольшее распространение получили кирпичные трубы, так как они дешевле, устойчивее по отношению к температурным колебаниям (по сравнению с бетонными) и не подвержены вредному влиянию сернистых газов, как стальные.

Высота трубы должна отвечать санитарно - техническим требованиям, которыми предусматривается определенный радиус рассеяния дымовых газов во избежание превышения допустимой запыленности ими атмосферы.

Для получения тяги необходимо увеличивать высоту трубы или температуру уходящих газов. Однако при использовании любого из этих способов необходимо иметь в виду, что высота трубы ограничена ее стоимостью и прочностью, а температура газов - оптимальным значением КПД котельной установки. Поэтому большинство современных котельных установок оборудуют искусственной тягой, для создания которой применяют дымосос, преодолевающий сопротивление газового тракта. В этом случае высоту трубы выбирают в соответствии с санитарно - техническими требованиями.

Мощность привода дымососа, кВт, можно рассчитать по формуле

где V д - производительность дымососа,м 3 /с; Н д - (∆Н - ∆h caм) β 2 - разрежение, создаваемое дымососом, Па (здесь ∆Н - сопротивление газового тракта, Па; ∆h сам - самотяга дымовой трубы, Па); β 2 = 1,1 ÷ 1,2 - коэффициент запаса по создаваемому разрежению; β 3 - коэффициент запаса по мощности, равный 1,1; ȵ д - КПД дымососа.

Величина V д определяется по равенству

V д - V r В р Т д.тр β 1 /273, (19.27)

где Vr - расход газов, м 3 /м 3 ; В р - расход топлива, м 3 /с (кг/с); Т д.тр - температура газов на входе в дымовую трубу, К; β 1 - 1,05 ÷ 1,1 - коэффициент запаса по производительности.

Напор воздуха, создаваемый вентилятором, также следует определять на основании аэродинамического расчета воздушного тракта (воздуховодов, воздухоподогревателя, горелочного устройства и т.д.).

Максимальный напор вентилятора должен быть на 10% больше β2 = 1,1) потерь напора в воздушном тракте котельного агрегата. Мощность привода дутьевого вентилятора , кВт, определяют по формуле

N в = V вз Н в β 3 10 -3 /ȵ в (19.28)

где V вз - расход воздуха, м 3 /с; Н в = ∆Нβ 2 - напор вентилятора, Па (здесь ∆ Н - потеря напора в воздушном тракте, Па; β 2 = 1,1 - коэффициент запаса по создаваемому напору); β 3 = 1,1 - коэффициент запаса по мощности.

Величина V вз определяется по равенству

где β 1 = 1,05 - коэффициент запаса по производительности; V 0 - теоретическое количество воздуха, м 3 /м 3 (м 3 /кг); α т + α а = α вз - коэффициент избытка воздуха; Т вз - температура воздуха перед вентилятором; Н баром - барометрическое давление, кПа.

Вспомогательное оборудование котельной установки - основы водоподготовки . Одной из основных задач безопасной эксплуатации котельных установок является организация рационального водного режима, при котором не образуется накипь, на стенках испарительных поверхностей нагрева, отсутствует их коррозия и обеспечивается высокое качество вырабатываемого пара. Пар, вырабатываемый в котельной установке, возвращается от потребителя в конденсированном состоянии; при этом количество возвращаемого конденсата обычно бывает меньше, чем количество выработанного пара.

В производственных котельных основная безвозвратная потеря - это загрязненный конденсат пара, потребляемого в технологических процессах. Очистка этого конденсата от попавших в него примесей органических и минеральных веществ экономически невыгодна. Величина этой потери зависит от характера производства, где используется пар. Например, потеря конденсата на предприятиях машиностроительной промышленности составляет 20%, промышленности строительных материалов - 30, химической - 40, нефтеперерабатывающей - 50%. В отопительных котельных доля конденсата, не возвращаемого потребителем тепла, может меняться в широких пределах - от нескольких процентов до 100% в зависимости от схемы теплоснабжения и характера теплового потребления. Другая часть потери конденсата утечки в теплотрассах (0,5 - 1%). Кроме того, определенная часть воды (5 - 7%) выводится из котлоагрегата при непрерывной продувке.

Потери конденсата и воды при продувке восполняются за счет добавки воды из какого - либо источника. Эта вода должна быть соответствующим образом подготовлена до поступления в котельный агрегат. Вода, прошедшая предварительную подготовку, называется добавочной, смесь возвращаемого конденсата и добавочной воды - питательной, а вода, которая циркулирует в контуре котла, - котловой.

От качества питательной воды зависит нормальная работа котельных агрегатов. Физико - химические свойства воды характеризуют следующие показатели: прозрачность, содержание взвешенных веществ, сухой остаток, солесодержание, окисляемость, жесткость, щелочность, концентрация растворенных газов (СО 2 и О 2).

Прозрачность характеризуется наличием взвешенных механических и коллоидных примесей, а содержание взвешенных веществ определяет степень загрязнения воды твердыми нерастворимыми примесями. Содержание взвешенных веществ измеряется в мг/л. Сухой остаток является одним из основных показателей, по которому судят о пригодности воды для питания котельных агрегатов. Сухой остаток - это остаток после выпаривания лабораторной пробы воды, высушенный при 110 - 120 °С. Он содержит коллоидные и растворенные неорганические и органические примеси в воде. Единица измерения сухого остатка - мг/кг.

Солесодержание воды характеризуется общей концентрацией в воде катионов (Na+; К+; Mg 2 +) и анионов (НСО 3 ; SO 2 4 ; Cl; SiO 2 3). Солесодержание определяет степень минерализации воды в мг/л. Окисляемость характеризует концентрацию находящихся в воде органических примесей. Подсчитывают окисляемость по количеству кислорода (мг/л), необходимого для окисления (при определенных условиях) органических примесей, содержащихся в 1 кг воды. Жесткость воды - весьма важный показатель ее качества. Она характеризуется содержанием в ней ионов кальция и магния (Са 2 +; Mg 2 +). Различают жесткость общую Ж 0 , карбонатную Ж к и некарбонатную Ж нк. Общая жесткость Ж 0 характеризуется суммарной концентрацией ионов Са и Mg, т.е. Ж 0 = ЖCа + ЖMg. Карбонатная жесткость Ж к обусловлена присутствием бикарбонатов Са(НСО 3) 2 и Mg(HCO 3) 2 . Карбонатная жесткость - временная, так как при кипячении бикарбонаты разлагаются с выделением СO 2 и твердых осадков СаСO 3 и Mg(OH) 2 (шламов). Некарбонатная жесткость обусловлена наличием в воде всех остальных солей кальция и магния (CaSO 4 ; MgSO 4 ; СаСl 2; MgCl 2 и др). Некарбонатная жесткость Ж нк иногда называется постоянной, так как простым кипячением разложить указанные соли не удается в силу их свойств. Следовательно, Ж 0 = Ж к + Ж нк.Обычно Ж нк определяют как разность Ж нк = Ж о - Ж к.

Жесткость воды принято измерять в мг-экв/кг или мкг-экв/кг (1 мг-экв = 103 мкг/экв). По величине общей жесткости природную воду делят на три группы: мягкую с Ж 0 < 4 мг-экв/кг; средней жесткости с Ж 0 = 4 ÷ 7 мг-экв/кг и жесткую с Ж 0 > 7 мг-экв/кг. Например, для котлов ДКВр при давлении до 2,4 МПа допускают общую жесткость воды не более 0,02 мг-экв/кг.

Щелочность воды характеризуется содержанием бикарбонатных НСO 3 , карбонатных СО з и гидроксильных ОН - ионов. Величина щелочности измеряется в мг-экв/кг. В природных водах щелочность обусловлена в основном наличием бикарбонатных ионов.

При работе котельного агрегата происходит непрерывное накопление вредных примесей в котловой воде вследствие ее упаривания и притока солей с питательной водой. В паре, выходящем из котла, примесей, как правило, нет (исключение составляют соли кремния в паре при высоких давлениях).

Миллиграмм - эквивалентом называется количество вещества в миллиграммах, численно равное его эквивалентной массе, представляющей собой частное от деления молекулярной массы вещества на его валентность в данном соединении.

Примеси остаются в котловой воде и вызывают нежелательные последствия, если не принять соответствующих мер по предварительной обработке добавочной воды.

Наиболее вредными примесями являются накипеобразователи - соли кальция и магния, характеризующие некарбонатную жесткость, а также коррозионно-активные растворенные газы O 2 и СO 2 . Накипью называется механически прочный слой отложений накипеобразователей на внутренних стенках поверхностей нагрева.

Попадание механических примесей и солей карбонатной жесткости в котельный агрегат нежелательно из - за образования в испарительном контуре так называемых шламов - рыхлых соединений, которые необходимо периодически удалять. Отложение накипи и шлама отрицательно сказывается на работе котлоагрегата. Теплопроводность накипи и шлама незначительна по сравнению с теплопроводностью металлических стенок. Поэтому накипь и шлам увеличивают термическое сопротивление процессу теплопередачи от газов к воде, что приводит в ряде случаев к недопустимому повышению температуры стенок труб и снижению их механической прочности. Увеличение термического сопротивления повышает также расход топлива, что снижает экономичность работы котлоагрегата.

Растворенные в воде газы (О 2 и СО 2) при высоких температурах обладают высокой коррозионной активностью. Коррозия металла стенок труб приводит к уменьшению их толщины и, следовательно, механической прочности.

Щелочность воды несколько снижает интенсивность коррозионных процессов, но с увеличением щелочности наблюдается вспенивание воды в барабанах и возможен унос пены с паром.

Присутствие в воде органических соединений также нежелательно. Высокая окисляемость воды затрудняет ее обработку и удаление минеральных солей, повышает пенообразование. Следовательно, к качеству питательной воды предъявляются определенные требования, которые зависят от типа котельного агрегата (барабанный, прямоточный, водогрейный) и давления вырабатываемого пара.

Существуют два способа обработки воды - докотловая и внутри котловая. Докотловая обработка воды предусматривает комплекс мероприятий, обеспечивающих установленные нормы качества питательной воды. Для поддержания требуемого качества котловой воды в установленных пределах одной докотловой обработки бывает иногда недостаточно (например, для питания барабанных котлоагрегатов высокого и сверхвысокого давлений) из - за несовершенства применяемых методов и аппаратов. В этом случае дополнительно применяется внутри котловая обработка воды, при которой в барабан котлоагрегата вводят химические реагенты (фосфаты). Фосфаты вступают в химические реакции с солями, содержащимися в котловой воде, и образуют малорастворимые рыхлые соединения, которые выводятся из котлоагрегата.

Для прямоточных котлоагрегатов применяют только докотловую обработку добавочной воды. Несмотря на предварительную подготовку питательной воды, для поддержания допустимой по нормам концентрации солей в котловой воде и предотвращения отложений шлама котел продувают, т.е. удаляют из него часть котловой воды. При этом различают периодическую и непрерывную продувку паровых котлов. Периодическая продувка служит преимущественно для удаления шлама из контура котлоагрегата. Непрерывная продувка применяется главным образом для удаления растворенных в воде примесей и получения более чистого пара. Количество продувочной воды, выводимой из котлоагрегата, обычно определяют (или задают) в процентах к производительности агрегата (не более 5 - 6%).

Непрерывная продувка осуществляется из барабана котла (в двухбарабанных котлах - из верхнего) на уровне ввода пароводяной смеси, где солесодержание обычно бывает максимальным. Периодическая продувка производится из нижних коллекторов котла, где скапливается шлам. В двухбарабанных котлах периодическая продувка осуществляется также из нижнего барабана.

Докотловая подготовка воды должна обеспечивать ее осветление (удаление взвешенных частиц), умягчение, снижение щелочности и солесодержания, а также удаление растворенных газов (О 2 и СО 2). Крупные взвешенные вещества удаляют отстаиванием, мелкие - фильтрацией. Для фильтров используют песок, дробленую мраморную крошку, антрацит. Для удаления коллоидных и органических веществ воду перед фильтрованием обрабатывают коагулянтом, т.е. веществом, которое способствует укрупнению взвешенных веществ (соли железа FeSО 4 и FeCl 2 или сернокислый алюминий A 12 (SО 4) 3 . При использовании городской водопроводной воды операции осветления и коагуляции отпадают.

Умягчают воду, т.е. снижают ее жесткость, путем удаления из воды катионов Са 2 + и Mg 2 + еще до поступления ее в котел (докотловая обработка воды). Умягчение осуществляют термическим или химическим методами. Термический метод основан на разложении бикарбонатов кальция и магния при нагревании до 360 - 375 К. Образующиеся при этом труднорастворимые вещества (CaCО 3 , Mg(OH) 2)выпадают в осадок.

В настоящее время основной метод умягчения воды - метод катионного обмена. Сущность его заключается в том, что добавляемую воду пропускают через специальные аппараты - катионитовые фильтры, заполненные материалами, которые участвуют в катионном обмене с солями жесткости. В этих материалах присутствуют катионы натрия (Na+), аммония (NH+), водорода (Н+). Катионы солей жесткости замещают катионы в материале фильтра. Таким образом, катионы, входящие в состав соединений материала фильтра, поступают в обрабатываемую воду, а катионы солей жесткости задерживаются этим материалом. Катионы, перешедшие в воду, уже не являются накипеобразователями.

В качестве катионитовых материалов в производственно - отопительных котельных используют сульфоуголь (каменный и бурый, обработанный концентрированной серной кислотой), который насыщается катионами Na+, NH 4 + или Н+.

Рис. 19.25. Схема водоподготовительной установки.

1 - солерастворитель; 2, 3 - катионитовые фильтры; 4 - теплообменник: 5 - дырчатые листы (тарелки); 6 - деаэратор; 7 - питательный насос; трубопроводы; I - Добавочной сырой воды; II -умягченной воды; III - удаления парогазовой смеси; IV - возвращаемого конденсата; V - пара; VI - питательной воды; VII - слива в дренаж.

В зависимости от качества исходной и питательной воды применяют - различные методы катионирования: натрий-катионирование (Na-катионирование), аммоний - катионирование (NH 4 -катионирование), водород - катионирование (Н-катионирование). Используют также и комбинированные методы, которые осуществляются по трем схемам - последовательной, параллельной, совместной.

В отопительно - производственных котельных широко применяется схема совместного Na - NН 4 -катионирования. С течением времени катионит насыщается катионами кальция и магния и его активность снижается. Для восстановления утраченных обменных свойств катионит подвергают регенерации, обрабатывая его слабым раствором H 2 SO 4 , NaCl или NH 4 C 1 (в зависимости от вида обменного иона). Подробно методы умягчения воды, описание и расчет различных схем изложены в специальной литературе.

Растворенные в воде кислород, двуокись углерода и воздух вызывают коррозию стенок котла, поэтому газы удаляют из воды путем ее дегазации. Из всех известных способов дегазации воды наиболее распространен термический. Этот способ основан на свойстве газов O 2 и СO 2 снижать степень растворимости по мере повышения температуры воды вплоть до кипения, когда при нулевых парциальных давлениях O 2 и СO 2 их растворимость падает до нуля.

На рис. 19.25 показана принципиальная схема водоподготовительной установки (катионитовое умягчение и дегазация).

Добавочная вода из водопровода поступает в Na-катионитовый фильтр, где задерживается большая часть солей, характеризующих жесткость воды. В схеме имеются два катионитовых фильтра. Один фильтр, например 2, находится в работе, а в другом 3 проходит регенерация катионита. Слабый раствор NaCl (6 -10%-ный) подается в фильтр 3 из солерастворителя 1. Умягченная вода подается в деаэратор (дегазатор), где из нее удаляются растворенные газы.

Перед деаэратором воду подогревают горячей водой или паром в теплообменнике, с целью экономии расхода пара на деаэрацию. В верхнюю часть (головку) деаэратора подают очищенную воду и конденсат, возвращаемый в котельную. Проходя через дырчатые листы, вода разбивается на мелкие струи для увеличения площади поверхности контакта с паром, который подается вниз головки. Вода нагревается до кипения, растворенные газы при этом из нее удаляются через патрубок, установленный в верхней части головки. В деаэраторах атмосферного типа поддерживается давление 0,115 - 0,12 МПа, что соответствует температуре насыщения 376 - 377 К.

Подобного типа деаэраторы применяют в котельных низкого и среднего давлений. Они обеспечивают полное удаление кислорода и резко снижают содержание СО 2 в питательной воде. На тепловых станциях с котлами высокого давления используют деаэраторы повышенного давления (0,6 МПа).

Число и производительность деаэратора (по воде) в отопительно - производственных котельных определяют по количеству питательной воды и количеству воды для подпитки тепловых сетей. Запас воды в баках деаэраторов должен быть на 20 - 30 мин при максимальном ее расходе. Запас воды в баках деаэраторов на ТЭЦ должен быть не менее чем на 15 мин работы при максимальном расходе.

В водогрейных котельных применяют деаэраторы вакуумного типа, в которых поддерживается разрежение 0,02 - 0,03 МПа, что соответствует температуре кипения 330 - 340 К. Нагрев воды в них осуществляется от сети горячего водоснабжения.

Нарушение в бесперебойном обеспечении котельного агрегата питательной водой может привести к серьезным авариям. Воду в котельный агрегат подает питательный насос. Каждая котельная установка в соответствии с правилами Госгортехнадзора должна иметь два насоса - основной, или рабочий, и резервный. В качестве основного насоса устанавливают обычно многоступенчатый центробежный насос с электрическим приводом. Резервным служит поршневой насос с приводом от паровой машины. На крупных ТЭЦ в качестве резервных применяют центробежные насосы с приводом от небольшой паровой турбины (турбонасосы).

Подача каждого насоса должна быть не менее 110% номинальной производительности котельной, а напор, создаваемый питательным насосом, должен превышать давление в барабане котла на величину суммарного гидравлического сопротивления питательной линии (включая экономайзер). Напор определяют по формуле

Н = р к.а + Н сопр (19.30)

где р к.а - давление в барабане котлоагрегата; Н сопр - потеря напора в питательной линии (обычно Н сопр = 0,З ÷ 0,4 МПа).

Мощность привода питательного насоса N, кВт, находят по выражению

N = 1,1 D ном Н10 -3 /ȵ н (19.31)

где 1,1 - коэффициент запаса; D ном - номинальная производительность котельной, м 3 /с; Н - полный напор насоса, Па; ȵ н - КПД насоса; для центробежных насосов ȵ н = 0,5 ÷ 0,7 (в зависимости от производительности).

Вспомогательное оборудование котельной установки - топливоподача . Для нормальной и бесперебойной работы котельных установок требуется, чтобы топливо к ним подавалось непрерывно. Процесс подачи топлива складывается из двух основных этапов: 1) подача топлива от места его добычи на склады, расположенные вблизи котельной; 2) подача топлива со складов непосредственно в котельные помещения. Первый этап осуществляется с помощью железнодорожного или водного транспорта или автосамосвалами; на втором этапе для перемещения топлива используют узкоколейные вагонетки вместимостью до 1,5 м 3 , ленточные конвейеры, автопогрузчики, фуникулеры, тельферы и другие устройства, механизирующие этот процесс.

Склады для твердого топлива, как правило, устраивают открытыми и вместимость их рассчитана обычно не более чем на двухмесячный запас. Топливо на этих складах хранят в виде штабелей. Во избежание самовозгорания высота штабеля торфа не должна превышать 1,5 м. Размеры штабелей других видов твердого топлива не нормируют.

Хранилища для жидкого топлива представляют собой стальные (наземные) и бетонные (подземные) резервуары объемом 100 м и более. Расположены они вне котельных. Предпочтительнее использовать бетонные хранилища. Мазут на склады доставляют в железнодорожных цистернах. С помощью пара, подаваемого специальными шлангами, мазут в цистернах подогревают до 340 - 350 К и сливают в лоток, дно которого также обогревается паропроводами. По лотку мазут поступает в хранилища, которые соединяются с насосной станцией, оборудованной фильтрами, и подогревателями мазута. Схема мазутного хозяйства котельной приведена на рис. 19.26.

Газообразное топливо подают в котельные по газопроводам. В зависимости от давления газа трубопроводы могут быть низкого давления (до 0,5 кПа), среднего (от 0,5 кПа до 0,3 МПа) и высокого (более 0,3 МПа). На рис. 19.27 приведена схема газорегулирующего пункта для подачи газа к горелкам котлоагрегатов.

После ввода газопровода в котельную на нем устанавливают отключающую задвижку газовой сети, манометр 2 и отключающую задвижку 1 газовой сети котельной. Затем устанавливают фильтр 3, предохранительный клапан 4 и регулятор давления 5, поддерживающий давление газа перед горелками на требуемом уровне. В исключительных случаях можно отбирать газ помимо регулятора. При непредвиденном повышении давления газа перед горелками сверх установленного значения срабатывает сбросной предохранительный клапан 6 и газ отводится в атмосферу через продувочную свечу 12, установленную над крышей здания котельной. Расход газа учитывает счетчик 7. Газорегулирующий пункт может быть смонтирован как в помещении самой котельной, так и вне ее.

Очистка дымовых газов и удаление золы и шлака. При сгорании твердого топлива образуется много золы.

Рис. 19.26. Схема мазутного хозяйства котельной.

1 - железнодорожный путь для цистерны; 2 - сливной поток; 3 - мазутный бак; 4 - змеевики для подогрева мазута в баке; 5 - дренажный приямок; 6 - паровой насос; 7 - мазутный приямок; 8 - воздушный колпак; 9 - фильтр; 10 - подогреватели мазута; 11 - мазутопровод; 12 - котельные агрегаты; 13 - форсунки; 14 - мазутная магистраль.

При слоевом процессе сжигания основная часть минеральных примесей топлива (60 - 70%) превращается в шлак и проваливается через колосниковые решетки в зольник. В пылеугольных топках большая часть (75 - 85%) золы уносится из котлоагрегатов с дымовыми газами. Выброс сильно запыленных газов через трубу в атмосферу не допускается из - за загрязнения окружающего воздушного бассейна и ухудшения санитарно - гигиенических условий в населенных пунктах, расположенных вблизи котельной. Кроме того, зола вызывает абразивный износ лопаток дымососов. Все эти причины вызывают необходимость улавливать золу из дымовых газов.

В настоящее время в котельных применяют следующие типы золоуловителей : 1) инерционные механические; 2) мокрые; 3) электрофильтры; 4) комбинированные.

Инерционные (механические) золоуловители работают по принципу выделения золовых частиц из газового потока под влиянием сил инерции (при резком изменении направления движения потока, при закручивании газового потока и т. д.).

Рис. 19.27. Принципиальная схема газорегулировочного пункта.

1 - задвижка; 2 - манометр; 3 - фильтр; 4 - предохранительно - запорный клапан (ПЗК); 5 - регулятор давления; 6 - предохранительный сбросной клапан (ПСК); 7 - счетчик; 8 - термометр; 9 - жидкостный манометр; 10 - линия к котлам; 11 - сбросная линия от ПСК; 12 - продувочная свеча; 13 - импульсная линия.

На рис. 19.28 показана схема циклонного золоуловителя. Вследствие тангенциального входа в циклон пылегазовый поток получает вращательное движение, в результате чего частицы золы отбрасываются центробежными силами к стенке корпуса, выпадают из потока и ссыпаются в бункер. Поскольку центробежная сила, с которой отбрасываются частицы золы, при прочих равных условиях будет тем больше, чем меньше радиус циклона, в последнее время предпочитают вместо одного циклона строить батарейные циклоны из нескольких десятков мелких циклонов. Недостаток циклонных золоуловителей - относительно большое (до 40% в однокорпусных и до 20% в батарейных) просачивание мельчайшей пыли в дымовые газы за циклоном. Этот тип золоуловителей используют в отопительно-производственных котельных с расходом дымовых газов до 50 000 м 3 /ч, приведенных к нормальным условиям.

В настоящее время широко применяются золоулавители мокрого типа. Частицы золы из потока выделяются под действием сил инерции. Стенка золоуловителя смачивается пленкой воды, которую вводят в уловитель через различные разбрызгивающие устройства. На рис. 19.29 показана схема мокрого золоуловителя (скруббера) с нижним тангенциальным подводом запыленного газа.

Уловленная зола и загрязненная вода удаляются из нижней части, а очищенные газы - из верхней части корпуса скруббера. Золоуловитель мокрого типа применяют в котельных с расходом дымовых газов более 100 000 м 3 /ч, приведенных к нормальным условиям при условии, что приведенное содержание летучей серы S рл.п ≤ 1%.

Принцип действия электрофильтров заключается в том, что запыленные газы проходят через электрическое поле, образуемое между стальным цилиндром (положительный полюс) и проволокой, проходящей по оси цилиндра (отрицательный полюс). Основная масса частиц золы получает отрицательный заряд и притягивается к стенкам цилиндра, незначительная же часть частиц золы получает положительный заряд и притягивается к проволоке. При периодическом встряхивании электрофильтра электроды освобождаются от золы. Расход электро - энергии невелик (0,1 - 0,15 кВт на 1000 м 3 газа), но высокое напряжение (до 90 000 В) требует особой осторожности при обслуживании электрофильтров. Электрофильтры применяют в котельных с расходом дымовых газов более 70 000 м 3/ ч, отнесенных к нормальным условиям.

Комбинированные золоуловители являются двухступенчатыми, при этом работа каждой ступени основана на различных принципах.

Чаще всего комбинированный золоуловитель состоит из батарейного циклона (первая ступень) и электрофильтра (вторая ступень).

Рис. 19.28. Циклонный золоуловитель. а - схема циклона; б - общий вид батарейного циклона; в - улитка циклона; 1 - циклон; 2 - спираль улитка; 3 - входной коллектор; 4 - крышка; 5 - выхлопная труба; 6 - корпус циклона; 7 - буккер сбора золы и пыли.

Рис. 19.29. Схема центробежного скруббера конструкции ВТИ

1 - корпус; 2 - входной патрубок; 3 - клапан; 4 - коллектор подвода воды; 5 - оросительные сопла.

Эффективность работы золоуловителей оценивают по величине коэффициента очистки (обеспыливания).

ɛ = S у /S д 100%

где S y , S д - содержание золы в газах соответственно после уловителя и до него.

Однокорпусные циклонные уловители имеют ɛ = 40 ÷ 50%, для батарейных циклонов ɛ = 75 ÷ 85%, у мокрых золоуловителей ɛ = 90 ÷ 94%, у электрофильтров ɛ = 90 ÷ 95%; при комбинированной очистке ɛ = 98%.

Процесс золошлакоудаления можно разделить на две основные операции: очистка шлаковых и зольных бункеров и транспортировка золы и шлака на золоотвалы или заводы шлакобетонных изделий.

Существуют три способа удаления очаговых остатков:

  1. механический - с использованием различных механизмов - скреперов, подъемников, шнеков, шлаковыгружателей и т.д.;
  2. пневматический, основанный на способности воздушного потока перемещать сыпучие материалы;
  3. гидравлический, являющийся наиболее совершенным в отношении механизации процесса.

Сущность его состоит в том, что шлак и зола после выгрузки из топок и газоходов смываются в каналы и выносятся по ним к центральному пункту. Оттуда с помощью струи гидроэлеватора под давлением до 2,5 МПа шлак дробится и вместе с золой нагнетается по трубопроводам к отвалам. Способы очистки продуктов сгорания топлива от серосодержащих соединений и от окислов азота в настоящее время находятся еще в стадиях лабораторной и опытно - промышленной проверок. Предельно допустимые суммарные концентрации этих соединений по нормам, принятым в России, составляют 0,085 мг/м 3 .

Котельный завод Энергия-СПБ производит котельно-вспомогательное оборудование котельных установок:

Транспортирование котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.

Грамотное проектирование инженерных систем в полном соответствии со строительными нормами и правилами не только является залогом комфортной температуры в частном доме даже в самые сильные зимы, но и уберегает вас от различных поломок и происшествий, в том числе опасных для жизни и имущества. Кроме того, правильный и горячего водоснабжения избавит вас в будущем от проблем с приемками, проверками, согласованиями и прочими бюрократическими процедурами. Важнейшей составляющей инженерных систем является котельная в частном доме – про подбор оборудования для нее и полные схемы монтажа, какие о выбрать, вы можете получить базовую информацию здесь, в этой статье.

Котельная в частном доме – основные виды

Какой-либо единой и обязательной для всех частных домов конструкции котельной не существует – размеры, местоположение и параметры помещения могут иметь существенные различия. Они зависят от целей и задач, поставленных перед отопительным оборудованием, размеров коттеджа, который необходимо обогревать, бюджета, отведенного на постройку, и личных предпочтений хозяина земельного участка. На основе местоположения выделим четыре вида котельной в частном доме. , вы можете прочитать в нашей статье.


Интересно! Для газовой или твердотопливной котельной в отдельном помещении дома или пристройке к нему нередко используют термин «топочная».

Перечень оборудования, необходимого для котельной в частном доме

Помимо самого помещения, важнейшей составляющей котельной является оборудование, размещенной в ней. От его грамотного подбора зависит не только функциональность, мощность и долговечность отопительной системы, но и ее безопасность для вашего здоровья, жизни и имущества. Для начала приведем перечень оборудования для котельной в частном доме.

Таблица. Котельная для коттеджа – необходимое оборудование.

Наименование оборудования Выполняемая функция

Основа системы отопления и горячего водоснабжения. За счет сжигания газа, дров, угля, пеллет или за счет электричества нагревает теплоноситель, в качестве которого выступает обычная вода.

Устройство, которое подогревает воду, используемую в бытовых нуждах – для душа, мытья посуды и прочего.

Емкость, в которую поступает вода, вытесняемая отопительной системой при повышении температуры. С ним трубы и радиаторы защищены от внезапного повышения давления, из-за которого может случиться прорыв.

Емкость, содержащая в себе воду или иной другой теплоноситель. Собирает «лишнее тепло», вырабатываемое котлом, и отдает его в радиаторы отопления при сильных морозах.

Инженерная коммуникация, предназначенная для отвода продуктов горения топлива отопительного котла.

Устройство, равномерно распределяющее теплоноситель по всем радиаторам. Без него поддержка одинаково комфортной температуры во всех комнатах является чрезвычайно сложной задачей.

Устройство, используемое в системе отопления с принудительной циркуляцией теплоносителя. Обеспечивает необходимое давление в магистрали.

Комплекс приборов, регистрирующих температуру и давление в котле, бойлере и магистралях, а также следящих за концентрацией опасных веществ в воздухе котельной.

Различные краны и задвижки, необходимые для управления потоком теплоносителя в отопительной системе.

Основной элемент системы отопления – от котла и коллектора теплоноситель через них поступает к радиаторам.

Комплекс датчиков и оборудования, используемого для поддержания заданной пользователем температуры и давления в системе.

Устройство, очищающее воду перед поступлением в нагревательный котел и магистрали отопительной системы.

В следующих разделах статьи будут рассмотрены нюансы подбора и правил размещения наиболее важного оборудования для котельной из таблицы, приведенной выше. «П , Вы можете прочитать в нашей статье».

Отопительный котел – схема монтажа

Начнем с отопительного котла – «сердца» системы отопления и горячего водоснабжения большинства загородных домов. В качестве вступления приведем классификацию схем размещения и подключения нагревателей.

Начнем с первого – по своему местоположению делятся на два вида:

  • настенные;
  • напольные.

Как понятно из названия, нагреватели первого вида размещаются непосредственно на стене жилого дома. В большинстве случаев подобные устройства также включают в себя , насос, распределительный коллектор, датчики и прочее оборудование. С точки зрения пользователя подобная конструкция чрезвычайно удобна – все в одном месте и за одну цену. Кроме того, настенный котел прекрасно устанавливается на кухне или в коридоре, не занимает много места и не требует обустройства длинного и сложного дымохода – выводить продукты горения можно через короткую трубу, размещенную в стене прямо за нагревателем.

Но, как и у любого сложного устройства, у настенного котла есть свои недостатки. Первый – высокая сложность всей системы – в небольшом объеме размещено большое количество оборудования. И оно обладает высокой вероятностью поломки, особенно при неграмотном монтаже и неправильной эксплуатации. Второй недостаток настенных нагревательных котлов – относительно слабая мощность. В силу своей конструкции подобное устройство неспособно обеспечить то количество тепла, которого было бы достаточно для отопления очень большого загородного коттеджа. Но для небольших домов в деревнях или частном секторе настенный нагревательный котел будет в самый раз.

Устройства напольного размещения обладают прямо противоположными достоинствами и недостатками. Они обладают высокой мощностью, достаточной даже для самых крупных зданий. Кроме того, напольные нагревательные котлы конструируются с расчетом на максимальную надежность, пусть даже в ущерб размерам и тишине работы. При этом для них лучше отвести отдельное помещение, называемое топочной, или построить собственную котельную. Также напольные нагревательные котлы потребуют дымоход и целый комплекс оборудования, необходимый для доставки теплоносителя в радиаторы и надежной работы всей системы.

Что касается схем подключения магистралей к нагревателю, то они классифицируются по способу циркуляции жидкости в ней (может быть естественной или принудительной). В первом случае теплоноситель перемещается в трубах за счет разницы в плотности и температуре. Обустройство отопительной системы с естественной циркуляцией воды позволяет сэкономить на насосах, но при этом общая протяженность магистралей ограничена 30 метрами.

Важно! При естественной циркуляции теплоносителя от котла к радиаторам все трубы надлежит устанавливать под углом. Некоторые владельцы загородных домов считают это недостатком – наклонные магистрали выглядят с точки зрения эстетичности не лучшим образом.

Подключение системы отопления с принудительной циркуляцией теплоносителя обладает ровно противоположными достоинствами и недостатками. Из плюсов нужно отметить то, что длина магистралей не имеет каких-либо ограничений, кроме того, сами трубы можно прокладывать так, как вы считаете удобным и красивым. Также в самой системе будет поддерживаться постоянное и высокое давление жидкости. Но для всего этого необходимо приобретать набор насосов, которые, кроме своей стоимости, потребуют электроэнергии для работы.

Еще одним признаком, по которому классифицируют схемы подключения нагревательного котла, является способ прокладки подводящих и отводящих труб. По данной характеристике системы отопления делятся на однотрубные и двухтрубные. В первом случае подводящая и отводящая магистраль представлена одной трубой – теплоноситель от котла прогоняется последовательно по всем радиаторам. При этом хозяин дома выиграет в стоимости всей системы, но проиграет в качестве ее функционирования – самые ближние к топочному помещению батареи будут излишне горячими, а самые дальние, наоборот, холодными.

Важно! Еще одно проблемой стандартной однотрубной схемы является невозможность регулирования температуры в радиаторах. Этот недочет устраняется при монтаже системы отопления по . Ее устройство вы можете увидеть на приведенном ниже изображении.

Двухтрубная схема подключения магистралей к нагревательному котлу обеспечивает равномерное распределение теплоносителя по радиаторам и возможность регулировать мощность каждой отдельной батареи. Но при этом хозяину частного дома придется вложить больше средств и сил на прокладку инженерных коммуникацией на этапе строительства или ремонта.

В свою очередь, двухтрубная схема подразделяется на следующие подвиды:

  • вертикальная с верхней разводкой;
  • вертикальная с нижней разводкой;
  • горизонтальная тупиковая;
  • горизонтальная попутная;
  • горизонтальная лучевая.

Сам процесс обустройства котельной в частном доме можно представить в виде пошаговой инструкции.

Шаг 1. Самостоятельно или в проектной организации составляется схема монтажа и расположения котла, бойлера, расширительного бака, прочего оборудования и магистралей.

Шаг 2. Проект согласовывается в различных проверяющих организациях, в том числе и в областной газовой службе.

Шаг 3. В выделенной под котельную постройке или комнате прокладывается дымоход.

Шаг 4. После дымохода прокладываются остальные инженерные сети – канализация, электропроводка, подводящая и отводящая магистрали отопительной системы, газо- и водопровод, вентиляция.

Шаг 5. В соответствии с требованиями СНиП и газовой службы вашего региона, выполняется отделка котельной негорючими материалами.

Шаг 6. Устанавливаются и подключаются котел, бойлер и расширительный бак.

Газовый отопительный котел – требования к установке

Отопительные котлы, производящие тепло при помощи сжигания газа, на сегодняшний день получили широкое распространение. Во многом это обусловлено доступностью и низкой ценой топлива для них. Но при этом у подобных теплогенераторов есть одна серьезная проблема – при неправильном монтаже и эксплуатации существует риск пожара или даже взрыва. Потому установка газовых отопительных котлов требует учета множества достаточно строгих норм. Без их соблюдения нагреватели не пройдут приемку соответствующих организаций. Собираетесь обустроить котельную на газе в своем коттедже? Тогда обязательно ознакомьтесь с этим разделом статьи. Здесь мы собрали основные нормативные требования к монтажу газовых отопительных котлов. Они представлены тремя списками. Первый относится к нагревателям, устанавливаемым на кухне или коридоре, второй – для тех устройств, которые располагаются в специально отведенном помещении в доме. Последний список содержит в себе требования к котельной как отдельному от жилья зданию.

Устанавливать газовый отопительный котел на кухне или в коридоре можно в том случае, когда мощность агрегата меньше 60 кВт. Требования к его размещению следующие.


Если газовый теплогенератор имеет мощность свыше 60 кВт, но меньше 350, то размещать его на кухне или в коридоре нельзя (а учитывая габариты всего оборудования и производимый шум, это будет еще и некомфортно). Возникает необходимость в обустройстве топочной – отдельного помещения, где будет располагаться котел, бойлер, коллектор и все остальное. Разумеется, такая котельная для частного дома должна отвечать набору требований.


Совет! Вне зависимости от места установки отопительного котла, обязательно оснастите его датчиком, реагирующим на повышенные концентрации газа в помещении.

Для котлов с мощностью от 350 кВт наличие отдельной постройки-котельной обязательно. Обустраивая ее, обязательно уделите внимание утеплению труб с горячей водой, идущих от этого здания в основной дом – так вы сократите потери тепла и сэкономите топливо и деньги. Что касается требований к отдельной котельной на газу для частного дома, то они следующие.

  1. Наличие у котельной отдельного собственного фундамента.
  2. Стены должны быть изготовлены из материала с высокой стойкостью к горению.
  3. Внутренняя отделка пола, стен и потолков должна быть негорючей.
  4. Наличие окна и форточки обязательно.
  5. Ширина двери в котельную – не меньше 0,8 м.
  6. Электропроводка в котельной должна быть защищена от воспламенения и искрения.
  7. Под напольным газовым котлом обязательно наличие подложки высотой от 15 до 25 см. По своей длине и ширине она должна выступать за края агрегата не меньше чем на 10 см.
  8. Требования к объему и высоте котельной такие же, как и в предыдущих списках.

при необходимой мощности газового котла

Расчет проводится для каждого помещения отдельно.
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках

Укажите площадь помещения, м²

100 Вт на кв. м

Количество внешних стен

нет одна две три

Внешние стены смотрят на:

Север, Северо-Восток, Восток Юг, Юго-Запад, Запад

Положение внешней стены относительно зимней "розы ветров"

наветренная сторона подветренная сторона параллельная направлению ветра

Уровень отрицательных температур воздуха в регионе в самую холодную неделю года

35 °С и ниже от - 30 °С до - 34 °С от - 25 °С до - 29 °С от - 20 °С до - 24 °С от - 15 °С до - 19 °С от - 10 °С до - 14 °С не холоднее - 10 °С

Какова степень утепленности внешних стен?

Внешние стены не утеплены Средняя степень утепления Внешние стены имеют качественное утепление

Высота потолка в помещении

до 2,7 м 2,8 ÷ 3,0 м 3,1 ÷ 3,5 м 3,6 ÷ 4,0 м более 4,1 м

Что расположено снизу?

Холодный пол по грунту или над неотапливаемым помещением Утепленный пол по грунту или над неотапливаемым помещением Снизу расположено отапливаемое помещение

Что расположено сверху?

Холодный чердак или неотапливаемое и не утепленное помещение Утепленный чердак или иное помещение Отапливаемое помещение

Тип установленных окон

Обычные деревянные рамы с двойным остеклением Окна с однокамерным (2 стекла) стеклопакетом Окна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением

Количество окон в помещении

Высота окна, м

Ширина окна, м

Двери, выходящие на улицу или на балкон:

Точные нормы и предписания к размещению котельной на газу в частном доме можно получить в областной газовой службе. Также желательно перед началом обустройства топочного помещения ознакомиться с документами, индексы которых представлены в списке ниже.

МДС 41-2.2000. Инструкция по размещению тепловых агрегатов, предназначенных для отопления и горячего водоснабжения одноквартирных и блокированных жилых домов. Файл для скачивания (нажмите на ссылку, чтобы открыть PDF-файл в новом окне).

СНиП 2.04.08-87. Газоснабжение. Файл для скачивания (нажмите на ссылку, чтобы открыть PDF-файл в новом окне).

СНиП 42-01-2002. Газораспределительные системы. Файл для скачивания (нажмите на ссылку, чтобы открыть PDF-файл в новом окне).

СП 42-101-2003. Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб. Файл для скачивания (нажмите на ссылку, чтобы открыть PDF-файл в новом окне).

Видео — Котельная в частном доме на 130 кв. м. Секреты монтажа

Выбор бойлера для котельной в частном доме

Следует понимать, что использовать горячую воду из отопительной системы для мытья посуды, душа, умывания нежелательно – её качество может не соответствовать нормам. Потому, если не оборудован встроенным бойлером, последний необходимо приобретать отдельно. Для частных домов чаще всего приобретается модель с косвенным нагревом – герметичный резервуар с хорошей теплоизоляцией, внутри которого располагается спиральная трубка, а по ней, в свою очередь, циркулирует из отопительного котла. Прибор подогревает питьевую воду, а она затем направляется на бытовые нужды жильцов частного дома.

Выбирая подобное оборудование, следует обращать внимание на то, сколько горячей воды нужно семье, проживающей в коттедже, за какое время ее способен подготовить бойлер и какая часть мощности котла будет тратиться на это. Для двух человек хватит устройства объемом 50-70 л, для трех – 100 л, а для большего количества жильцов или при более высоком уровне потребления горячей воды понадобится 150-200 л. Как происходит , Вы можете в нашей статье.

Выбор расширительного бака для котельной в частном доме

Расширительный бак представляет собой емкость, в которой размещается подвижная мембрана, разделяющая внутренний объем на две части – одна заполняется теплоносителем из системы отопления, вторая инертным газом или воздухом. Если давление в магистралях становится выше нормы – лишняя вода поступает в расширительный бак, мембрана поднимается. При остывании наблюдается обратный процесс. Использовать подобную емкость для котельной в частном доме крайне желательно – ее (емкости) наличие предотвратит аварии, связанные с избыточным давлением в отопительной системе.

Расширительный бак должен иметь объем, равный 3-10% от общего объема жидкости, циркулирующей в котле, подающих/отводящих трубах и во всех радиаторах. Этот объем, в свою очередь, можно вычислить так – на 1 кВт мощности отопительного нагревателя приходится 13-15 л теплоносителя. Как устанавливаются , Вы можете прочитать в нашей статье.

Калькулятор расчета объема расширительного бака для системы отопления

Укажите запрашиваемые значения и нажмите "Рассчитать минимальный объем расширительного бака"

Паспортная мощность котла отопления, кВт

Какой теплоноситель используется?

Какова концентрация гликоля?

Максимальное давление в системе отопления (порог срабатывания предохранительного клапана), Бар

Минимальное давление (уровень закачки воздушной камеры расширительного бака), Бар

Что касается труб, запорной арматуры и коллекторов, то их необходимо подбирать, исходя из средней температуры и давления в магистралях. При этом все изделия должны иметь некий «резерв» по этим параметрам, чтобы не выходить из строя при каких-либо неполадках системы отопления.

Грамотный подбор оборудования, выбор оптимальной схемы монтажа и доскональное следование СНиП и прочим задокументированным нормам – залог долгой и беспроблемной работы котельной, а также качественного и эффективного отопления в том доме, где она располагается.

Видео — Котельная в частном доме на 180 кв. м

Котельная в частном доме — подбор оборудования, полная схема монтажа

Котельная установка (котельная) - это сооружение, в котором осуществляется нагрев рабочей жидкости (теплоносителя) (как правило - воды) для системы отопления или пароснабжения, расположенное в одном техническом помещении. Котельные соединяются с потребителями при помощи теплотрассы и/или паропроводов. Основным устройством котельной является паровой, жаротрубный и/или водогрейный котлы. Котельные используются при централизованном тепло- и пароснабжении или при местном теплоснабжении зданий.


Котельная установка представляет собой комплекс устройств, размещенных в специальных помещениях и служащих для преобразования химической энергии топлива в тепловую энергию пара или горячей воды. Ее основные элементы - котел, топочное устройство (топка), питательные и тягодутьевые устройства. В общем случае котельная установка представляет собой совокупность котла (котлов) и оборудования, включающего следующие устройства: подачи и сжигания топлива; очистки, химической подготовки и деаэрации воды; теплообменные аппараты различного назначения; насосы исходной (сырой) воды, сетевые или циркуляционные - для циркуляции воды в системе теплоснабжения, подпиточные - для возмещения воды, расходуемой у потребителя и утечек в сетях, питательные для подачи воды в паровые котлы, рециркуляционные (подмешивающие); баки питательные, конденсационные, баки-аккумуляторы горячей воды; дутьевые вентиляторы и воздушный тракт; дымососы, газовый тракт и дымовую трубу; устройства вентиляции; системы автоматического регулирования и безопасности сжигания топлива; тепловой щит или пульт управления.


Котел - это теплообменное устройство, в котором теплота от горячих продуктов горения топлива передается воде. В результате этого в паровых котлах вода превращается в пар, а в водогрейных котлах нагревается до требуемой температуры.


Топочное устройство служит для сжигания топлива и превращения его химической энергии в тепло нагретых газов.


Питательные устройства (насосы, инжекторы) предназначены для подачи воды в котел.


Тягодутьевое устройство состоит из дутьевых вентиляторов, системы газовоздуховодов, дымососов и дымовой трубы, с помощью которых обеспечиваются подача необходимого количества воздуха в топку и движение продуктов сгорания по газоходам котла, а также удаление их в атмосферу. Продукты сгорания, перемещаясь по газоходам и соприкасаясь с поверхностью нагрева, передают теплоту воде.


Для обеспечения более экономичной работы современные котельные установки имеют вспомогательные элементы: водяной экономайзер и воздухоподогреватель, служащие соответственно для подогрева воды и воздуха; устройства для подачи топлива и удаления золы, для очистки дымовых газов и питательной воды; приборы теплового контроля и средства автоматизации, обеспечивающие нормальную и бесперебойную работу всех звеньев котельной.


В зависимости от использования их теплоты котельные делятся на энергетические, отопительно-производственные и отопительные.


Энергетические котельные снабжают паром паросиловые установки, вырабатывающие электроэнергию, и обычно входят в комплекс электрической станции. Отопительно-производственные котельные бывают на промышленных предприятиях и обеспечивают теплотой системы отопления и вентиляции, горячего водоснабжения зданий и технологические процессы производства. Отопительные котельные решают те же задачи, но обслуживают жилые и общественные здания. Они делятся на отдельно стоящие, сблокированные, т.е. примыкающие к другим зданиям, и встроенные в здания. В последнее время все чаще строят отдельно стоящие укрупненные котельные с расчетом на обслуживание группы зданий, жилого квартала, микрорайона.


Устройство встроенных в жилые и общественные здания котельных в настоящее время допускается только при соответствующем обосновании и согласовании с органами санитарного надзора.


Котельные малой мощности (индивидуальные и небольшие групповые) обычно состоят из котлов, циркуляционных и подпиточных насосов и тягодутьевых устройств. В зависимости от этого оборудования в основном определяются размеры помещений котельной.

2. Классификация котельных установок

Котельные установки в зависимости от характера потребителей разделяются на энергетические, производственно-отопительные и отопительные. По виду получаемого теплоносителя их делят на паровые (для выработки пара) и водогрейные (для выработки горячей воды).


Энергетические котельные установки вырабатывают пар для паровых турбин на тепловых электростанциях. Такие котельные оборудуют, как правило, котлоагрегатами большой и средней мощности, которые вырабатывают пар повышенных параметров.


Производственно-отопительные котельные установки (обычно паровые) вырабатывают пар не только для производственных нужд, но и для целей отопления, вентиляции и горячего водоснабжения.


Отопительные котельные установки (в основном водогрейные, но они могут быть и паровыми) предназначены для обслуживания систем отопления производственных и жилых помещений.


В зависимости от масштаба теплоснабжения отопительные котельные бывают местные (индивидуальные), групповые и районные.


Местные котельные обычно оборудуют водогрейными котлами с нагревом воды до температуры не более 115 °С или паровыми котлами с рабочим давлением до 70 кПа. Такие котельные предназначены для снабжения теплотой одного или нескольких зданий.


Групповые котельные установки обеспечивают теплотой группы зданий, жилые кварталы или небольшие микрорайоны. Их оборудуют как паровыми, так и водогрейными котлами большей теплопроизводительности, чем котлы для местных котельных. Эти котельные обычно размещают в специально сооруженных отдельных зданиях.


Районные отопительные котельные служат для теплоснабжения крупных жилых массивов: их оборудуют сравнительно мощными водогрейными или паровыми котлами.



Рис. 1.








Рис. 2.








Рис. 3.




Рис. 4.


Отдельные элементы принципиальной схемы котельной установки принято условно показать в виде прямоугольников, кружков и т.п. и соединять их между собой линиями (сплошными, пунктирными), обозначающими трубопровод, паропроводы и т. п. В принципиальных схемах паровых и водогрейных котельных установок имеются существенные различия. Паровая котельная установка (рис. 4, а) из двух паровых котлов 1, оборудованных индивидуальными водяными 4 и воздушными 5 экономайзерами, включает групповой золоуловитель 11, к которому дымовые газы подходят по сборному борову 12. Для отсоса дымовых газов на участке между золоуловителем 11 и дымовой трубой 9 установлены дымососы 7 с электродвигателями 8. Для работы котельной без дымососов установлены шиберы (заслонки) 10.


Пар от котлов по отдельным паропроводам 19 поступает в общий паропровод 18 и по нему к потребителю 17. Отдав теплоту, пар конденсируется и по конденсатопроводу 16 возвращается в котельную в сборный конденсационный бак 14. Через трубопровод 15 в конденсационный бак подается добавочная вода из водопровода или химводоочистки (для компенсации объема, не вернувшегося от потребителей).


В случае, когда часть конденсата теряется у потребителя, из конденсационного бака смесь конденсата и добавочной воды подается насосами 13 по питательному трубопроводу 2 сначала в экономайзер 4, а затем в котел 1. Воздух, необходимый для горения, засасывается центробежными дутьевыми вентиляторами 6 частично из помещения котельной, частично снаружи и по воздуховодам 3 подается сначала к воздухоподогревателям 5, а затем к топкам котлов.


Водогрейная котельная установка (рис. 4, б) состоит из двух водогрейных котлов 1, одного группового водяного экономайзера 5, обслуживающего оба котла. Дымовые газы по выходе из экономайзера по общему сборному борову 3 поступают непосредственно в дымовую трубу 4. Вода, нагретая в котлах, поступает в общий трубопровод 8, откуда подается к потребителю 7. Отдав теплоту, охлажденная вода по обратному трубопроводу 2 направляется сначала в экономайзер 5, а затем опять в котлы. Вода по замкнутому контуру (котел, потребитель, экономайзер, котел) перемещается циркуляционными насосами 6.





Рис. 5. : 1 - циркуляционный насос; 2 - топка; 3 - пароперегреватель; 4 - верхний барабан; 5 - водоподогреватель; 6 - воздухоподогреватель; 7 - дымовая труба; 8 - центробежный вентилятор (дымосос); 9 - вентилятор для подачи воздух в воздухоподогреватель


На рис. 6 представлена схема котельного агрегата с паровым котлом, имеющим верхний барабан 12. В нижней части котла расположена топка 3. Для сжигания жидкого или газообразного топлива используют форсунки или горелки 4, через которые топливо вместе с воздухом подается в топку. Котел ограничен кирпичными стенами -обмуровкой 7.


При сжигании топлива выделяющаяся теплота нагревает воду до кипения в трубных экранах 2, установленных на внутренней поверхности топки 3, и обеспечивает ее превращение в водяной пар.




Рис 6.


Дымовые газы из топки поступают в газоходы котла, образуемые обмуровкой и специальными перегородками, установленными в пучках труб. При движении газы омывают пучки труб котла и пароперегревателя 11, проходят через экономайзер 5 и воздухоподогреватель 6, где они также охлаждаются вследствие передачи теплоты воде, поступающей в котел, и воздуху, подаваемому в топку. Затем значительно охлажденные дымовые газы при помощи дымососа 17 удаляются через дымовую трубу 19 в атмосферу. Дымовые газы от котла могут отводиться и без дымососа под действием естественной тяги, создаваемой дымовой трубой.


Вода из источника водоснабжения по питательному трубопроводу подается насосом 16 в водяной экономайзер 5, откуда после подогрева поступает в верхний барабан котла 12. Заполнение барабана котла водой контролируется по водоуказательному стеклу, установленному на барабане. При этом вода испаряется, а образующийся пар собирается в верхней части верхнего барабана 12. Затем пар поступает в пароперегреватель 11, где за счет теплоты дымовых газов он полностью подсушивается, и температура его повышается.


Из пароперегревателя 11 пар поступает в главный паропровод 13 и оттуда к потребителю, а после использования конденсируется и в виде горячей воды (конденсата) возвращается обратно в котельную.


Потери конденсата у потребителя восполняются водой из водопровода или из других источников водоснабжения. Перед подачей в котел воду подвергают соответствующей обработке.


Воздух, необходимый для горения топлива, забирается, как правило, вверху помещения котельной и подается вентилятором 18 в воздухоподогреватель 6, где он подогревается и затем направляется в топку. В котельных небольшой мощности воздухоподогреватели обычно отсутствуют, и холодный воздух в топку подается или вентилятором, или за счет разрежения в топке, создаваемого дымовой трубой. Котельные установки оборудуют водоподготовительными устройствами (на схеме не показаны), контрольно-измерительными приборами и соответствующими средствами автоматизации, что обеспечивает их бесперебойную и надежную эксплуатацию.





Рис. 7.


Для правильного монтажа всех элементов котельной используют монтажную схему, пример которой показан на рис. 9.



Рис. 9.


Водогрейные котельные установки предназначены для получения горячей воды, используемой для отопления, горячего водоснабжения и других целей.


Для обеспечения нормальной эксплуатации котельные с водогрейными котлами оборудуют необходимой арматурой, контрольно-измерительными приборами и средствами автоматизации.


Водогрейная котельная имеет один теплоноситель - воду в отличие от паровой котельной, у которой два теплоносителя - вода и пар. В связи с этим в паровой котельной необходимо иметь отдельные трубопроводы для пара и воды, а также баки для сбора конденсата. Однако это не значит, что схемы водогрейных котельных проще паровых. Водогрейная и паровая котельные по сложности устройства бывают различными в зависимости от вида используемого топлива, конструкции котлов, топок и т. п. В состав как паровой, так и водогрейной котельной установки обычно входят несколько котлоагрегатов, но не менее двух и не более четырех-пяти. Все они связываются между собой общими коммуникациями - трубопроводами, газопроводами и др.


Устройство котлов меньшей мощности показано ниже в пункте 4 данной темы. Чтобы лучше понять устройство и принципы действия котлов разной мощности, желательно сравнить устройство этих менее мощных котлов с устройством описанных выше котлов большей мощности, и найти в них основные элементы, выполняющие такие же функции, а также понять основные причины различий в конструкциях.

3. Классификация котельных агрегатов

Котлы как технические устройства для производства пара или горячей воды отличаются многообразием конструктивных форм, принципов действия, используемых видов топлива и производственных показателей. Но по способу организации движения воды и пароводяной смеси все котлы могут быть разделены на следующие две группы:


Котлы с естественной циркуляцией;


Котлы с принудительным движением теплоносителя (воды, пароводяной смеси).


В современных отопительных и отопительно-производственных котельных для производства пара используются в основном котлы с естественной циркуляцией, а для производства горячей воды - котлы с принудительным движением теплоносителя, работающие по прямоточному принципу.


Современные паровые котлы с естественной циркуляцией делают из вертикальных труб, расположенных между двумя коллекторами (верхним и нижним барабанами). Их устройство показано на чертеже на рис. 10, фотография верхнего и нижнего барабана с соединяющими их трубами - на рис. 11, а размещение в котельной - на рис. 12. Одна часть труб, называемых обогреваемыми «подъемными трубами», нагревается факелом и продуктами сгорания топлива, а другая, обычно не обогреваемая часть труб, находится вне котельного агрегата и носит название «опускные трубы». В обогреваемых подъемных трубах вода нагревается до кипения, частично испаряется и в виде пароводяной смеси поступает в барабан котла, где происходит ее разделение на пар и воду. По опускным не обогреваемым трубам вода из верхнего барабана поступает в нижний коллектор (барабан).


Движение теплоносителя в котлах с естественной циркуляцией осуществляется за счет движущего напора, создаваемого разностью весов столба воды в опускных и столба пароводяной смеси в подъемных трубах.





Рис. 10.





Рис. 11.





Рис. 12.


В паровых котлах с многократной принудительной циркуляцией поверхности нагрева выполняются в виде змеевиков, образующих циркуляционные контуры. Движение воды и пароводяной смеси в таких контурах осуществляется с помощью циркуляционного насоса.


В прямоточных паровых котлах кратность циркуляции составляет единицу, т.е. питательная вода, нагреваясь, последовательно превращается в пароводяную смесь, насыщенный и перегретый пар.


В водогрейных котлах вода при движении по контуру циркуляции нагревается за один оборот от начальной до конечной температуры.


По виду теплоносителя котлы разделяются па водогрейные и паровые. Основными показателями водогрейного котла являются тепловая мощность, то есть теплопроизводительность, и температура воды; основными показателями парового котла - паропроизводительность, давление и температура.


Водогрейные котлы, назначением которых является получение горячей воды заданных параметров, применяют для теплоснабжения систем отопления и вентиляции, бытовых и технологических потребителей. Водогрейные котлы, работающие обычно по прямоточному принципу с постоянным расходом воды, устанавливают не только на ТЭЦ, но и в районных отопительных, а также отопительно-производственных котельных в качестве основного источника теплоснабжения.





Рис. 13.




Рис. 14.


По относительному движению теплообменивающихся сред (дымовых газов, воды и пара) паровые котлы (парогенераторы) могут быть разделены на две группы: водотрубные котлы и жаротрубные котлы. В водотрубных парогенераторах внутри труб движется вода и пароводяная смесь, а дымовые газы омывают трубы снаружи. В России в XX веке преимущественно использовались водотрубные котлы Шухова. В жаротрубных, наоборот, внутри труб движутся дымовые газы, а вода омывает трубы снаружи.


По принципу движения воды и пароводяной смеси парогенераторы подразделяются на агрегаты с естественной циркуляцией и с принудительной циркуляцией. Последние подразделяются на прямоточные и с многократно-принудительной циркуляцией.


Примеры размещения в котельных котлов разной мощности и назначения, а также другого оборудования, показаны на рис. 14- 16.



Рис. 15.








Рис. 16. Примеры размещения бытовых котлов и другого оборудования

АСК ГРУПП МСК – оптово/розничная компания, обратившись в которую вы можете купить котельное оборудование для частного дома или на предприятие. Мы предоставляем персональные скидки на заказ – звоните. Доставка по Москве и России. Оптовым и постоянным клиентам - особые условия.

Котельное оборудование - это совокупность целого ряда элементов, которые необходимы для поддержания активной температуры в теплообменнике, то есть для её нагрева. По своей сути данное оборудование является некой системой и может состоять из ряда предметов.

Чаще всего к такому оборудованию относят расширительные баки, горелки, дымоходы и многие другие различающиеся друг от друга по форме и функционалу предметы. Совсем не важно на каком виде топлива работает отопительный котёл. Куда важнее правильно подобрать для него данные составляющие. Именно поэтому, сейчас мы их рассмотрим более подробно.

Котлы и котельное оборудование и его покупка

Как уже было сказано выше, существует огромное количество разных предметов, входящих в котельную систему. Сейчас мы рассмотрим самые интересные из них:

1. Расширительный бак, который является чуть ли не самым важным элементом в любой системе отопления. Бак позволяет сдерживать внутреннее давление, а потому пользуется наибольшим спросом. Его средняя цена составляет 4000-5000 тысяч рублей. Здесь всё зависит от его объёма.

2. Теплообменник, элемент котельного оборудования, главная функция которого - это обеспечение свободной передачи тепла между 2 разными объектами. Средняя цена на него варьируется в пределах 20000-40000 тысяч рублей.

3. Водонагреватель. Ещё один важный элемент системы, который обеспечивает постоянное поддержание заранее установленной температуры. Именно благодаря ему мы можем принимать душ ни о чём не задумываясь. Ведь его главная функция - это непрерывность. Покупка водонагревателя обойдётся вам примерно в 6000-12000 рублей. Опять же, всё зависит от типа водонагревателя. Ведь он бывает проточным и накопительным. Они различаются по характеру работы, а соответственно и по цене. Но чаще всего покупатели обращают внимание на газовое котельное оборудование.

4. Горелка. Здесь на долго можно не задерживаться. Можно поговорить только о цене. За горелку вам придётся заплатить от 500 и до 3000 рублей.

5. Дымоход.Одно из самых главных инструментов, главная функция которого - это обеспечение безопасности, путём использования специализированного канала для выхода. Его цена может варьироваться в пределах от 2000 и до 30000 рублей. Здесь всё зависит от качества и надёжности.

Вывод

Купить котельное оборудование для дома можно по доступной цене. Для этого важно правильно совместить все характеристики. Представленные выше элементы одинаково важны, а потому вам стоит задуматься над их покупкой.