Какой теплоноситель лучше для отопления частного дома. Ещё раз о роли алюминия в системах отопления: «прямая и явная угроза»? Какой теплоноситель и кто это решает

20.03.2019

К.т.н. Я.М. Щелоков, доцент кафедры «Энергосбережение», УГТУ-УПИ, г. Екатеринбург

Перед персоналом любого энергоисточника возникает комплекс задач по организации надежной и экономичной работы тепловых энергоустановок. К настоящему времени эти требования сформулированы в правилах устройства и эксплуатации различных энергетических установок . Конечная цель при этом - не допускать возникновения коррозии металла и/или образования накипи, отложений и шлама на теплопередающих поверхностях оборудования и трубопроводов в котельных, системах теплоснабжения за счет организации соответствующего водно-химического режима.

Принято считать, что достижение необходимого водно-химического режима работы энергоустановок возможно посредством обеспечения соответствующих концентрационных показателей воды, необходимых для обеспечения ее качественной и количественной характеристик .

Однако все попытки распространения этого технологического условия на водно-химические режимы тепловых сетей приводили чаще всего к отрицательным результатам по обеспечению как их надежной работы , так и необходимых экономических показателей .

Сложившееся противоречие было также подтверждено и в , где подчеркивается, что, по мнению теплохимиков, настало время реально оценить все аспекты эксплуатации тепловых сетей и, если это окажется необходимым, пересмотреть нормы их проектирования и эксплуатации.

О настоящей необходимости коренного пересмотра сложившихся схем теплоснабжения было подчеркнуто также и в . Именно в данной работе сделана попытка комплексного рассмотрения проблемы организации водно-химических режимов работы систем теплоснабжения, т.е. отопления и горячего водоснабжения (ГВС). Здесь А.П. Баскаковым приведены основные понятия химии воды. Отмечено, что, исходя из концентрационных показателей качества воды, обеспечение нормативных требований к водно-химическим режимам наиболее возможно в двух случаях .

1. Использование в качестве подпиточной химически чистой (нейтральной) воды, где могут распадаться на ионы менее одной из каждых 10 млрд молекул. На настоящий период наиболее близка по своему составу к нейтральной -обессоленная вода.

2. Использование так называемой «стабильной» воды, которая по своему определению не выделяет и не растворяет карбонат кальция, являющийся основой всякого рода отложений.

На примере Дании использование условно нейтральной воды в системе теплоснабжения вполне возможно (табл. 1).

Таблица 1. Показатели подпиточной воды для систем теплоснабжения (Дания).

Показатели Умягченная вода Обессоленная вода
Внешний вид чистая, бесцветная чистая, бесцветная
Запах нет нет
Частицы, мг/л <5 <1
Значение рН* 9,8±0,2 9,8±0,2
Проводимость (iS/cm как сырой воды <10
Остаточная жесткость dH° <0,1 <0,01
Содержание кислорода/двуокиси углерода, мг/л <0,1/10 <0,1/10
Содержание масла и жира нет нет
Содержание хлорида Cl~, мг/л <300 <1
Содержание сульфата SO4, мг/л - <1
Общее содержание железа Fe, мг/л <0,05 <0,005
Общее содержание меди Си, мг/л <0,05 <0,01
Бактериологический лимит официальных норм нет официальных норм нет

Но при этом следует обратить внимание на недопустимость в системах теплоснабжения использования алюминия, который подвергается коррозии при pH выше 8,7.

Возможность перехода на использование «нейтральной» воды в данном случае вызвана тем, что в системах теплоснабжения Дании средние потери воды составляют не более 0,15% в сутки, т.е. не более 1,5 л на каждый м3 воды (поданным HydroX).

В условно закрытых системах отопления, с вероятностью несанкционированных отборов воды, и тем более для систем с открытым водоразбором, применение даже просто умягченной воды становится экономически не реальным.

Что касается стабильности воды (по CaCO3), то теоретически это возможно только при неизменном температурном режиме работы системы теплоснабжения. Данное условие не выполнимо, по крайней мере, для водяных систем. Более того, поданным ВТИ в некоторых тепловых сетях наблюдается значительная (до 20-25 ОC) разница температур уже в подающих линиях ее магистралей.

То есть по ряду объективных (динамика температуры теплоносителя, климатические условия и др.) и субъективных (объемы утечек сетевой воды, квалификация обслуживающего персонала и др.) факторов, как правило, невозможно обеспечить надежную работу отечественных тепловых сетей только за счет поддержания соответствующих концентрационных показателей воды.

Именно поэтому в подробно проанализированы результаты работ за последние 40-50

лет по созданию аппаратных устройств, режимных мероприятий и др. по предотвращению накипеобразования и коррозии в системах теплоснабжения.

Проведено сравнение таких методов обработки воды как ионный обмен (химический метод), стабилизационная обработка воды (органические фосфонаты, акрилаты и др.), безреагентная противонакипная обработка воды (магнитная, ультразвуковая и др.) и т.д.

Отмечено, что принципиальной особенностью ионного обмена является необходимость строго выдерживать пропускную способность катионитовых фильтров по подпиточной воде, своевременно и качественно выполнять все технологические операции. С другой стороны, у системы отопления и ГВС любого типа регулярно или периодически требуются изменения расхода подпиточной воды в широком диапазоне -нередко в десятки раз. То есть эти два технологических процесса - ионный обмен и система водяного теплоснабжения, тем более открытого, - практически несовместимы. И все попытки их объединить неизбежно связаны с необходимостью хотя бы периодического питания систем отопления и ГВС сырой водой со всеми вытекающими отсюда неприятными последствиями. Важно отметить, что этот метод водоподготовки является пассивным в отношении уже имеющейся накипи, т.е. все «проскоки» солей жесткости и перерывы в работе ионообменных фильтров (подпитка напрямую) приводят к постепенному увеличению трудноудаляемых отложений . И даже в условиях систем теплоснабжения Дании требуется дополнительно вводить специальные реагенты, преобразующие соли жесткости в шлам .

Неслучайно и нередко вопреки существующим нормам проектирования и эксплуатации на многих ТЭЦ России уже более 10 лет остановлены все установки водоподготовки для теплосетей и дозируется только комплексон (органические фосфонаты) , а в котельных используется та же стабилизационная обработка воды и/или безреагентные методы .

При этом в обращается внимание на наличие определенных проблем при использовании так называемых «нехимических» методов водоподготовки, куда некоторые авторы относят и обработку воды комплексонами . Вызвано это тем, что количество вводимого реагента значительно ниже стехиометрического состава.

Тем не менее, в определенных температурных режимах образования отложений не происходит. И этот эффект достигается не за счет удаления из воды накипеобразующих элементов, а подавляются их накипеобразующие свойства . При этом одновременно снижается коррозионная активность воды, ингибируется поверхность металла и постепенно удаляются ранее имевшиеся отложения (табл. 2).

Таблица 2. Данные анализов сетевой воды системы теплоснабжения с открытым водоразбором до и после применения реагента СК-110 .

Да, этот метод «не совсем химический», а есть комплекс физико-химических процессов. Причем у каждого из них свои стехиометрические соотношения. Но, на ряде конструкций котельного и теплообменного оборудования при определенных режимах их работы, эти стехиометрические соотношения не обеспечиваются.

В большинстве случаев вызвано это отказом пересмотреть сложившиеся нормы проектирования и эксплуатации этого оборудования . От себя заметим, что изменить здесь ситуацию возможно только отменой существующего в

ПТЭ разрешения заводам-изготовителям самостоятельно устанавливать показатели (нормы) качества воды для тепловых энергоустановок. Пока это разрешение сохраняется, будут и далее упрощаться гидравлические схемы котлов, снижаться скорости движения воды в трубах, в экранных контурах и т.д., и т.п. .

Хотя и в этой сложившейся схеме развития конструкций котлов на максимальное упрощение их гидравлических характеристик появились реальные позитивные изменения. Это водогрейные котлы со встроенными теплообменниками , переход на двухконтурные схемы систем теплоснабжения и др.

В заключение следует отметить, что проблемы, затронутые в рассматриваемом здесь издании , получили дальнейшее развитие в работе .

Литература

1. ПБ 10-374-03. Правила устройства и безопасной эксплуатации паровых и водогрейных котлов. - Спб.: Изд-во ДЕАН, 2003.

2. Правила технической эксплуатации тепловых энергоустановок. - СПб.: Изд-во ДЕАН, 2003.

3. Копылов А.С., Лавыгин В.М., Очков В.Ф. Водоподготовка в энергетике: Учебное пособие для вузов. - М.: Изд-во МЭП. 2003.

4. Щелоков Я.М. О схемах подготовки воды для систем тепло-водоснабжения // Промышленная энергетика. 1991. № 1.

5. Белоконова А.Ф. Результаты внедрения новой технологии подготовки подпиточной воды для тепловых сетей с открытым водоразбором//Электрические станции. 1997. №6.

6. Федосеев Б. С. Современное состояние водоподготовитель-ных установок и водно-химических режимов ТЭС // Теплоэнергетика. 2005. № 7.

7. БаскаковА.П., Щелоков Я.М. Качество воды в системах отопления и горячего водоснабжения: Учебное пособие. - Екатеринбург: УГТУ-УПИ. 2002.

8. Байбаков С.А., Тимошкин А.С. Основные направления повышения эффективности тепловых сетей // Электрические станции. 2004. № 7.

9. Оле Кристенсен, Свенд Андерсен. О системах водоподготовки на ТЭЦ в Дании // Новости теплоснабжения. 2002. № 10.

10. Резник Я.Е. О «нехимических» методах обработки воды // Энергосбережение и водоподготовка. 2006. № 5.

11. Щелоков Я.М. О техническом регламенте безопасной эксплуатации тепловых энергоустановок // Промышленная энергетика. 2006. № 4.

12. Водогрейные котлы с кипящей водой низкого давления со встроенными теплообменниками / К. А. Жиделов, В.Ф. Киселев, В.Б. Кулемин, В.В.Проворов, Н.М. Сергиенко // Новости теплоснабжения. 2006. № 10.

13. Водное хозяйство промышленных предприятий: справочное издание: Книга 3/В.И. Аксенов, Я.М. Щелоков, Ю.А. Галкин, И.И. Ничкова, М.Г. Ладыгичев. М.: Теплотехник. 2007. 368 с.

Давайте посмотрим, что нам сообщает о поведении алюминия в системах отопления, к примеру, Германское Инженерное Общество (VDI - VEREIN DEUTSCHER INGENIEURE):

Меры по предотвращению повреждения водяных систем отопления
VDI 2035
Часть 2
7.4 Алюминий и алюминиевые сплавы

Благодаря хорошей теплопроводности и низкой плотности, алюминий и алюминиевые сплавы могут использоваться для радиаторов и теплообменниках.

Коррозия алюминиевых материалов в основном предопределяется рН теплоносителя. В воде на алюминии образуются пленки оксидов алюминия, которые в диапазоне значения рН от 6,5 до 8,5 теплоносителя достаточно стабильны и защищают металл от коррозии. Однако этот защитный слой может быть разрушен повышенными кислотностью или щелочностью теплоносителя. Если защитные слои нарушены или уничтожены, т.н. равномерная коррозия алюминия происходит беспрепятственно.

Одновременно с окислительной коррозией в установках водяного отопления с алюминиевыми деталями при pH свыше 8,5 происходит образование водорода.

Даже при полном отсутствии кислорода при значениях рН выше 8,5 при высвобождении водорода образуется алюминат (соль алюминиевой кислоты) Al (OH)4. Поскольку алюминат растворим, никаких защитных плёнок не образуется. В результате при рН теплоносителя выше 8,5 коррозия алюминия происходит без ограничения.

По этой причине деградация алюминия может происходить не только в случае наличия кислорода, но и при его отсутствии в теплоносителе. При использовании алюминиевых деталей в системах водяного отопления при нестабильном составе теплоносителя, или при его подпитке свежей водой рассчитывать на безаварийную эксплуатации можно только при соблюдении указанных ограничений по величине pH теплоносителя.

Примечание: в воде, которая содержит ионы натрия или гидрокарбонатов, при очень высоких температурах и значениях рН более 8,5 возникает выделение СО2.

В отличие от чистого алюминия, некоторые алюминиевые сплавы могут, в соответствии со спецификациями завода-изготовителя, выдерживать значения рН и выше 8,5 (например, для сплава AlSi10Mg, рН ≤ 9,0) без признаков коррозионного разрушения.

Примечание: При попадании в теплоноситель кислорода может начаться образование гидроксида алюминия, который выпадает в осадок.


Источников сведений о взаимодействии алюминия в системах отопления много - это лишь один из них, причем никакого разногласия между источниками не наблюдается.

Таким образом, ответы на поставленные вопросы очевидны: при наличии в теплоносителе кислорода или без оного, но при pH>8,5 алюминий разрушается, а также в его, алюминия, присутствии обильно выделяется водород , а в некоторых случаях (высокая температура) и углекислый газ. Вне зависимости от материала трубопроводов!

Следует помнить, что тепловики очень любят для своих целей поднимать pH теплоносителя до значений 10-11: они, теплоснабженцы, беспокоятся о ресурсе своих дорогостоящих установок из черных металлов. Поэтому риски деградации алюминиевых приборов в системах центрального отопления их-за высокого pH сетевой воды велики. Как часто владельцы квартир проверяют pH теплоносителя? Можно ознакомиться с мнением по этому вопросу гуру в области теплоснабжения и отопительных приборов В.И. Сасина .


Очевидно, что pH теплоносителя <8,5 можно обеспечить в собственной закрытой системе отопления, и использовать в такой системе алюминиевые приборы без опаски. Но и тут подстерегает следующая опасность: поскольку в России случаются холодные зимы, существует тенденция заполнения закрытой системы антифризом. А антифризы бывают самыми разными в части pH: от 7,4 до 12. Поэтому придется внимательно выбирать антифриз и контролировать параметры теплоносителя так, чтобы одновременно сберечь и алюминиевый прибор, и стальные детали. Об этом можно почитать, к примеру, .

Справедливости ради следует заметить, что производители алюминиевых отопительных приборов предпринимают меры по защите от коррозии экспериментируя со сплавами и путем разделения теплоносителя и металла при помощи различных покрытий. Наверняка это допустимое направление совершенствования продукта. Но такой алюминиевый прибор с точки зрения физико-химических процессов эксплуатационного взаимодействия с теплоносителем уже не следует рассматривать как алюминиевый, поскольку прямой контакт с металлом отсутствует. Вопрос только в долговечности таких защитных покрытий.

С учетом сказанного представляется, что использование алюминиевых приборов (и иных деталей) в системах отопления требует повышенной осмотрительности *.

* За исключением современных алюминиевых отопительных приборов, где антикоррозионная защита обеспечивает длительную надежную изоляцию металла от теплоносителя.



А как же быть с биметаллическими отопительными приборам «алюминий-медь»? Любой, кто знаком с их конструкцией знает, что из алюминия выполнено только оребрение, а теплоноситель контактирует только с медными трубными элементами таких отопительных приборов. Собственно, именно этому — отсутствию прямого контакта теплоносителя с алюминием и обязаны такие приборы своим появлением. СП 40-108-2004 (пп 9.7) впрямую рекомендует применение таких отопительных приборов с медными трубопроводными системами отопления.

Водно-химический режим тепловых сетей должен обеспечить их эксплуатацию без повреждений и снижения экономичности, вызванных коррозией сетевого оборудования, а также образованием отложений и шлама в оборудовании и трубопроводах тепловых сетей.

Для выполнения этих условий показатели качества сетевой воды во всех точках системы не должны превышать значений, указанных в таблице Е.1 .

Таблица Е.1 - Нормы качества сетевой воды

Наименование показателя

Значение рН для систем теплоснабжения:

открытых

закрытых

открытых

закрытых

Количество взвешенных веществ, мг/дм, не более

открытых

закрытых

* По согласованию с уполномоченными органами исполнительной власти (Роспотребнадзор) допускается 0,5 мг/дм.

В начале отопительного сезона и в послеремонтный период допускается превышение норм в течение 4 недель для закрытых систем теплоснабжения по содержанию соединений железа - до 1,0 мг/дм, растворенного кислорода - до 30 мкг/дми взвешенных веществ - до 15 мг/дм.

При открытых системах теплоснабжения по согласованию с санитарными органами допускается отступление от действующих норм для питьевой воды по показателям цветности до 70° и содержанию железа до 1,2 мг/дмна срок до 14 суток в период сезонных включений эксплуатируемых систем теплоснабжения, присоединения новых, а также после их ремонта.

Качество подпиточной воды по содержанию свободной углекислоты, значению рН, количеству взвешенных веществ и содержанию нефтепродуктов не должно превышать значений, указанных в таблице Е.1. Содержание растворенного кислорода в подпиточной должно быть не более 50 мкг/дм.

Качество подпиточной и сетевой воды открытых систем теплоснабжения и качество воды горячего водоснабжения в закрытых системах теплоснабжения должно удовлетворять требованиям к питьевой воде в соответствии с СанПиН 2.1.4.1074 и СанПиН 2.1.4.2496.

Использование в закрытых системах теплоснабжения технической воды допускается при наличии термической деаэрации с температурой не менее 100 °С (деаэраторы атмосферного давления). Для открытых систем теплоснабжения согласно СанПиН 2.1.4.2469 деаэрация должна также производиться при температуре не менее 100 °С.

Непосредственная добавка гидразина и других токсичных веществ в систему теплоснабжения не допускается.

Другие реагенты (серная кислота, едкий натр, силикат натрия и др.), используемые для обработки сетевой и подпиточной воды закрытых и открытых систем теплоснабжения, должны отвечать соответствующим требованиям.

При использовании для подготовки подпиточной воды теплосети технологий, связанных с изменением ее ионного состава (натрий- и водород - катионирование, мембранная обработка и др.), для оценки накипеобразующих свойств обработанной воды используется показатель - карбонатный индекс - предельное значение произведения общей щелочности и кальциевой жесткости воды (мг-экв/дм), выше которого протекает карбонатное накипеобразование с интенсивностью более 0,1 г/(м·ч).

В соответствии с данным определением предельное (нормативное) значение карбонатного индекса сетевой воды равно

, (Е.1)

где и- соответственно предельно допустимые значения кальциевой жесткости и общей щелочности сетевой воды, мг-экв/дм.

Нормативные значения при нагреве сетевой воды в сетевых подогревателях приведены в таблице Е.2, а при нагреве ее в водогрейных водотрубных котлах - в таблице Е.3 .

Таблица Е.2 - Нормативные значения при нагреве сетевой воды в сетевых подогревателях в зависимости от рН воды

(мг-экв/дм)при значениях рН

не выше 8,5

Таблица Е.3 - Нормативные значения при нагреве сетевой воды в водогрейных водотрубных котлах в зависимости от рН воды

Температура нагрева сетевой воды, °С

(мг-экв/дм)при значениях рН

не выше 8,5

* При рН сетевой воды выше 10,0 величина не должна превышать 0,1 (мг-экв/дм).

Для закрытых систем теплоснабжения с разрешения энергосистемы верхний предел значения рН сетевой и подпиточной вод допускается не более 10,5 .

Значение подпиточной воды для открытых систем теплоснабжения должно быть таким же, как нормативное значениедля сетевой воды.

Значение подпиточной воды для закрытых систем теплоснабжения должно быть таким, чтобы обеспечить нормативное значениесетевой воды с учетом присосов водопроводной воды в сетевую.

Карбонатный индекс подпиточной воды равен

, (Е.2)

где - допустимая кальциевая жесткость подпиточной воды, мг-экв/дм;

Щелочность подпиточной воды, зависящая от технологии подготовки подпиточной воды, мг-экв/дм.

Значение рассчитывается следующим образом.

При известных значениях щелочности подпиточной и водопроводной воды щелочность сетевой составит

где , равная и- щелочность водопроводной и сетевой воды, мг-экв/дм;

Доля реальных присосов водопроводной воды (%) по отношению к расходу подпиточной воды

где ,и- общая жесткость соответственно сетевой, подпиточной и водопроводной воды, мг-экв/дм.

При отсутствии эксплуатационных данных по значению присосов водопроводной воды долю присосов рекомендуется принимать равной 10% при использовании водо-водяных кожухотрубных подогревателей и 1% при использовании пластинчатых подогревателей согласно .

При таком значении допустимая кальциевая жесткость сетевой водысоставит

, (Е.5)

где - карбонатный индекс сетевой воды по таблице Е.2 или Е.3.

Допустимая кальциевая жесткость подпиточной воды не должна превышать значения, рассчитанного по формуле (Е.6):

где - кальциевая жесткость водопроводной воды, мг-экв/дм.

Организация, эксплуатирующая тепловые сети, должна организовать постоянный контроль за качеством сетевой воды в обратных трубопроводах и выявлять абонентов, ухудшающих ее качество.

Допускается замена технологий обработки подпиточной воды системы теплоснабжения, связанных с изменением ее ионного состава, другими эффективными способами при условии надежного обеспечения работы системы без повреждения ее элементов вследствие отложений накипи, шлама и при отсутствии интенсификации процессов коррозии.

Разрешается применение ингибиторов накипеобразования и коррозии, соответствующих условиям эксплуатации оборудования. Тип и доза применяемых ингибиторов для каждого конкретного случая определяются специализированными организациями, разрабатывающими технологию их применения в соответствии с . Необходимость индивидуального подхода при выборе типа и дозы ингибиторов обусловлено влиянием значительного числа факторов на эффективность их применения, в первую очередь концентрации и типа органических соединений в сетевой воде.

Поставка ингибиторов коррозии и накипеобразования должна проводиться в соответствии с Техническими условиями и иметь разрешительные документы на их применение в соответствующих условиях.

Для предотвращения накипеобразования и коррозии в тепловых сетях используются также магнитные, ультразвуковые, электрохимические и другие физические методы воздействия на подпиточную и сетевую воды.

Оптимальные условия применения этих технологий определяются организациями, осуществляющими поставку соответствующего оборудования.

Использование ингибиторов накипеобразования и коррозии, а также физических технологий обработки воды позволяет эксплуатировать тепловые сети при значениях карбонатного индекса, значительно (в несколько раз) превышающих приведенные в таблицах Е.2 и Е.3, снизить коррозионные процессы, сократить затраты на подготовку подпиточной воды, обеспечить работу тепловой сети без образования минерализованных сточных вод.

Сегодня на рынке отопительных радиаторов между собой активно конкурируют различные отопительные приборы. В борьбе за покупателя важны все характеристики изделий: стоимость, внешний вид, эксплуатационные и технические характеристики.
Необходимо отметить, что не все импортные или отечественные приборы способны выдержать условия работы в сетях центрального отопления в нашей стране. В России расчётная температура теплоносителей в системе, выполненной по однотрубной схеме, равняется 105 градусам, а в многоэтажных зданиях давление может поддерживаться на уровне 10 атм., а иногда может и превышать это значение. Необходимо учесть возможность гидравлических ударов в момент пуска насосного оборудования и плохое качество воды, содержащей много кислорода, различных солей, щёлочь, железо, взвешенные частицы.

Большинство требований, предъявляемых современными радиаторами к теплоносителям, в условиях открытой системы отопления обеспечить невозможно. Однако, даже строгое соблюдение норм, изложенных в документе, регламентирующем параметры воды в системе теплоснабжения в России, не гарантирует соответствие параметров теплоносителя тем параметрам, которые необходимы для обеспечения длительной и эффективной службы отопительных приборов. Например, для алюминиевого радиатора допустимое значение pH составляет 7-8, а документ допускает значение pH от 8,3 до 9,5.

Но ситуация в российском теплоснабжении претерпевает некоторые изменения. Более частым стало применение закрытых расширительных баков, двухтрубной системы, автономных, низкотемпературных, независимых систем отопления. Поэтому на российском рынке востребованы качественные радиаторы различного типа. Просто необходимо применять их в системе с соответствующими параметрами. Обычно все радиаторы делят на группы по материалу, который использовался при их изготовлении – чугунные, алюминиевые, биметаллические и стальные радиаторы отопления.

Чугунные радиаторы являются традиционными для нашей страны отопительными радиаторами. Их главное преимущество заключается в возможности использовать их в открытых системах. Чугунные секционные отопительные радиаторы наименее чувствительны к опорожнению системы. Благодаря повышенному содержанию кремния в поверхностном слое, чугун в необработанном виде не поддаётся коррозии и стоек к воздействию твёрдых частиц. Но гидравлические удары опасны для чугунных радиаторов, так как чугун - довольно хрупкий материал. В наше время на рынке представлены модели, которые способные работать под давлением от девяти до двенадцати атм. и максимальной температурой теплоносителя 110°С.


Чугунные радиаторы отличаются высокой теплопроводностью и тепловой инерционностью. Тепловую инерционность следует отнести к существенным недостаткам при современных системах отопления. Сегодня отопительные приборы всё чаще оснащаются термостатическими вентилями, которые позволяют изменять расход теплоносителя. Чугунный радиатор при закрытии вентиля долго остывает, а после его открытия - долго разогревается.

Стальные радиаторы отличаются низкой тепловой инерционностью и высокой теплоотдачей. Но они весьма чувствительны к содержанию кислорода, растворённого в теплоносителе. Поэтому использовать стальные радиаторы рекомендуют в закрытых сетях отопления. После опорожнения системы усиливается коррозия этих отопительных приборов. Эксплуатационные характеристики стальных радиаторов находятся в зависимости от толщины стенок и конструкции.


Стальные радиаторы бывают трубчатые, секционные и панельные . В секционных стальных радиаторах секции выполняются из листовой стали. Их легко очищать от пыли, но они не выдерживают давление выше шести атмосфер. Трубчатые радиаторы наиболее прочные. Они рассчитаны для работы при давлении 10-15 атм. и способны обеспечить высокий тепловой комфорт. Панельные радиаторы являются относительно недорогими и эффективными отопительными приборами, рассчитанными на давление семь-восемь атмосфер и температуру 110°С. Помимо чувствительности к воздействию кислорода панельные радиаторы подвержены загрязнению. Поэтому установка фильтров будет целесообразным решением. Стальные радиаторы являются самыми дорогими за исключением чугунных радиаторов эксклюзивных серий.

Биметаллические радиаторы имеют алюминиевую наружную поверхность и оребрение, а проводящие каналы выполнены из стали. Такая конструкция позволяет снизить теплоотдачу и увеличить прочность изделия. На рынке представлены модели, которые способны работать при давлении в 35 атм., а допустимое значение pH для них составляет от шести с половиной до девяти с половиной. Наиболее надёжными являются те биметаллические радиаторы, в которых теплоноситель контактирует только со сталью.

И, наконец, алюминиевые радиаторы отопления. Малый вес это одно из достоинств этих радиаторов. Благодаря этому на установку будет уходить минимум времени и сил. Они изготовлены из материала, который сочетает в себе низкую тепловую инерционность с высокой теплопроводностью. Алюминиевые радиаторы способны быстро реагировать на произошедшие изменения потребности помещений в тепле. Существуют модели способные работать при давлении в 20 атм. Довольно жёсткие требования предъявляют алюминиевые радиаторы к теплоносителю. Значение pH для них должно составлять 7-8. Для алюминия опасны твёрдые частицы, способные вызвать абразивный износ радиатора и разрушить его защитный слой. В системе с алюминиевым радиатором устанавливают дополнительные фильтры и грязевики.
В зависимости от технологии производства алюминиевые радиаторы бывают литые под давлением или прессованные (экструзионные) . Вторые выдвигают к качеству теплоносителя более высокие требования. Поэтому специалисты не рекомендуют их установку в сетях центрального отопления.


Необходимо обратить внимание на то, что алюминий способен образовывать гальванические пары при контакте с некоторыми металлами, в частности с медью, широко используемой в сантехнических системах. Одни специалисты считают, что в системе отопления с медной разводкой и алюминиевым радиатором не будет происходить ускоренная коррозия, а НИИ сантехники рекомендует использовать чугунные, бронзовые или латунные переходники с целью не допустить контакт меди и алюминия. В алюминиевых радиаторах скапливается водород. Поэтому их необходимо оснащать воздухоотводчиками, из которых следует периодически выпускать газ.
Не стоит забывать и про элегантность – если ваша квартира оформлена в модном стиле хай-тек, можно даже не скрывать радиаторы за шторами – их серебристый цвет великолепно дополнит общий интерьер помещения.

Теплоносителем называется жидкость, которая движется по контуру теплообменного оборудования в системах отопления и кондиционирования и служит для осуществления теплообмена.

В состав современного устройства входит основное вещество (этиленгликоль, реже пропиленгликоль), вода, в которой он растворен и пакет присадок-ингибиторов.

Лучшие теплоносители изготовляются на основе этиленгликоля, потому что это вещество отвечает требованиям, которые предъявляются к антифризам:

Низкая температура замерзания (до -65);
- высокая температура кипения (+115);
- высокая температура воспламенения;
- стабильность теплофизических свойств.

Когда говорят о минусах применения этиленгликоля в теплоносителях, то, как правило, имеют в виду токсичность этого вещества. Действительно, этиленгликоль ядовит, и его смертельная доза не превышает 120 мл. Однако при соблюдении эксплуатационных требований и герметичности контура можно избежать протечек антифриза.

Раствор, обогащенный специальным присадками, не оказывает агрессивного воздействия на резину. Соответственно, уплотнения не разрушаются, контур остается герметичным, и теплоноситель не вытекает. Это особенно важно, потому что этиленгликоль обладает высокой (выше, чем у воды) текучестью.

Чем выше концентрация этиленгликоля в теплоносителе, тем ниже температура кристаллизации антифриза и тем выше температура его кипения. Если эксплуатационные условия позволяют, готовые антифризы можно разбавлять (увеличивать долю воды в растворе), чтобы расходовать продукт более экономно.

Однако установлено, что температура кристаллизации этиленгликоля в чистом виде составляет лишь -12 С, и наиболее эффективными (самый низкий порог кристаллизации) считаются теплоносители, на 70% состоящие из гликоля. В то же время, антифризы на основе этиленгликоля даже при температуре ниже порога кристаллизации не разрушает контур.

Пропиленгликоль уступает этиленгликолю в теплофизических свойствах примерно на 20%. Однако на основе этого вещества производят теплоносители для теплообменного оборудования в фармацевтической и пищевой промышленности, а также для отопления и кондиционирования некоторых жилых объектов.

Теплоносители для отопления должны изготавливаться из очищенной, обессоленной, дистиллированной воды. В противном случае в процессе эксплуатации антифриза на стенках контура образуются солевые отложения (накипь).

Этиленгиколь-жидкость довольно агрессивная и для того чтобы снизить коррозионную активность в теплоносители добавляют пакет специальных присадок.

Агрессивная жидкость, этиленгликолевый раствор оказывает на металлические части контура разрушающее воздействие. Гликоль в процессе распада, в особенности под воздействием высоких температур, образует органические кислоты. Они насыщают теплоноситель и изменяют его рН.

Нейтрализовать эти кислоты могут только специальные ингибиторы. В противном случае металлическая поверхность не будет защищена от коррозийной активности антифриза.

1. Ингибиторы покрывают внутреннюю поверхность слоя, концентрируясь на очагах коррозии. Защитная пленка не дает теплоносителю проявлять свою коррозийную активность.

2. Присадки понижают кислотность раствора, поскольку служат своего рода буфером для органических кислот.

Нюансы действия ингибиторов зависят от типов присадок.

В зависимости от того, какие добавки имеются в антифризе, теплоносители делятся на три группы.

  1. Традиционные, где качестве ингибиторов используются неорганические вещества: силикаты, фосфаты, амины, нитраты, бораты.
  2. Гибридные теплоносители. Присадки – органические и неорганические вещества.
  3. Карбоксилатные теплоносители, где ингибиторами являются карбоксилаты: соли карбоновых кислот.

Да, косвенным образом, и чем эффективнее ингибитор, тем меньше наслоений образуется на стенках контура, а следовательно, от качества присадок в теплоносителе зависит теплообмен в системе.

Нет, независимо от качества ингибиторов, антифризы на основе этиленгликоля остается ядовитым веществом, и допустить попадание которого в организм человека и животных нельзя.

Доли воды, гликоля и присадок в теплоносителе зависят от его марки. В антифризах, предназначенных для использования в суровом климате, например, «Гольстфрим-65» для вашего дома -65», доля этиленгликоля составляет 63%, а воды – 31%. Оставшиеся 6% - ингибиторы коррозиию

Готовые теплоносители для более высоких температур кристаллизации, например, «Гольфстрим-30», на 46% состоят из гликоля и на 50% - из воды, присадки составляют лишь 4% раствора.

В процессе эксплуатации теплофизические свойства антифриза ослабевают. Выработка ресурса может произойти как в течение нескольких месяцев (негликолевые теплоносители), так и за 2-5 лет (традиционные гликолевые антифризы)

Так или иначе, но теплообмен в контуре со временем ухудшается, и причиной тому служит также образование различных наслоений в контуре: продуктов коррозии, продуктов распада гликоля, силикатного осадка в виде геля. Это негативно сказывается на теплопередаче, и к тому же, если продукты коррозии имеются в самом теплоносителе, то его свойства резко ухудшаются. Темпы данных процессов тоже зависят от марки антифриза.

Независимо от частоты замены антифриза, перед заливкой нового, контур тщательно промывается от вышеуказанных отложений. Для этого существуют специальные моющие жидкости для теплоносителей

Чем качественнее был антифриз, тем меньше отложений остается на стенках контура и, соответственно, тем проще будет его очистить. Затем производится промывка водой, и остатки наслоений, антифриза и моющей жидкости удаляются. Использованный теплоноситель утилизируется, а вместо него контур наполняют новым антифризом.

Неразбавленный этиленгликоль имеет более высокую температуру кристаллизации, как это уже отмечалось выше, и поэтому наиболее эффективным теплоносителем будет этиленгликоль, разбавленный водой в нужных пропорциях.

Кроме того, этиленгликоль без ингибиторов – чрезвычайно агрессивная жидкость. Поэтому использование чистого этиленгликоля в качестве теплоносителя ведет к разрушению контура, а также снижению срока службы самого антифриза.

Сырьевой этиленгликоль (ГОСТ 19710) – это лишь материал для изготовления антифриза.

С увеличением концентрации этиленгликоля до определенного уровня растет его морозостойкость и температура кипения; при повышении температуры вязкость падает, но чем концентрированнее раствор, тем она выше. То же можно сказать и о плотности теплоносителя: чем больше процентная доля гликоля, тем раствор плотнее, однако с увеличением температуры плотность уменьшается.

Теплоемкость антифриза тоже зависит от того, насколько он разбавлен. Чистая вода, хотя и обладает небольшим температурным диапазоном, в качестве антифриза, демонстрирует высокую теплоемкость, которая не сильно различается на всем его протяжении и колеблется в районе 4,2 кДж/кг К.

У гликолевых теплоносителей теплоемкость падает с увеличением концентрированности раствора и увеличивается с ростом температуры. Так, антифриз, разбавленный водой наполовину, будет иметь большую теплоемкость, чем разбавленный на 20%. Однако температурный диапазон, в котором теплоноситель можно использовать, в первом случае будет уступать.

Что касается теплопроводности, то зависимость ее от концентрации антифриза довольно необычна. Если доля чистого (готового) антифриза в растворе превышает определенный процент (в районе 40%), то с увеличением температуры теплопроводность будет падать.

При этом, чем концентрированней теплоноситель, тем более резким будет уменьшение теплоемкости. Если же доля антифриза ниже данного уровня, то теплопроводность, напротив, будет расти с увеличением температуры. Чем сильнее разбавлен раствор, тем выше его теплопроводность.

С увеличением концентрации теплоносителя растут и коэффициент объемного расширения, и относительный коэффициент теплопередачи, при этом, чем выше температура, тем выше и эти показатели. Что касается давления пара, то оно растет с увеличением температуры и падает с увеличением концентрации

Для того, чтобы система отопления исправно работала, важно, чтобы контур не был поврежден и свойства теплоносителя соответствовали определенному уровню.
В ходе ревизий и проверок измеряются:
- коррозийная активность антифриза, в том числе определяются скорость коррозии, ее потенциал и виды общей и локальной коррозии;
- плотность теплоносителя;
- резерв щелочности;
- водородный показатель;
- температура кипения и кристаллизации теплоносителя;
- концентрация этиленгликоля в растворе;
- доля воды в антифризе;
- содержание присадок в теплоносителе;
- рН раствора.

Для проведения необходимых измерений специалисты прибегают к газовой и газо-жидкостной хроматографии, рефрактометрии, рН-метрии, спектрофотометрии, химическому, кулонометрическому, атомно-адсорбционному анализу, коррозийным испытаниям.

рН теплоносителя следует поддерживать на уровне 7,5-9,5. В кислотной среде (рН 9) сильнее проявляется локальная коррозия: язвенная, щелевая и другие виды.

Использование воды в качестве антифриза нежелательно по следующим причинам:

Вода обладает высокой температурой замерзания, что не позволяет использовать ее как теплоноситель в холодное время года. При замерзании вода разрушает контур.
- Высокая коррозийная активность воды сокращает эксплуатационный срок оборудования.
- Использование неочищенной воды в качестве антифриза приводит к образованию солевых отложений на стенках, а обессоленная вода обладает повышенной коррозийной активностью. В результате, теплопередача ухудшается, оборудование быстрее приходит в негодность и приходится с повышенной частотой осуществлять замену теплоносителя и промывку контура от отложений.

Любые антифризы без предварительной проверки на совместимость смешивать не рекомендуется. В случае если химические основы пакетов присадок ТН различные, то это может привести к частичному их разрушению и как следствие к снижению антикоррозионных свойств. ТН "Гольфстрим" полностью совместим с ТН "Теплый дом", наиболее распространенном в Центральном регионе, но его нежелательно смешивать с ТН "Диксис", имеющим фосфатную основу!

Обязательно! Так как разбавление ТН водой кроме экономии для потребителя позволяет повысить теплоотдачу, уменьшить плотность смеси и улучшить ее циркуляцию по системе. Так же уменьшается вероятность нагара на ТЭНах или в области горелок и проникающая способность антифриза, которая существенно выше, чем у воды.

Оптимальным для Центрального региона считается разбавление ТН на -25-30 ºС, для электрокотлов на -20-25 ºС. Для Северных регионов соответственно уровень должен быть на 5-10 ºС ниже! Даже если температура опустится ниже указанных параметров, разрушение системы исключено, так как ТН не расширяется. Он превращается лишь в желеобразную массу, которая снова становится жидкой при повышении температуры.

В идеале ТН лучше разбавлять дистиллированной водой, в которой отсутствуют соли кальция и магния, так как именно они при нагревании кристаллизируются и образуют накипь. К примеру, накипь толщиной 3мм уменьшает теплоотдачу на 25% и система требует больших энергозатрат. В ТН "Гольфстрим" имеется специальная присадка, которая обеспечивает нормальную работу при разбавлении обычной водопроводной водой (не более 5 ед. жесткости). Для информации: вода из скважины, если не предусмотрена система умягчения, может иметь жесткость 15-20 ед.

Любой теплоноситель-антифриз на гликолевой основе, в том числе и импортный, не может защищать оцинкованные покрытия! Возможные проблемы (металлизированная взвесь, а потом труднорастворимые осадки) зависят от того, какой объем занимает такая разводка. Однако следует знать, что даже горячая вода (свыше 70 ºС) тоже смывает цинк, правда значительно медленнее.

Можно использовать герметики, стойкие к гликолевым смесям (например "Гермесил", LOCTITE и "ABRO") или шелковистый лен, но без подмазки масляной краской.

Так как ТН на гликолевой основе более вязкие, необходимо устанавливать циркуляционные насосы более мощные, чем при работе на воде (по производительности на 10%, по напору - на 50-60%).

При выборе расширительного бака следует учесть, что коэффициент объемного расширения ТН "Гольфстрим" (как и других теплоносителей) на 15-20% больше, чем на воде (вода = 4,4 х 10-4 , а смесь ТН и воды: на -20 ºС = 4,9 х 10-4, на -30 ºС = 5,3 х 10-4).

Как вывод: расширительный бак не должен быть менее 15% объема системы. Максимальная тепловая мощность котла при работе на ТН составит примерно 80% его номинала.

ТН "Гольфстрим" не влияет на образование пустот, заполненных кислородом или газообразованиями. Причины следует искать в ошибках проектирования или монтажа оборудования: маленький расширительный бак, гальванический эффект несовместимых элементов, неверно выбранные места установки воздухоотводчиков, неправильная настройка термостатов и т.д.

При длительном перегреве начинается термическое разложение присадок и самого гликоля. ТН становится темно-коричневого цвета, появляется неприятный запах, образуются осадки. Зачастую на ТЭНах образуется нагар, который становится причиной выхода их из строя.

С целью предотвращения нагара необходимо:
- при разбавлении ТН не надо "гнаться" за температурой замерзания, оптимально готовые растворы должны быть на -20 -25 ºС; максимум -30-35 ºС;
- установить более мощный циркуляционный насос;
- ограничивать температуру ТН на выходе из котла - 90 ºС, а для настенных -70 ºС;
- в холодное время года нагрев ТН осуществлять постепенно, не включая котел на полную мощность.

В системе с принудительной циркуляцией теплоноситель по контуру отопления заставляет двигаться насос. В системе с естественной циркуляцией насоса нет. Роль насоса в ней выполняет гравитационная сила, возникающая за счет разности плотности (удельного веса) теплоносителя в подающей и обратной трубах (плотность горячей воды меньше, т.е. она легче, чем холодная). Для системы с естественной циркуляцией нужны трубы большого диаметра, чем в системах с принудительной циркуляцией.

Да, влияет. Т.к. применяемые жидкости имеют различную вязкость (вязкость антифриза выше вязкости воды).

Двухконтурным называется котел, обеспечивающий не только отопление (1-ый контур), но и подготовку горячей воды для душа, кухни и т.п. (2-ой контур).

Для точного определения требуемой мощности надо проводить расчет теплопотерь с учетом площади дома, высоты потолков, материала стен, количества окон и многих других факторов. Для предварительного подбора можно пользоваться следующей формулой: на 10 кв.м площади требуется примерно 1 кВт мощности (при высоте потолков до 3 м и хорошей теплоизоляции здания).

Единственный плюс систем с естественной циркуляцией - отсутствие насоса, а, следовательно, они могут работать независимо от наличия электричества. К минусам систем с естественной циркуляцией можно отнести: требует монтажа труб большего диаметра (дороже и менее эстетично), невозможность автоматического регулирования, больший расход топлива. Единственный минус систем с принудительной циркуляцией - зависимость от электроэнергии. Плюсы: более комфортны (возможность поддерживать заданную температуру в каждой комнате), не требуют труб большого диаметра (эстетичнее и дешевле).

Такие регуляторы состоят из двух частей:

  1. регулирующего крана,
  2. термоголовки.

С помощью термоголовки вы задаете требуемую температуру воздуха. В ней же находится специальный состав, который расширяется при увеличении температуры в помещении и механически воздействует на регулирующий кран. Работа происходит следующим образом. Когда температура воздуха в помещении становится выше заданной, доступ горячей воды в радиатор сокращается, а при понижении температуры в помещении - доступ воды в радиатор увеличивается.

Основные преимущества мембранного бака:

  1. бак можно расположить там же, где и котел, т.е. нет необходимости тянуть трубу на чердак,
  2. нет контакта воды и воздуха, а, следовательно, и возможности растворения в воде дополнительного кислорода (что продлевает срок "жизни" радиаторам и котлу),
  3. есть возможность создать дополнительное давление даже в верхней точке системы отопления, что уменьшает риск образования воздушных "пробок" в верхних радиаторах.

При двухтрубной разводке к каждому радиатору подведено две трубы - "прямая" и "обратная". Эта разводка позволяет иметь одинаковую температуру теплоносителя на входе во все приборы. При однотрубной разводке теплоноситель переходит последовательно от одного радиатора к другому, при этом остывая. Т.о. последний радиатор в цепочке может быть значительно холоднее первого. Если вы заботитесь о качестве системы отопления - выбирайте двухтрубную систему, позволяющую регулировать температуру в каждой комнате. Единственный плюс однотрубной системы - более низкая цена.

В качестве теплоносителя для систем отопления может использоваться либо вода, либо специальный антифриз (низкозамерзающий теплоноситель). Если нет опасности размораживания системы отопления вследствие прекращения работы котла (из-за перебоев в подаче электроэнергии, из-за падения давления газа или по другим причинам), то систему можно заполнить водой. Лучше если это будет вода дистиллированная. При этом желательно, чтобы в воде были специальные присадки способные "продлить жизнь" системе отопления (ингибиторы коррозии и т.д.). В случае же, если размораживание системы возможно, то стоит рассмотреть вариант с применением теплоносителя -это должен быть не автомобильный тосол, трансформаторное масло или этиловый спирт, а низкозамерзающий теплоноситель, специально разработанный для систем отопления. Надо помнить, что теплоноситель должен быть пожаробезопасным и не содержать в своем составе добавок недопустимых к применению в жилых помещениях.

  • работа на 1-ой ступени с пониженной мощностью и снижение количества включений/выключений горелки позволяет экономить газ, а, следовательно, и деньги.
  • меньшее количество дымовых газов и меньшее количество вредных веществ, выбрасываемых в атмосфере.

    Очевидно, что речь идет о монтаже циркуляционного насоса с мокрым ротором. Смазка подшипников такого насоса осуществляется теплоносителем системы отопления. Также теплоноситель выполняет функцию охлаждения. Понятно, что для этого должна быть обеспечена непрерывная циркуляция воды через гильзу насоса. Отсюда вытекает обязательное требование к монтажу насосов с мокрым ротором - их вал всегда должен находиться в горизонтальном положении.

    Нередко при выборе оборудования для отопления, водоснабжения или кондиционирования возникает необходимость сравнить параметры, указанные в различных единицах. Ниже приводятся соотношения, позволяющие легко это сделать.

    Мощность:

    100 кВт = 0,086 Гкал = 340 000 Btu = 3,6 х 10 8 Дж/час

    Давление:

    1 мм вод.ст. = 9,8066 Па = 0,0981 мбар = 0,07356 мм рт.ст.

    Температура:

    Для того, чтобы перевести температуру из градусов Цельсия в градусы Фаренгейта можно воспользоваться соотношением:

    T ºF = t ºC х (9/5) + 32

    Для того, чтобы перевести температуру из градусов Фаренгейта в градусы Цельсия можно воспользоваться соотношением: