Какие виды насосов относятся к объемным. Центробежные насосы. Насосы и способы их классификации

09.03.2019

Классификация и области применения насосов

Насосы – это машины, в которых производится преобразование механической энергии привода в гидравлическую энергию перекачиваемой жидкости, в результате чего происходит ее перемещение.

В пищевых производствах насосы являются одними из самых распространенных видов оборудования, надежная работа которых обеспечивает непрерывность технологического процесса. Насосы используют для перекачивания жидкостей с разными физико-химическими свойствами (молочных продуктов, пасты, сыворотки, спирта и.т.п.) при различных температурах.

От параметров перекачиваемой жидкости во многом зависит тип и надежность работы насоса.

По принципу действия все насосы (рис. 2.23) делят на две большие группы – объемные, динамические, а также эрлифты и монтежю, в которых для перемещения жидкости используется энергия сжатого воздуха.

Объемные насосы. Для транспортировки жидкостей при высоких давлениях применяют объемные насосы. На рис. 2.24 показаны схемы объемных насосов. К объемным насосам с возвратно-поступательным движением рабочего органа относятся поршневые, плунжерные, диафрагменные. С вращательным движением рабочего органа - ротационные, одно-, двух- и трехвинтовые, шестеренчатые.

Принцип действия объемных насосов состоит в вытеснении некоторого количества жидкости из рабочего объема машины. Энергия жидкости в них повышается в результате увеличения давления. В объемных насосах подача (производительность) не зависит от напора. Подача пропорциональна скорости перемещения рабочего органа или числу циклов в единицу времени. Объемные насосы являются самовсасывающими в отличие от динамических насосов. Их используют для перекачивания высоковязких жидкостей, жидкостей с большим содержанием газов и плохо текучих продуктов.

Динамические насосы. В насосах этого типа энергия жидкости увеличивается благодаря взаимодействию лопаток рабочего колеса и перемещающегося потока. Под действием вращающихся лопаток жидкость приводится во вращательное и поступательное движение. При этом ее давление и скорость возрастают по мере движения в рабочем колесе.

В динамическом насосе увеличивается доля кинетической энергии в связи с увеличением скорости потока на выходе из рабочего колеса.

К динамическим насосам относятся вихревые, центробежные, диагональные, осевые насосы. Именно в таком порядке возрастают подачи насосов и уменьшаются создаваемые напоры.

Рис. 2.23. Классификация насосов

Рис. 2.24. Схемы конструкций объемных насосов:

а) плунжерный; б) диафрагменный; в) ротационный; г) шестеренчатый;

д) винтовой

Центробежные насосы . Принципиальная схема центробежного насоса приведена на рис. 2.25.

Центробежный насос (или ступень многоступенчатого насоса) состоит из подвода 1, рабочего колеса 2, ротора 3, отвода 4. Жидкость подается во входной патрубок насоса и затем в рабочее колесо, откуда под действием вращающихся лопаток нагнетается в отвод. Давление жидкости на выходе из отвода при этом становится больше, чем на входе за счет торможения потока и преобразования кинетической энергии в потенциальную энергию давления.

Рис. 2.25. Схема конструкции центробежного насоса

К достоинствам центробежных насосов можно отнести отсутствие пульсаций потока жидкости и высокую приспособляемость к различным условиям работы, благодаря применению соответствующих типов колес.

Недостатками центробежных насосов являются: ограниченный диапазон подач и напоров; низкий КПД при отклонении от номинальных режимов работы; снижение КПД с ростом вязкости перекачиваемой жидкости; зависимость подачи от противодавления и сопротивления системы; невозможность обеспечения работы с самовсасыванием жидкости в пусковой период без специальных устройств.

Вихревые насосы. Отличительная особенность этого типа насосов – вихревое движение жидкости (рис. 2.26). Многократное контактирование потока жидкости с рабочим колесом сопровождается повышенными потерями энергии, в результате чего КПД насосов не превышает 40 - 50%. Вихревые насосы в сравнении с центробежными могут удалять газы из всасывающей линии, т.е. перекачивать газожидкостные смеси, и обеспечивают самовсасывание в пусковой период.

Осевые насосы используют для создания больших подач при перекачивании загрязненной воды, вязких и мало- вязких продуктов, подпиточной и оборотной воды. По сравнению с центробежными осевые насосы (рис. 2.27) имеют большие подачи и меньшие напоры.

В пищевой промышленности широкое распространение получили, в основном, поршневые, плунжерные, ротационные и центробежные насосы.

Поршневые и плунжерные насосы отличаются более высокими КПД и создаваемыми давлениями, но ограничены производительностью.

Широкое применение для целей энергосбережения получили струйные насосы , которые успешно конкурируют с лопастными насосами при наличии сбросных высокопотенциальных потоков газа, пара и жидкостей.

Рис. 2.26. Схема конструкции вихревого насоса:

1 – корпус; 2 – рабочее колесо; 3 – лопатки; 4 – окно всасывания; 5 – нагнетательный патрубок; 6 – вал

Рис. 2.27. Схема конструкции осевого насоса:

1 – входной направляющий аппарат; 2 – корпус; 3 – рабочее колесо;

4 – диффузор

Параметры насосов

Работа насоса и насосной установки характеризуется рядом параметров, наиболее важными из которых являются:

Подача насоса . Различают объемную и массовую подачу насоса. Объемная (массовая `M ) подача - объем (масса) жидкости, подаваемой насосом в напорный патрубок в единицу времени. Объемная и массовая подачи связаны соотношением

где r - плотность жидкости.

Напор насоса - представляет собой энергию, сообщаемую насо­сом единице веса перемещаемой жидкости. Напор, в соответствии с уравнением Бернулли, равен разности полных напоров за насосом на линии нагнетания и на линии всасывания:

где p н и p вс - абсолютные давления на выходе и входе насоса; w н и w вс -скорости жидкости на выходе и входе насоса; z н и z вс - высоты точек замера давления, отсчитанные от произвольной горизонтальной плоскости сравнения.

Полезная мощность - мощность, сообщаемая насосом, перемещаемой жидкости:

Мощность на валу (эффективная) :

Коэффициент полезного действия представляет про­изведение трех коэффициентов, характеризующих отдельные виды потерь энергии в насосе :

,

где - гидравлический, объемный и механический КПД насоса, соответственно.

Таким образом, потери энергии в насосе подразделяются на гидравлические, объемные и механические.

Гидравлические потери энергии связаны с трением жидкости и вихреобразованием в проточной части. Для лопастных насосов это сопротивление подвода, рабочего колеса и отвода.

Теоретический напор H т , создаваемый насосом, больше напора действительного H на величину гидравлических потерь h г :

.

Гидравлический КПД представляет собой отношение действительного напора к теоретическому:

Объемные потери связаны с перетеканием жидкости через зазоры из области повышенного в область пониженного давления, а также утечками через уплотнения. Часть теряемой энергии учитывается объемным КПД:

где Q т - теоретическая производительность насоса; Q ут - перетечки внутри и утечки из насоса.

К механическим потерям относят трение в подшипниках, в уплотнениях вала, потери на трение жидкости о нерабочие поверхности рабочих колес (дисковое трение). Величина механических потерь оценивается механическим КПД:

.

Обычно для современных центробежных насосов h г = 0,90-0,96; h об = 0,96-0,98; h мех = 0,80-0,94. Значения КПД насосов, таким образом, находятся в пределах 0,6-0,9.

Для оценки насосного агрегата в целом используется КПД агрегата (насосной установки) - h а , вычисляемый как отношение полезной мощности насоса к мощности агрегата (в случае электрического привода насоса мощность агрегата - электрическая мощность на клеммах двигателя).

Таким образом, мощность насоса при электрическом приводе

Мощность приводного двигателя выбирают с учетом возможного отклонения режима работы насоса от его номинального (паспортного) режима. Чтобы не перегружать двигатель при любых отклонениях от номинального режима и при пуске, его мощ­ность выбирают с запасом

где коэффициент запаса мощности k =1,1-1,5 (принимается большим с уменьшением мощности насоса).

Насосная установка

Насосная установка включает в себя насос, всасывающий и нагнетательный трубопроводы, системы регулирования, контроля и защиты.

На рис. 2.28 приведена насосная установка на основе лопастной машины. К насосу 1 жидкость поступает из приемной емкости 2 по всасывающему трубопроводу 3. Жидкость насосом нагнетается в напорный резервуар 4 по напорному трубопроводу 5. На нагнетании насоса имеется задвижка 6, при помощи которой можно менять подачу насоса. Иногда на трубопроводе 5 устанавливают обратный клапан 7, перекрывающий напорный трубопровод при остановке насоса и препятствующий обратному току жидкости из напорного резервуара. Если давление в приемном резервуаре отличается от атмосферного или насос расположен ниже уровня жидкости в приемном резервуаре, то на всасывающем трубопроводе устанавливают задвижку 8, которую перекрывают при остановке или ремонте.


В начале всасывающего трубопровода устанавливают фильтровальную сетку 9, предохраняющую насос от попадания в него твердых частиц, и клапан 10, позволяющий залить всасывающий трубопровод и насос перед пуском.

Рис. 2.28. Насосная установка

Работа насоса может контролироваться расходомером, измеряющим производительность насоса, манометром 11, установленным на напорном трубопроводе, и мановакууметром 12, установленным на всасывающем трубопроводе, позволяющим определять напор насоса.

Рассмотрим случай, когда жидкость необходимо подавать на высоту h г из приемной емкости с давлением p 1 в напорную емкость с давлением p 2 . Запишем уравнения Бернулли для сечений 1 - 1 и 0 - 0 (сторона всасывания):

и 0 - 0 и 2 - 2 (сторона нагнетания):

Потери напора на преодоление гидравлических сопротивлений на всасывании и нагнетании равны:

, .

В связи с тем, что приемная и напорная емкости имеют большие объемы и площади резервуаров много больше площади трубопроводов, принимается, что w 1 = w 2 = 0 .

Тогда напор насоса равен:

Таким образом, напор насоса затрачивается на преодоление разности давлений в напорном и приемном резервуарах, сообщение кинетической энергии потоку жидкости на выходе из насоса (при равенстве диаметров трубопроводов на всасывании и нагнетании насосов d вс =d н , скорости на всасывании и нагнетании одинаковы w вс =w н , в этом случае второе слагаемое равно нулю), подъем жидкости на высоту и преодоление гидравлических сопротивлений во всасывающем и нагнетательном трубопроводах.

Если давления в емкостях равны и трубопровод горизонтальный, напор, создаваемый насосом, затрачивается на преодоление гидравлических сопротивлений во всасывающем и нагнетательном трубопроводах.

Напор насоса экспериментально можно определить по показаниям манометра и мановакууметра на выходе и входе насоса:

где Dh – разность в высотах расположения манометра и мановакууметра.

Характерным параметром, определяющим работу насоса на стороне всасывания, является допускаемая вакуумметрическая высота всасы­вания , которая определяется из уравнения Бернулли для сечений 1 – 1 и 0 – 0:

где р п – давление насыщенного пара при температуре перекачиваемой жидкости; Dp вс – потери давления во всасывающем трубопроводе.

Величина допускаемой вакуумметрической высоты всасывания связана с геометрической высотой всасывания, которая представляет собой разность высот уровня жидкости в приемном резервуаре и осью всасывающего трубопровода насоса. Если уровень жидкости в приемном резервуаре расположен выше оси всасывающего трубопровода насоса, то эту величину называют подпором (представляет отрицательную геометрическую высоту всасывания).

Как подать воду на верхний этаж небоскрёба ― построить водонапорную башню на один этаж выше? Как заставить работать двигатель внутреннего сгорания ― пустить течь топливо без меры и самотёком? Чтобы каждый камушек мостовой не отзывался в голове сотрясением мозга, может попробовать надуть автомобильное колесо ртом? С насосами и помпами все подобные ситуации разрешаются на раз. Кстати, эти два понятия означают одно и то же, но одно – по-русски, другое – по-английски.

Насосы и способы их классификации

Насос ― это приспособление для перемещения жидкостей или газов за счёт создаваемой им разницы давлений на входе и выходе. Цели применения насосов, объёмы перекачивания, разнообразные химический состав и свойства перекачиваемого вещества требуют разновидности в конструкциях и принципах действия насосов. Разнообразие устройств в свою очередь требует создания классификаций. Их много, ведь в каждой их них за основу берутся разные критерии. Насосы классифицируются по:

  • - сфере применения;
  • - принципу действия;
  • - разнице в конструкции;
  • - назначению и месту использования.

Так вот, каждая конкретная модель насоса не относится к какой-то одной классификации, наоборот, её можно охарактеризовать в каждой из классификаций.

Разделение насосов по сферам применения

Тут всё просто: насосы бывают бытовыми и промышленными. То есть, часть насосов служит для нас, обывателей, в повседневной жизни, другая же, более значительная, обслуживает все хозяйственные отрасли: промышленность, сельское хозяйство и транспорт.

Бытовые насосы применяют в индивидуальном водоснабжении, в нецентрализованных системах отопления и канализации, для нужд личного транспорта и т.д. Естественно, мощность их намного ниже, нежели у промышленных.

Промышленные насосы применяются в системах подачи воды и охлаждения для промышленных установок, в водоочистных системах, в системах смазки и подачи топлива, а также для повышения давления и промывки узлов и деталей под давлением, для перекачки нефтепродуктов и продуктов питания, для обеспечения котлов водой. В химической отрасли, где нежелательно присутствие человека из-за агрессивности некоторых веществ и т.п. От производительности таких насосов зависит рентабельность заводов и предприятий сферы услуг, потому на мощности (читай, стоимости) этих насосов не экономят.

Классификация насосов по принципу действия

Вот два главных направления в такой классификации: насосы объёмного типа и динамические насосы.

Объёмные насосы работают за счёт изменения объёма камеры и, как следствие, изменяющейся благодаря этому величине давления. Вот это изменившееся давление и понуждает перемещаться жидкости или газы. Все насосы объемного типа способны к самовсасыванию. Это способность насоса всасывать воздух и воду за счёт разряжения в камере после того, как из неё ушла жидкость.

Наиболее известны из насосов объёмного типа является поршневые. Рабочим органом у них служит плунжер или поршень. Перемещаясь в цилиндрической камере, поршень создаёт избыточное давление. Для впуска (выпуска) рабочего вещества из камеры нагнетания служат нагнетательный и всасывающий клапаны. Внешний их вид зависит от объектов применения. Они могут быть вертикальными и горизонтальными, многоцилиндровыми и одноцилиндровыми, одноразовыми и многократного действия. Эти насосы имеют разный объём цилиндра, разную скорость перемещения поршня, следовательно, и разную производительность.

К роторным насосам относятся зубчатые, шестерённые, шиберные, винтовые, лабиринтные и тому подобные насосы. Хотя они довольно разные по устройству, их объединяет общий принцип работы: внутри зафиксированного корпуса перемещают

(продавливают) жидкость либо роторы, либо винты, либо кулачки, либо лопасти, либо другие детали, способные выполнять такие функции. Интересны импеллерные насосы: в эксцентрическом корпусе гибкие лопасти, находящиеся на колесе, сгибаются при его вращении и вытесняют жидкость. Конструкция роторных насосов значительно проще поршневых, отсутствуют даже всасывающий и нагнетательный клапаны, потому применяются эти насосы гораздо чаще поршневых.

Многие вакуумные насосы тоже относятся к роторным, главное, чтобы между деталями роторов, работающими на нагнетание, соблюдалась полная герметичность. Этот тип насосов работает исключительно на самовсасывание.

Перистальтические насосы в работе выглядят несколько экзотично. Они представляют собой многослойный гибкий рукав, изготовленный из эластомера. Вал с расположенными на нём роликами, вращаясь, пережимает роликами рукав, протискивая жидкость дальше по рукаву.

Динамические насосы работают за счёт динамических сил, то есть сил движения. Им недоступно самовсасывание, зато у них уравновешен процесс работы, благодаря чему практически отсутствует вибрация, и подача вещества происходит равномерно. Также они два или более раз преобразуют энергию. К ним относятся центробежные, вихревые и струйные насосы.

Центробежные насосы имеют внутри рабочее колесо, которое, проходя через жидкость, увеличивает кинетическую энергию двигающейся жидкости. Эта энергия благодаря увеличению скорости водотока увеличивает кинетическое, а затем и потенциальное давление воды, заставляя её перемещаться.

Вихревые насосы своей работой похожи на центробежные, но увеличение водотока здесь вызывается завихрениями жидкости. Они создаются благодаря эксцентричности корпуса, из-за чего регулярно изменяются зазоры между кожухом и лопастями. Такие насосы мобильны (из-за малой массы) и компактны, но их недостаток ― КПД менее 50%.

Струйные насосы ― это гидроэлеваторы и эрлифты. Первые перекачивают нужное вещество благодаря кинетической энергии рабочей жидкости, вторые работают в паре с компрессором ― смесь воздуха и перекачиваемого вещества перемещается из-за подъёмной силы воздушных пузырьков.

Классификация насосов по разнице в конструкции

Конструкционные особенности часто видимы даже на глаз: мы же не раз сталкивались с такой ситуацией, когда какой-то механизм нельзя поставить на нужное нам место (не подходят соединения, резьбы, несовместимость по размерам). Помимо этого, даже внутри одного типа насосов конструкции не совпадают. Для примера хватит взгляда на роторные насосы: роторы у них есть у всех, но рабочие детали у всех их разные (у одних кулачки, у других ― винты, у третьих ― лопатки или лопасти). По конструкции насосы могут быть изготовлены и в вертикальном, и в горизонтальном исполнении.

Классификация насосов по назначению

Начнём с наиболее часто используемых водяных насосов. Они бывают поверхностными и погружными. Как следует из самого определения, поверхностные находятся не ниже уровня земли, в скважину к воде опускается шланг или труба, забор воды происходит благодаря всасыванию. Часто такие насосы снабжаются автоматикой, срабатывающей от изменения давления при включении-выключении любого крана в этой водонапорной системе, и тогда они называются уже не насосами, а станциями. В колодцах и скважинах же чаще применяются погружные насосы, находящиеся непосредственно в самой воде. Иногда они снабжаются поплавками, которые отключают насос при отсутствии воды.

Дренажные насосы практически всегда являются погружными. Их цель ― откачивать воду из погребов, подвалов, прудов, систем индивидуальной канализации, бассейнов. Дренажные насосы перекачивают загрязнённую воду, потому в них должно быть как можно меньше трущихся деталей, соприкасающихся с водой.

Циркуляционные насосы наиболее часто применяются в отопительных системах домов для быстрейшей циркуляции теплоносителя (воды или антифриза). Они обычно бесшумны, компактны и встраиваются непосредственно в трубопровод. Правильный выбор такого насоса прост: за час он должен троекратно прогнать через себя теплоноситель.

Фекальные насосы предназначаются для перекачки грязных и сточных вод, в том числе и канализационных, где содержатся во взвешенном состоянии довольно крупные частицы. Они попадают в воду не только после туалетов, но и после септиков, из моечного оборудования и стиральных машин, из канализации спортивных клубов и предприятий общепита, гостиниц. В таких местах с большой вероятностью в сбросовые и канализационные системы попадают разные крупные и волокнистые предметы, способные забить трубопроводы. Потому многие фекальные насосы снабжаются режуще-измельчающим механизмом, которым не по силам только металл и камни, но кто же будет бросать их в канализацию.

Классификация насосов.

Насосы, применяемы в системах ДВС, весьма разнообразны по устройству, назначению, виду привода и ряду других признаков. Существующее разнообразие целесообразно рассматривать системно, основываясь на приведенной ниже классификации этих машин.

В соответствии с предлагаемой классификацией (далеко не полной, но достаточной для основного представления) все насосы делят на подгруппы в зависимости от следующих определяющих признаков:

– по способу сообщения энергии жидкости;

– по назначению;

– по особенностям конструкции рабочих органов или по особенности совершения рабочего процесса;

– по числу ступеней;

– по виду привода.

По способу сообщения энергии жидкости все насосы делятся на две группы: насосы динамические и насосы объёмные. В динамических насосах передача энергии потоку жидкости обеспечивается путём взаимодействия с ним движущихся лопаток насоса, погружённых в жидкость. Динамические насосы сообщают энергию жидкости в кинетической (динамической) форме (поток жидкости приобретает увеличенную скорость), далее энергия потока частично преобразуется в статическую форму (скорость уменьшается, давление возрастает). Объёмные насосы сообщают энергию жидкости в процессе её вытеснения из замыкаемого объёма. Энергия обычно передаётся жидкости преимущественно в статической форме (давление жидкости возрастает при сравнительно малом увеличении скорости потока). Соотношение видов энергии в потоке здесь сильно зависит от сопротивления выходу жидкости из замыкаемого объёма. При минимальном сопротивлении на выходе жидкость будет просто перемещаться насосом без существенного роста давления. Как видно, в объёмных насосах принципиально возможно сообщение энергии жидкости преимущественно и в кинетической форме, но такие режимы работы для объёмных насосов с механическим приводом не характерны.

По назначению насосы ДВС и энергетических установок (ЭУ) с ДВС делятся на:

– насосы охлаждающие внутреннего и внешнего контуров ДВС (насос пресной и забортной воды);

– насосы масляные циркуляционные ДВС (возможны насос маслооткачивающий и нагнетатательный); эти насосы обеспечивают работу системы смазки двигателя;

– насос маслопрокачивающий ДВС (маслозакачивающий насос или МЗН); насос обеспечивает предпусковую прокачку маслом системы смазки;

– насос точечной смазки ДВС (насос дозированной смазки или лубрикатор); обеспечивает подачу смазки дозированными порциями в заданные моменты времени в специальные точки смазки двигателя;

– насосы масляные турбокомпрессоров; обеспечивают смазку подшипников турбокомпрессоров ДВС большой мощности;

– насос топливный высокого давления (ТНВД); обеспечивает дозированную подачу дизельного топлива с очень высоким давлением через форсунки в цилиндры дизельных ДВС в заданные моменты времени;

– топливный насос; обеспечивает подачу лёгкого топлива со средним давлением к форсункам (инжекторам) двигателей принудительного зажигания;

– топливоподкачивающие насосы; обеспечивают подачу топлива из топливного бака на всасывание к ТНВД; возможно применение и с топливными насосами для лёгкого топлива; для карбюраторных двигателей, где нет топливного насоса, подают топливо в карбюратор;

– насосы охлаждения и смазки компрессорных машин ЭУ с ДВС; эти насосы аналогичны перечисленным выше насосам ДВС;

топливные насосы котлоагрегатов ЭУ с ДВС; обеспечивают подачу топлива к форсункам вспомогательных котлов, используемых в ЭУ с ДВС;

– водяные насосы котлоагрегатов; для крупных котлов делятся на питательные, конденсатные и бустерные; питательные подают воду в барабан котла; конденсатные откачивают конденсат из конденсатора в тёплый ящик; бустерные подают воду из тёплого ящика на всасывание питательного насоса;

– насосы исполнительных механизмов; применяются в сравнительно сложных энергетических установках с двигателями средней и большой мощности для обеспечения работы гидравлических систем в цепях управления или технологических системах;

– насосы гидроприводов; применяются в составе гидромуфт или гидротрансформаторов;

Для специфических энергоустановок (судовых, стационарных, транспортных и других возможных) приведенный перечень будет расширен в связи с необходимостью обеспечения специфических функций. Так, например, для судовых энергетических установок в машинном отделении устанавливаются топливоперекачивающие и маслоперекачивающие насосы, обеспечивающие работу судовых систем хранения топлива и масла. На судах обязательна установка пожарного насоса для тушения возможных пожаров. Для удаления больших масс воды при аварии судна устанавливается водоотливной насос. Функции пожарного и водоотливного насосов могут быть объединены. Для регулярной откачки загрязнённых вод, скапливающихся под сланями в машинном отделении, в сборную цистерну устанавливается осушительный насос. Вне машинного отделения могут устанавливаться балластные насосы для приёмки и удаления жидкого балласта. Грузовые насосы используют для приёмки и удаления жидких грузов. Кроме них на судах устанавливают санитарные насосы для обеспечения бытовых нужд экипажа и фекальные насосы для удаления фекальных масс в специальную цистерну. Этот, весьма неполный перечень, свидетельствует о большом количестве и разнообразии дополнительно применяемых насосов в сложных энергетических установках.

По конструкции рабочих органов и по особенности совершения рабочего процесса

Динамические (лопаточные) насосы ДВС делят на центробежные, диагональные, вихревые и осевые. К динамическим насосам можно отнести и так называемые струйные аппараты (называемые также эжекторами и инжекторами), у которых отсутствуют рабочие органы, но которые имеют одинаковое с динамическими насосами назначение и близкий способ сообщения энергии жидкости.

Объёмные насосы ДВС делят на поршневые, плунжерные, шестерённые, винтовые, роторно-пластинчатые.

По числу ступеней насосы могут быть одноступенчатыми, двухступенчатыми и многоступенчатыми. В составе ДВС, как правило, применяются одноступенчатые насосы.

По виду привода различают насосы автономные и навесные . Если жидкость от насоса не используется для обеспечения работы двигателя, приводящего насос в действие, то такой насос считается автономным. В ином случае насос считается навесным. Кроме того, в в соответствии с данным признаком учитывают тип двигателя, который выступает в качестве привода насоса. Соответственно различают электронасосы, дизельнасосы (привод от дизельного двигателя), бензонасосы (привод от бензинового двигателя), турбонасосы (привод от турбины), паронасосы (привод паровая машина), ручные насосы.



В настоящее время в двигателестроении нет регламентированного принципа классификации насосов и, соответственно, нет принципа стандартного обозначения насосов в соответствии с их отличительными (классификационными) особенностями. В практике заводских маркировок насосов ЭУ с ДВС нередко используют указания на особенности конструкции насосного агрегата, на род привода, на величину создаваемого напора, на ориентацию ротора насоса относительно горизонта и т.п. Вместе с тем по заводскому наименованию насоса трудно судить о его особенностях. Для этого чаще всего необходимо располагать его техническим описанием.

Рассмотрим устройство и принцип действия основных типов рассмотренных насосов одновременно с общей характеристикой их применения. Вначале рассмотрим группу лопаточных насосов.

Данный тип классификации машин подобного рода обыкновенно используется для перекачки более вязких жидкостей. Принцип работы объемного насоса основывается на преобразовании энергии двигателя в энергию жидкости. Обыкновенно они несколько неуравновешенны и обладают высокой вибрацией, поэтому и устанавливаются на массивных фундаментах.

Существует несколько подтипов подобных устройств:
- импеллерные насосы, также использующиеся в качестве дозаторов;
- пластинчатые, которые обеспечивают довольно всасывание продукта. Работают подобные насосы за счет изменений в объеме рабочей камеры в результате ротора и статора;
- винтовые;
- поршневые, в которых может создаваться довольно высокое давление. Такие насосы не пригодны для работы с абразивными жидкостями;
- перистальтические насосы, обладающие свойствами химической инерции и невысоким давлением;
- мембранные;
- импеллерные или ламельные насосы, чаще всего используемые в пищевой промышленности.

К общим для всех этих подтипов свойствам относятся цикличность рабочего процесса, герметичность, способность самовсасывания и независимость давления.

Динамический тип насосов

Подобный тип оборудования подразделяется на три категории: лопастные (функционируют за счет лопастного колеса или мелкозаходного шнека); струйные устройства (осуществляют подачу жидкости за счет энергии, получаемой от потока вспомогательной жидкости, пара или даже газа), а также насосы-тараны, которые также называют насосами-гидротаранами (принцип их действия основывается на гидравлическом ударе, который провоцирует нагнетание жидкости).

В свою очередь, первый тип насосов – лопастных – делится еще на два различных, основанных на принципе действия, подтипа: центробежные устройства, преобразовывающие механическую энергию приводы в потенциальную энергию потока жидкости, и вихревые, представляющие собой отдельный и мало распространенный тип устройства, работающие за счет вихреобразования в рабочем канале машины.

Более подробно подразделяется и подтип центробежных насосов. На:
- центробежно-шнековые насосы, в которых подвод жидкости к рабочему органу происходит в виде мелкозаходного шнека с дисками большого диаметра;
- консольные, основанные на принципе одностороннего подвода жидкости к рабочему колесу;
- осевые (второй название - пропеллерный), в которых подача жидкости происходит за счет лопастного колеса пропеллерного типа;
- полуосевые насосы, которые также называют диагональными и турбинными;
- радиальные устройства с радиальными же рабочими колесами.

Насос - это агрегат, предназначенный для перемещения различных веществ с разными объемами, имеющих разный состав и особенности. Многообразие разновидностей насосного оборудования требует четкой классификации, для того чтобы потребители могли быстро подобрать необходимую модель в соответствии с собственными нуждами.

Насосы подразделяются на типы с учетом следующих критериев:

  • области использования;
  • принцип действия;
  • конструктивные особенности;
  • назначения и места установки.

При этом определенная модель может характеризоваться по каждому виду классификации.

Область использования

Бытовые - предназначены для:

  • создания давления в автономных системах отопления частных жилых домов;
  • подачи воды при отсутствии централизованных источников снабжения;
  • перекачивания стоков в системах канализации при невозможности обеспечить нужные уклоны в трубопроводах и т.д.

Производительность бытовых насосов значительно более низкая по сравнению с промышленными.

Промышленные - используются:

  • для снабжения водой, необходимой при работе промышленных установок;
  • в водоочистных сооружениях и системах охлаждения;
  • в системах снабжения топливом и смазочными материалами;
  • для промывки узлов механизмов и оборудования;
  • для транспортировки нефтепродуктов;
  • в системах водоснабжения котельных установок;
  • в химической промышленности для перекачивания агрессивных жидкостей и т.п.

Мощность промышленных типов имеет большое значение для обеспечения рентабельности предприятий, в том числе работающих в сфере услуг, поэтому подбирая насосы, не экономят на их производительности и стоимости.


Принцип действия

По этому критерию оборудование можно разделить на насосы объемного принципа действия и динамические.

Принцип работы объемных насосов заключается в изменении различными способами объема внутренней камеры, что создает давление, побуждающее к движению перекачиваемые жидкости. Главная их особенность - самовсасывание новых объемов перекачиваемого вещества за счет создания разрежения в камере после удаления из нее ранее поступившего. К ним относятся следующие виды:


Функционирование динамических насосов осуществляется за счет сил движения при отсутствии самовсасывания и характеризуется уравновешенностью работы, равномерностью подачи перекачиваемой жидкости и исключением вибрации. К ним относятся:


Конструктивные особенности

По конструктивным особенностям насосы можно отличить невооруженным глазом, особенно в случаях, когда не получается его установить на запланированное место из-за несовместимости соединений и неподходящих размеров.

Кроме того, даже у одной разновидности насосов могут быть отличия во внутреннем устройстве. Например, все роторные насосы оснащены роторами, но рабочие элементы - кулачки, лопатки, винты и т.д. - у них могут отличаться.

Еще одно явное отличие разных видов насосов по конструкции - горизонтальное или вертикальное исполнение.


Назначение и место установки

Широко используемые насосы, служащие для подачи воды из скважин, резервуаров и колодцев, подразделяются на поверхностные и погружные.

Поверхностные насосы

Подача воды осуществляется за счет всасывания через гибкий шланг или трубу, которые опускают в скважину. Они могут оборудоваться системой автоматики, обеспечивающей поступление воды по сигналу датчика, срабатывающего при включении кранов в системе. Такая система называется насосной станцией.


Погружные насосы

Колодезные опускают непосредственно в саму воду. Они оборудованы поплавками, прекращающими работу насоса при отсутствии воды.


Назначение дренажных насосов - откачка воды из затопленных подземных помещений, дренажных систем, водоемов, бассейнов, систем автономной канализации. Откачиваемая вода чаще всего бывает загрязненной, поэтому конструкция оборудования рассчитана на минимальный контакт с водой трущихся деталей.


Насосы циркуляционные используются в автономных системах отопления для создания давления и ускорения циркуляции теплоносителя. Они отличаются небольшими размерами, бесшумностью работы, легкой встраиваемостью непосредственно в трубопроводы системы отопления. При их подборе следует пользоваться простым правилом: оборудование должно в течение часа пропустить через себя 3-кратный объем теплоносителя.


Назначение фекальных насосов - перекачивание загрязненных и сточных вод, включая хозяйственно-бытовые канализационные стоки, содержащие большое количество крупных примесей. Такие сточные воды удаляются из систем канализации жилых домов, моечных ресторанов и кафе, прачечных и банных заведений, гостиниц и т.д. Обычно хозяйственно-бытовые стоки содержат крупные частицы, которые могут забивать трубы канализационных систем, для предотвращения этого в конструкции предусматривается механизм, измельчающий крупные частицы до нужной фракции.