Градиентные методы оптимизации. Метод наискорейшего спуска. Градиентный метод

22.09.2019

В основе метода лежит следующая итерационная модификация формулы

x k +1 = x k + a k s(x k),

x k+1 = x k - a k Ñ f(x k), где

a - заданный положительный коэффициент;

Ñ f(x k) - градиент целевой функции первого порядка.

Недостатки:

    необходимость выбора подходящего значения ;

    медленная сходимость к точке минимума ввиду малости f(x k) в окрестности этой точки.

Метод наискорейшего спуска

Свободен от первого недостатка простейшего градиентного метода, т.к. a k вычисляется путем решения задачи минимизации Ñ f(x k) вдоль направления Ñ f(x k) с помощью одного из методов одномерной оптимизации x k+1 = x k - a k Ñ f(x k).

Данный метод иногда называют методом Коши.

Алгоритм характеризуется низкой скоростью сходимости при решении практических задач. Это объясняется тем, что изменения переменных непосредственно зависит от величины градиента, которая стремится к нулю в окрестности точки минимума и отсутствует механизм ускорения на последних итерациях. Поэтому, учитывая устойчивость алгоритма, метод наискорейшего спуска часто используется как начальная процедура поиска решения (из точек, расположенных на значительных расстояниях от точки минимума).

Метод сопряженных направлений

Общая задача нелинейного программирования без ограничений сводится к следующему: минимизировать f(x), x E n , где f(x) является целевой функцией. При решении этой задачи мы используем методы минимизации, которые приводят к стационарной точке f(x), определяемой уравнением f(x *)=0. Метод сопряженных направлений относится к методам минимизации без ограничений, использующим производные. Задача: минимизировать f(x), x E n , где f(x) является целевой функцией n независимых переменных. Важной особенностью является быстрая сходимость за счет того, что при выборе направления используется матрица Гессе, которая описывает область топологии поверхности отклика. В частности, если целевая функция квадратичная, то можно получить точку минимума не более чем за количество шагов, равное размерности задачи.

Для применения метода на практике его необходимо дополнить процедурами проверки сходимости и линейной независимости системы направлений. Методы второго порядка

Метод Ньютона

Последовательное применение схемы квадратичной аппроксимации приводит к реализации оптимизационного метода Ньютона по формуле

x k +1 = x k - Ñ 2 f(x k -1) Ñ f(x k).

Недостатком метода Ньютона является его недостаточная надежность при оптимизации не квадратичных целевых функций. Поэтому его часто модифицируют:

x k +1 = x k - a k Ñ 2 f(x k -1) Ñ f(x k), где

a k - параметр, выбираемый таким образом, чтобы f(x k+1) min.

2. Нахождение экстремума функции без ограничения

Дана некоторая функция f(х) на открытом интервале (а, в) изменения аргумента х. Предполагаем, что exst внутри этого интервала существует (нужно сказать, что в общем случае математически заранее это утверждать не могут; однако в технических приложениях очень часто наличие exst внутри некоторого интервала изменения интервала изменения аргумента может быть предсказано из физических соображений).

Определение exst. Функция f(x) заданная на интервале (а, в) имеет в точке x * max(min), если эту точку можно окружить таким интервалом (x * -ε, x * +ε), содержащимся в интервале (а, в), что для всех ее точек х, принадлежащих интервалу (x * -ε, x * +ε), выполняется неравенство:

f(x) ≤ f(x *) → для max

f(x) ≥ f(x *) → для min

Это определение не накладывает никаких ограничений на класс функций f(x), что, конечно, очень ценно.

Если ограничится для функций f(x), достаточно распространенным, но все же более узким классом гладких функций (под гладкими функциями мы будем понимать такие функции, которые непрерывны вместе со своими производными на интервале изменения аргумента), то можно воспользоваться теоремой Ферма, которая дает необходимые условия существования exst.

Теорема Ферма. Пусть функция f(x) определена в некотором интервале (а, в) и в точке "с" этого интервала принимает наибольшее (наименьшее) значение. Если существует в этой точке двухсторонняя конечная производная , то существования необходимоexst .

Примечание. Двухсторонняя производная характеризуется свойством иными словами, речь идет о том, что в точке "с" производная в пределе одна и та же при подходе к точке "с" слева и справа, т.е.f(x) – гладкая функция.

* В случае имеет местоmin, а при →max. Наконец, если при х=х 0 , то использование 2-ой производной не помогает и нужно воспользоваться, например, определением exst.

При решении задачи I необходимые условия exst (т.е. теорема Ферма) используется очень часто.

Если уравнение exst имеет вещественные корни, то точки, соответствующие этим корням, являются подозрительными наexst (но не обязательно самыми экстремумами, ибо имеем дело с необходимыми, а не с необходимыми и достаточными условиями). Так, например, в точке перегиба Х п имеет место , однако, как известно, это не экстремум.

Заметим ещё, что:

    из необходимых условий нельзя сказать, какой вид экстремума найден max или min: для определения этого нужны дополнительные исследования;

    из необходимых условий нельзя определить, глобальный это экстремум или локальный.

Поэтому, когда находят точки подозрительные на exst, их дополнительно исследуют, например, на основе определения exst или 2-ой производной.

Метод Гаусса-Зейделя

Метод заключается в поочерёдном нахождении частных экстремумов целевой функции по каждому фактору. При этом на каждом этапе стабилизируют (k-1) факторов и варьируют только один i-ый фактор

Порядок расчёта: в локальной области факторного пространства на основании предварительных опытов выбирают точку, соответствующую наилучшему результату процесса, и из неё начинают движение к оптимуму. Шаг движения по каждому фактору задаётся исследователем. Вначале фиксируют все факторы на одном уровне и изменяют один фактор до тех пор, пока будет увеличение (уменьшение) функции отклика (Y), затем изменяют другой фактор при стабилизации остальных и т. д. до тех пор пока не получат желаемый результат (Y). Главное правильно выбрать шаг движения по каждому фактору.

Этот способ наиболее прост, нагляден, но движение к оптимуму длительно и метод редко приводит в оптимальную точку. В настоящее время он иногда применяется при машинном эксперименте.

Эти методы обеспечивают движение к оптимуму по прямой перпендикулярной к линиям равного отклика, т. е. в направлении градиента функции отклика.

Градиентные методы имеют несколько разновидностей, различающихся правилами выбора ступеней варьирования и рабочих шагов на каждом этапе движения к экстремуму.

Сущность всех методов состоит в следующем: первоначально на основании предварительных опытов выбирают базовую точку. Затем на каждом этапе вокруг очередной базовой точки организуют пробные эксперименты, по результатам которых оценивают новое направление градиента, после чего в этом направлении совершают один рабочий шаг.

Метод градиента (обычный) осуществляется по следующей схеме:

а) выбирают базовую точку;

б) выбирают шаги движения по каждому фактору;

в) определяют координаты пробных точек;

г) проводят эксперименты в пробных точках. В результате получают значения параметра оптимизации (Y) в каждой точке.

д) по результатам опытов вычисляют оценки составляющих вектор-градиента в т. М для каждого i-го фактора:


где H i -шаг движения по X i .

X i – координаты предыдущей рабочей точки.

ж) координаты этой рабочей точки принимают за новую базовую точку, вокруг которой проводят эксперименты в пробных точках. Вычисляют градиент и т. д., пока не достигнут желаемого параметра оптимизации (Y). Корректировка направления движения производится после каждого шага.

Достоинства метода: простота, более высокая скорость движения к оптимуму.

Недостатки: большая чувствительность к помехам. Если кривая имеет сложную форму, метод может не привести к оптимуму. Если кривая отклика пологая - метод малоэффективен. Метод не даёт информации о взаимодействии факторов.

а) Метод крутого восхождения (Бокса - Уилсона).

б) Принятие решений после крутого восхождения.

в) Симплексный метод оптимизации.

г) Достоинства и недостатки методов.

5.7.3 Метод крутого восхождения (Бокса- Уилсона)

Этот метод является синтезом лучших черт градиентных методов, метода Гаусса-Зейделя и методов ПФЭ и ДФЭ – как средства получения математической модели процесса. Решение задачи оптимизации данным методом выполняется так, чтобы шаговое движение осуществлялось в направлении наискорейшего возрастания (убывания) параметра оптимизации. Корректировка направления движения (в отличие от градиентных методов) производится не после каждого шага, а по достижению частного экстремума целевой функции. Далее в точках частного экстремума ставится новый факторный эксперимент, составляется новая математическая модель и вновь повторяется крутое восхождение до достижения глобального оптимума. Движение по градиенту начинают из нулевой точки(центра плана).

Метод крутого восхождения предполагает движение к оптимуму по градиенту.

Где i,j,k-единичные векторы в направлении соответствующих координатных осей.

Порядок расчёта .

Исходными данными является математическая модель процесса, полученная любым способом (ПФЭ, ДФЭ и т.д.).

Расчеты проводят в следующем порядке:

а) уравнение регрессии лучше перевести в натуральный вид по формулам кодирования переменных:

где x i -кодированное значение переменной x i ;

X i - натуральное значение переменной x i ;

X i Ц -центральный уровень фактора в натуральном виде;

l i -интервал варьирования фактора x i в натуральном виде.

б) вычисляют шаги движения к оптимуму по каждому фактору.

Для этого вычисляют произведения коэффициентов уравнения регрессии в натуральном виде на соответствующие интервалы варьирования

B i *.l I ,

Затем выбирают из полученных произведений максимальное по модулю,а соответствующий этому произведению фактор принимают за базовый фактор(B a l a). Для базового фактора следует установить шаг движения, который рекомендуется задавать меньшим или равным интервалу варьирования базового фактоpa


Знак шага движения l a ’ должен совпадать со знаком коэффициента уравнения регрессии, соответствующего базовому фактору (B a). Величина шагов для других факторов вычисляется пропорционально базовому по формуле:

Знаки шагов движения также должны совпадать со знаками соответствующих коэффициентов уравнения регрессии.

в) вычисляют функцию отклика в центре плана, т. е. при значениях факторов равных центральному уровню факторов, т. к. движение к оптимуму начинают из центра плана.

Далее производят вычисление параметра оптимизации, увеличивая значения факторов на величину соответствующего шага движения, если хотят получить Y max . В противном случае, если необходимо получить Y min , значения факторов уменьшают на величину шага движения.

Процедуру повторяют, последовательно увеличивая количество шагов до тех пор, пока не достигнут желаемого значения параметра оптимизации (Y). Каждый из факторов после g шагов будет иметь значение:

Если Y® max X i =X i ц +gl i ` ’

если Y® min .X i =X i ц -gl i ` . (5.36)

Наконец, параметр m можно задавать постоянным на всех итерациях. Однако при больших значениях m процесс поиска может расходиться. Хорошим способом выбора m может быть его определение на первой итерации из условия экстремума по направлению градиента. На последующих итерациях m остается постоянным. Это еще более упрощает вычисления.

Например, для функции при с проекциями градиентов методом наискорейшего спуска определен . Примем параметр постоянным на всех итерациях.

Вычисляем координаты х (1) :

Для вычисления координат точки х (2) находим проекции градиента в точке х (1) : , тогда

и т.д.

Данная последовательность также сходится.

Шаговый градиентный метод

Этот метод разработан инженерами и заключается в том, что шаг по одной из переменных берется постоянным, а для других переменных он выбирается исходя из пропорциональности градиентов точках. Этим как бы масштабируют экстремальную поверхность, т.к. не по всем переменным сходимость одинакова. Поэтому выбором различных шагов для координат пытаются сделать скорость сходимости примерно одинаковой по всем переменным.

Пусть дана сепарабельная функция и начальная точка . Зададимся постоянным шагом по координате х 1 , пусть Dх 1 =0,2. Шаг по координате х 2 находим из соотношения градиентов и шагов.

Лекция № 8

Градиентные методы решения задач нелинейного программирования. Методы штрафных функций. Приложения нелинейного программирования к задачам исследования операций.

Задачи без ограничений. Градиентным методом можно решать, вообще говоря, любую нелинейную задачу. Однако при этом находится лишь локальный экстремум. Поэтому целесообразнее применять этот метод при решении задач выпуклого программирования, в которых любой локальный экстремум, является одновременно и глобальным (см. теорему 7.6).

Будем рассматривать задачу максимизации нелинейной дифференцируемой функции f (x ). Суть градиентного поиска точки максимума х * весьма проста: надо взять произвольную точку х 0 и с помощью градиента , вычисленного в этой точке, определить направление, в котором f (х ) возрастает с наибольшей скоростью (рис. 7.4),

а затем, сделав небольшой шаг в найденном направлении, перейти в новую точку x i . Потом снова определить наилучшее направление для перехода в очередную точку х 2 и т. д. На рис. 7.4 поисковая траектория представляет собой ломаную х 0 , x 1 , х 2 ... Таким образом, надо построить последовательность точек х 0 , x 1 , х 2 ,...,x k , ... так, чтобы она сходилась к точке максимума х *, т. е. для точек последовательности выполнялись условия

Градиентные методы, как правило, позволяют получать точное решение за бесконечное число шагов и только в некоторых случаях - за конечное. В связи с этим градиентные методы относят к приближенным методам решения.

Движение из точки х k в новую точку x k+1 осуществляется по прямой, проходящей через точку х k и имеющей уравнение

(7.29)

где λ k - числовой параметр, от которого зависит величина шага. Как только значение параметра в уравнении (7.29) выбрано: λ k =λ k 0 , так становится определенной очередная точка на поисковой ломаной.

Градиентные методы отличаются друг от друга способом выбора величины шага - значения λ k 0 параметра λ k . Можно, например, двигаться из точки в точку с постоянным шагом λ k = λ, т. е. при любом k

Если при этом окажется, что , то следует возвратиться в точку и уменьшить значение параметра, например до λ /2.

Иногда величина шага берется пропорциональной модулю градиента.

Если ищется приближенное решение, то поиск можно прекратить, основываясь на следующих соображениях. После каждой серии из определенного числа шагов сравнивают достигнутые значения целевой функции f (x ). Если после очередной серии изменение f (x ) не превышает некоторого наперед заданного малого числа , поиск прекращают и достигнутое значение f (x ) рассматривают как искомый приближенный максимум, а соответствующее ему х принимают за х *.



Если целевая функция f (x ) вогнутая (выпуклая), то необходимым и достаточным условием оптимальности точки х * является равенство нулю градиента функции в этой точке.

Распространенным является вариант градиентного поиска, называемый методом наискорейшего подъема. Суть его в следующем. После определения градиента в точке х к движение вдоль прямой производится до точки х к+ 1 , в которой достигается максимальное значение функции f (х ) в направлении градиента . Затем в этой точке вновь определяется градиент, и движение совершается по прямой в направлении нового градиента до точки х к+ 2 , в которой достигается максимальное в этом направлении значение f (x ). Движение продолжается до тех пор, пока не будет достигнута точка х *, соответствующая наибольшему значению целевой функции f (x ). На рис. 7.5 приведена схема движения к оптимальной точке х * методом наискорейшего подъема. В данном случае направление градиента в точке х k является касательным к линии уровня поверхности f (х ) в точке х к+ 1 , следовательно, градиент в точкех к+ 1 ортогонален градиенту (сравните с рис. 7.4).

Перемещение из точки х k в точку сопровождается возрастанием функции f (x ) на величину

Из выражения (7.30) видно, что приращение является функцией переменной , т. е. . При нахождении максимума функции f (x) в направлении градиента ) необходимо выбирать шаг перемещения (множитель ), обеспечивающий наибольшее возрастание приращению функции, именно функции . Величина , при которой достигается наибольшее значение , может быть определена из необходимого условия экстремума функции :

(7.31)

Найдем выражение для производной, дифференцируя равенство (7.30) по как сложную функцию:

Подставляя этот результат в равенство (7.31), получаем

Это равенство имеет простое геометрическое истолкование: градиент в очередной точке х к+ 1 , ортогонален градиенту в предыдущей точке х к .


построены линии уровня этой поверхности. С этой целью уравнение приведено к виду (x 1 -1) 2 +(x 2 -2) 2 =5-0,5f , из которого ясно, что линиями пересечения параболоида с плоскостями, параллельными плоскости x 1 Оx 2 (линиями уровня), являются окружности радиусом . При f =-150, -100, -50 их радиусы равны соответственно , а общий центр находится в точке (1; 2). Находим градиент данной функции:

I шаг . Вычисляем:

На рис. 7.6 с началом в точке х 0 =(5; 10) построен вектор 1/16, указывающий направление наискорейшего возрастания функции в точке х 0 . На этом направлении расположена следующая точка . В этой точке .

Используя условие (7.32), получаем

или 1-4=0, откуда =1/4. Так как , то найденное значение является точкой максимума . Находим x 1 =(5-16/4; 10-32/4)=(1; 2).

II шаг . Начальная точка для второго шага x 1 =(1; 2). Вычисляем =(-4∙1 +4; -4∙2+8)=(0; 0). Следовательно, х 1 =(1; 2) является стационарной точкой. Но поскольку данная функция вогнутая, то в найденной точке (1; 2) достигается глобальный максимум.

Задача с линейными ограничениями. Сразу же отметим, что если целевая функция f (х ) в задаче с ограничениями имеет единственный экстремум и он находится внутри допустимой области, то для поиска экстремальной точки х * применяется изложенная выше методика без каких-либо изменений.

Рассмотрим задачу выпуклого программирования с линейными ограничениями:

(7.34)

Предполагается, что f (х ) является вогнутой функцией и имеет непрерывные частные производные в каждой точке допустимой области.

Начнем с геометрической иллюстрации процесса решения задачи (рис. 7.7). Пусть начальная точка х 0 расположена внутри допустимой области. Из точки х 0 можно двигаться в направлении градиента , пока f (x ) не достигнет максимума. В нашем случае f (x ) все время возрастает, поэтому остановиться надо в точке х , на граничной прямой. Как видно из рисунка, дальше двигаться в направлении градиента нельзя, так как выйдем из допустимой области. Поэтому надо найти другое направление перемещения, которое, с одной стороны, не выводит из допустимой области, а с другой - обеспечивает наибольшее возрастание f (x ). Такое направление определит вектор , составляющий с вектором наименьший острый угол по сравнению с любым другим вектором, выходящим из точки x i и лежащим в допустимой области. Аналитически такой вектор найдется из условия максимизации скалярного произведения . В данном случае вектор указывающий наивыгоднейшее направление, совпадает с граничной прямой.


Таким образом, на следующем шаге двигаться надо по граничной прямой до тех пор, пока возрастает f (x ); в нашем случае - до точки х 2 . Из рисунка видно, что далее следует перемещаться в направлении вектора , который находится из условия максимизации скалярного произведения , т. е. по граничной прямой. Движение заканчивается в точке х 3 , поскольку в этой точке завершается оптимизационный поиск, ибо в ней функция f (х ) имеет локальный максимум. Ввиду вогнутости в этой точке f (х ) достигает также глобального максимума в допустимой области. Градиент в точке максимума х 3 =х * составляет тупой угол с любым вектором из допустимой области, проходящим через х 3 , поэтому скалярное произведение будет отрицательным для любого допустимого r k , кроме r 3 , направленного по граничной прямой. Для него скалярное произведение =0, так как и взаимно перпендикулярны (граничная прямая касается линии уровня поверхности f (х ), проходящей через точку максимума х *). Это равенство и служит аналитическим признаком того, что в точке х 3 функция f (x ) достигла максимума.

Рассмотрим теперь аналитическое решение задачи (7.33) - (7.35). Если оптимизационный поиск начинается с точки, лежащей в допустимой области (все ограничения задачи выполняются как строгие неравенства), то перемещаться следует по направлению градиента так, как установлено выше. Однако теперь выбор λ k в уравнении (7.29) усложняется требованием, чтобы очередная точка оставалась в допустимой области. Это означает, что ее координаты должны удовлетворять ограничениям (7.34), (7.35), т. е. должны выполняться неравенства:

(7.36)

Решая систему линейных неравенств (7.36), находим отрезок допустимых значений параметра λ k , при которых точка х k +1 будет принадлежать допустимой области.

Значение λ k * , определяемое в результате решения уравнения (7.32):

При котором f (x ) имеет локальный максимум по λ k в направлении, должно принадлежать отрезку . Если же найденное значение λ k выходит за пределы указанного отрезка, то в качестве λ k * принимается . В этом случае очередная точка поисковой траектории оказывается на граничной гиперплоскости, соответствующей тому неравенству системы (7.36), по которому при решении системы получена правая конечная точка . отрезка допустимых значений параметра λ k .

Если оптимизационный поиск начат с точки, лежащей на граничной гиперплоскости, или очередная точка поисковой траектории оказалась на граничной гиперплоскости, то для продолжения движения к точке максимума прежде всего необходимо найти наилучшее направление движения С этой целью следует решить вспомогательную задачу математического программирования, а именно- максимизировать функцию

при ограничениях

для тех t , при которых

где .

В результате решения задачи (7.37) - (7.40) будет найден вектор , составляющий с градиентом наименьший острый угол.

Условие (7.39) говорит о том, что точка принадлежит границе допустимой области, а условие (7.38) означает, что перемещение из по вектору будет направлено внутрь допустимой области или по ее границе. Условие нормализации (7.40) необходимо для ограничения величины , так как в противном случае значение целевой функции (7.37) можно сделать сколь угодно большим Известны различные формы условий нормализации, и в зависимости от этого задача (7.37) - (7.40) может быть линейной или нелинейной.

После определения направления находится значение λ k * для следующей точки поисковой траектории. При этом используется необходимое условие экстремума в форме, аналогичной уравнению (7.32), но с заменой на вектор , т. е.

(7.41)

Оптимизационный поиск прекращается, когда достигнута точка x k * , в которой .

Пример 7.5. Максимизировать функцию при ограничениях

Решение. Для наглядного представления процесса оптимизации будем сопровождать его графической иллюстрацией. На рис 7.8 изображено несколько линий уровня данной поверхности и допустимая область ОАВС, в которой следует найти точку х *, доставляющую максимум данной функции (см. пример 7 4).

Начнем оптимизационный поиск, например с точки х 0 =(4, 2,5), лежащей на граничной прямой АВ x 1 +4x 2 =14. При этом f (х 0)=4,55.

Найдем значение градиента

в точке x 0 . Кроме того, и по рисунку видно, что через допустимую область проходят линии уровня с пометками более высокими, чем f (x 0)=4,55. Словом, надо искать направление r 0 =(r 01 , r 02) перемещения в следующую точку x 1 более близкую к оптимальной. С этой целью решаем задачу (7.37) - (7.40) максимизации функции при ограничениях


Поскольку точка х 0 располагается только на одной (первой) граничной прямой (i =1) x 1 +4x 2 =14, то условие (7.38) записывается в форме равенства.

Система ограничительных уравнений этой задачи имеет только два решения (-0,9700; 0,2425) и (0,9700;-0,2425) Непосредственной подстановкой их в функцию T 0 устанавливаем, что максимум Т 0 отличен от нуля и достигается при решении (-0,9700; 0,2425) Таким образом, перемещаться из х 0 нужно по направлению вектора r 0 =(0,9700; 0,2425), т е по граничной прямой ВА.

Для определения координат следующей точки x 1 =(x 11 ; x 12)

(7.42)

необходимо найти значение параметра , при котором функция f (x ) в точке x

откуда =2,0618. При этом =-0,3999<0. Значит,=2,0618. По формуле (7.42) находим координаты новой точки х 1 (2; 3).

Если продолжить оптимизационный поиск, то при решении очередной вспомогательной задачи (7.37)- (7.40) будет установлено, что Т 1 =, а это говорит о том, что точка x 1 является точкой максимума х* целевой функции в допустимой области. Это же видно и из рисунка в точке x 1 одна из линий уровня касается границы допустимой области. Следовательно, точка x 1 является точкой максимума х*. При этом f max =f (x *)=5,4.


Задача с нелинейными ограничениями. Если в задачах с линейными ограничениями движение по граничным прямым оказывается возможным и даже целесообразным, то при нелинейных ограничениях, определяющих выпуклую область, любое как угодно малое перемещение из граничной точки может сразу вывести за пределы области допустимых решений, и возникнет необходимость в возвращении в допустимую область (рис. 7.9). Подобная ситуация характерна для задач, в которых экстремум функции f (x ) достигается на границе области. В связи с этим применяются различные

способы перемещения, обеспечивающие построение последовательности точек, расположенных вблизи границы и внутри допустимой области, или зигзагообразное движение вдоль границы с пересечением последней. Как видно из рисунка, возврат из точки x 1 в допустимую область следует осуществлять вдоль градиента той граничной функции , которая оказалась нарушенной. Это обеспечит отклонение очередной точки х 2 в сторону точки экстремума х*. Признаком экстремума в подобном случае будет коллинеарность векторов и .

Градиентный метод и его разновидности относятся к самым распространенным методам поиска экстремума функций нескольких переменных. Идея градиентного метода заключается в том, чтобы в процессе поиска экстремума (для определенности максимума) двигаться каждый раз в направлении наибольшего возрастания целевой функции.

Градиентный метод предполагает вычисление первых производных целевой функции по ее аргументам. Он, как и предыдущие, относится к приближенным методам и позволяет, как правило, не достигнуть точки оптимума, а только приблизиться к ней за конечное число шагов.

Рис. 4.11.

Рис. 4.12.

(двумерный случай)

Вначале выбирают начальную точку Если в одномерном случае (см. подпараграф 4.2.6) из нее можно было

сдвинуться только влево или вправо (см. рис. 4.9), то в многомерном случае число возможных направлений перемещения бесконечно велико. На рис. 4.11, иллюстрирующем случай двух переменных, стрелками, выходящими из начальной точки А, показаны различные возможные направления. При этом движение по некоторым из них дает увеличение значения целевой функции по отношению к точке А (например, направления 1-3), а по другим направлениям приводит к его уменьшению (направления 5-8). Учитывая, что положение точки оптимума неизвестно, считается наилучшим то направление, в котором целевая функция возрастает быстрее всего. Это направление называется градиентом функции. Отметим, что в каждой точке координатной плоскости направление градиента перпендикулярно касательной к линии уровня, проведенной через ту же точку.

В математическом анализе доказано, что составляющие вектора градиента функции у =/(*, х 2 , ..., х п) являются ее частными производными по аргументам, т.е.

&ад/(х 1 ,х 2 ,.= {ду/дху,ду/дх 2 , ...,ду/дх п }. (4.20)

Таким образом, при поиске максимума по методу градиента на первой итерации вычисляют составляющие градиента по формулам (4.20) для начальной точки и делают рабочий шаг в найденном направлении, т.е. осуществляется переход в новую точку -0)

У" с координатами:

1§гас1/(х (0)),

или в векторной форме

где X - постоянный или переменный параметр, определяющий длину рабочего шага, ?і>0. На второй итерации снова вычисляют

вектор градиента уже для новой точки.У, после чего по анало-

гичной формуле переходят в точку х^ > и т.д. (рис. 4.12). Для произвольной к- й итерации имеем

Если отыскивается не максимум, а минимум целевой функции, то на каждой итерации делается шаг в направлении, противоположном направлению градиента. Оно называется направлением антиградиента. Вместо формулы (4.22) в этом случае будет

Существует много разновидностей метода градиента, различающихся выбором рабочего шага. Можно, например, переходить в каждую последующую точку при постоянной величине X, и тогда

длина рабочего шага - расстояние между соседними точками х^

их 1 " - окажется пропорциональном модулю вектора градиента. Можно, наоборот, на каждой итерации выбирать X таким, чтобы длина рабочего шага оставалась постоянной.

Пример. Требуется найти максимум функции

у = 110-2(лг, -4) 2 -3(* 2 -5) 2 .

Разумеется, воспользовавшись необходимым условием экстремума, сразу получим искомое решение: х ] - 4; х 2 = 5. Однако на этом простом примере удобно продемонстрировать алгоритм градиентного метода. Вычислим градиент целевой функции:

grad у = {ду/дх-,ду/дх 2 } = {4(4 - *,); 6(5 - х 2)} и выбираем начальную точку

Л*» = {х}°> = 0; 4°> = О}.

Значение целевой функции для этой точки, как легко подсчитать, равно у[х^ j = 3. Положим, X = const = 0,1. Величина градиента в точке

Зс (0) равна grad y|x^j = {16; 30}. Тогда на первой итерации получим согласно формулам (4.21) координаты точки

х 1) = 0 + 0,1 16 = 1,6; х^ = 0 + 0,1 30 = 3.

у(х (1)) = 110 - 2(1,6 - 4) 2 - 3(3 - 5) 2 = 86,48.

Как видно, оно существенно больше предыдущего значения. На второй итерации имеем по формулам (4.22):

  • 1,6 + 0,1 4(4 - 1,6) = 2,56;