Еще раз про мощность: активную, реактивную, полную (P, Q, S), а также коэффициент мощности (PF). Активная и реактивная электрическая мощность

19.10.2019

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I - в цепях постоянного тока

P = U I cosθ - в однофазных цепях переменного тока

P = √3 U L I L cosθ - в трёхфазных цепях переменного тока

P = 3 U Ph I Ph cosθ

P = √ (S 2 – Q 2) или

P =√ (ВА 2 – вар 2) или

Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2) или

кВт = √ (кВА 2 – квар 2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2)

вар =√ (ВА 2 – P 2)

квар = √ (кВА 2 – кВт 2)

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2)

kUA = √(kW 2 + kUAR 2)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

Чтобы правильно рассчитать нагрузку потребителей по мощности необходимо знать: какие бывают приемники напряжения. Что такое активная, реактивная и линейная нагрузка? Треугольник мощностей. Что такое пусковой ток? Все это разберем по порядку.

К приемникам напряжения относятся все устройства, которые подключаются к источникам напряжения. К ним относятся: электровентилятор, электроплита, стиральная машина, компьютер, телевизор, электродвигатель, бытовой электроинструмент и другие электропотребители.
В цепях переменного тока нагрузки разделяются на активные, реактивные и нелинейные. В цепях постоянного тока деления на типы нагрузок нет.

Активная нагрузка

К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.

Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.

Треугольник мощностей

Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

S – полная мощность используется для расчета электрических цепей.

Для расчета полной мощности применяем теорему Пифагора: S 2 =P 2 +Q 2 . Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

Нелинейная нагрузка

Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.

В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.

Пусковой ток

При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.

В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.

В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.

В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.

Специфика сети переменного тока приводит к тому, что в фиксированный момент времени синусоиды напряжения и тока на приемнике совпадают только в случае так называемой активной нагрузки, полностью переводящей ток в тепло или механическую работу. Практически это всевозможные электронагревательные приборы, лампы накаливания, в каком-то приближении электродвигатели и электромагниты под нагрузкой и звуковоспроизводящая аппаратура. Ситуация полностью меняется, если нагрузка, не создающая механической работы, обладает большой индуктивностью при малом сопротивлении. Это характерный случай электродвигателя или трансформатора на холостом ходу.

Подключение подобного потребителя к источнику постоянного тока привело бы к , здесь же ничего особенного с сетью не случится, но мгновенный ток будет отставать от мгновенного напряжения примерно на четверть периода. В случае же чисто емкостной нагрузки (если в розетку вставить конденсатор), ток на нем будет, наоборот, на ту же четверть периода опережать напряжение.

Реактивные токи

Практически такое несовпадение тока и напряжения, не производя на приемнике полезной работы, создает в проводах дополнительные, или, как принято их называть, реактивные токи, которые в особо неблагоприятных случаях могут привести к разрушительным последствиям. При меньшей величине это явление все равно требует расходовать излишний металл на более толстую проводку, повышать мощность питающих генераторов и трансформаторов электроэнергии. Поэтому экономически оправдано устранять в сети реактивную мощность всеми возможными способами. При этом следует учитывать суммарную реактивную мощность всей сети, при том, что отдельные элементы могут обладать значительными значениями реактивной мощности.

Реактивная электроэнергия

С количественной стороны влияние реактивной электроэнергии на работу сети оценивается косинусом угла потерь, который равен отношению активной мощности к полной. Полная мощность считается как векторная величина, которая зависит от сдвига фаз между током и напряжением на всех элементах сети. В отличие от активной мощности, которую, как и механическую измеряют в ваттах, полную мощность измеряют в вольт-амперах, так как эта величина присутствует только в электрической цепи. Таким образом, чем ближе косинус угла потерь к единице, тем полнее используется и мощность, вырабатываемая генератором.

Основные пути снижения реактивной мощности - взаимная компенсация сдвигов фаз, создаваемых индуктивными и емкостными приемниками и использование приемников с малым углом потерь.

Общая зависимость электрической мощности от электрического тока и напряжения известна давно: это произведение. Помножим ток на напряжение – получим значение этой величины, потребляемой цепью из сети.

Но на деле все может оказаться не так просто. Потому что, просто умножив напряжение на ток, мы получим значение полной мощности. Казалось бы – это то, что нужно! Ведь обычно нас интересует именно полное значение любой величины.

Однако на электрическую мощность такое отношение распространять нельзя, так как электроэнергия и мощность, на основании которых изменяются показания нашего квартирного счетчика – не полные, а активные.

Активная мощность – это та мощность, которая потребляется в тот момент, когда в сети в один и тот же момент есть и напряжение, и синхронный с ним электрический ток. На самом деле, в цепях постоянного тока за исключением переходных процессов при включении-выключении так оно и бывает.

Постоянно «жмет» напряжение, если цепь замкнута – постоянно «давит» некоторый ток. В итоге полная и активная мощность становятся равны, поскольку ток и напряжение действуют согласованно.

Иное дело – цепи переменного тока. Напряжение в них меняет свое направление пятьдесят раз в секунду, а ток… иногда приотстает, а иногда опережает напряжение. К примеру, если в цепи имеется «индуктивность», то есть, катушка из провода, имеющая множество витков, то ток на таком элементе цепи «отстанет» от напряжения.

Причина заключается в противо-ЭДС самоиндукции, сопротивляющейся изменению тока в катушке. Получается, что напряжение к индуктивности уже приложено, а ток еще никак не может возрасти из-за помех со стороны противо-ЭДС.

В среде учащихся многих электротехнических ВУЗов бытует такое художественное сравнение: «Для тока требуется время, чтобы он мог пробежать через каждый виток, а напряжение – вот оно, уже на концах катушки».

ЭДС противоиндукции вызывает падение напряжения и снижение тока в цепи. То есть, катушка является источником индуктивного сопротивления. Но оно отличается от активного сопротивления тем, что на нем не выделяется никакого тепла и вообще не потребляется никакой мощности в привычном понимании.

Происходит просто «пустопорожнее» переливание электроэнергии от источника к индуктивности. И энергия, перенаправляемая туда и обратно как мяч в настольном теннисе, никуда из сети не уходит. Это реактивная энергия и потребителю в быту за нее не приходится платить энергосбытовой компании.

Реактивная энергия , производимая в сети в единицу времени, может считаться реактивной мощностью. Вычисляется она так же, как и активная – произведением реактивной составляющей тока на напряжение.

Реактивной же составляющей тока является та, которая не совпадает с напряжением по своей фазе. Величина «несовпадения» характеризуется углом сдвига фаз. В случае с чистой индуктивностью сдвиг фаз составляет максимум – 90°. Это означает, что когда напряжение достигает самого большого своего значения, ток только начинает расти.

А если в цепи расположен конденсатор (емкость), то напряжение, напротив, будет отставать от тока на 90 градусов по причине того, что для возникновения падения напряжения конденсатору требуется зарядить свои обкладки.

Точно так же источник и конденсатор в одной цепи будут обмениваться реактивной энергией, которая ни на что не будет тратиться.

В реальной цепи не бывает чисто активной или чисто реактивной нагрузки, поэтому полная мощность всегда состоит из активной и реактивной составляющей, а угол сдвига фаз находится в пределах между нулем и 90°.

Реактивная составляющая тока равна его произведению на синус угла сдвига фаз, а активная – произведению на косинус этого угла:

Q=I*sin⁡φ; P=I*cosφ

Полную мощность можно найти по теореме Пифагора:

S=√(P^2+Q^2);

При этом, реактивную мощность, в отличие от активной, нельзя исчислять в ваттах, потому что она неэффективна. Поэтому для реактивной мощности придумали особую единицу измерения – вольт-амперы реактивные (ВАРы). А полная измеряется в вольт-амперах, без уточнения характера нагрузки.


Единственное с чем согласен с автором, так это то что так это что вокруг понятия "реактивная энергия" немало легенд... В отместку видимо автор выдвинул ещё и свою...Путано...противоречиво...изобилие всяких: ""энергия приходит, энергия уходит..." Итог вообще получился шокирующий, истина перевёрнута с ног на ноги: "Вывод - реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы" Господин, дорогой! нагрев это уже работа!!! Мнение моё, тут людям с техническим образованием без векторной диаграммы синхронного генератора под нагрузкой не склеить описание процесса грамотно, а людям интересующимся могу предложить простой вариант, без затей.

Итак о реактивной энергии. 99% электричества напряжением 220 вольт и более вырабатывается синхронными генераторами. Электроприборами в быту и работе мы используем разные, большинство из них "греют воздух", выделяют теплоту в той или иной степени...Пощупайте телевизор, монитор компьютера, о кухонной электропечи я уже не говорю, везде чувствуется тепло. Это всё потребители активной мощности в электросети синхронного генератора. Активная мощность генератора это безвозвратные потери вырабатываемой энергии на тепло в проводах и приборах. Для синхронного генератора передача активной энергии сопровождается механическим сопротивлением на приводном валу. Если бы Вы, уважаемый читатель вращали генератор вручную, Вы бы сразу же почувствовали повышенное сопротивление Вашим усилиям и означало бы это одно, кто-то в вашу сеть включил дополнительное число нагревателей, т.е повысилась активная нагрузка. Если в качестве привода генератора у вас дизель, будьте уверены, расход топлива возрастает молниеносно, т.к именно активная нагрузка потребляет ваше топливо. С реактивной энергией иначе...Скажу я вам, невероятно, но некоторые потребители электроэнергии сами являются источниками электроэнергии, пусть на очень короткое мгновение, но являются. А если учесть что переменный ток промышленной частоты изменяет своё направление 50 раз в секунду, то такие (реактивные) потребители 50 раз в секунду передают свою энергию сети. Знаете как в жизни, если кто-то что-то добавляет к оригиналу своё без последствий это не остаётся. Так и здесь, при условии, что реактивных потребителей много, или они достаточно мощные, то синхронный генератор развозбуждается. Возвращаясь к нашей прежней аналогии где в качестве привода Вы использовали свою мышечную силу, можно будет заметить, что несмотря на то что Вы не изменили ни ритма вращая генератор, ни не почувствовали прилива сопротивления на валу, лампочки в вашей сети вдруг погасли. Парадокс, тратим топливо, вращаем генератор с номинальной частотой, а напряжения в сети нет... Уважаемый читатель, выключи в такой сети реактивные потребители и всё восстановится. Не вдаваясь в теорию развозбуждение происходит когда магнитные поля внутри генератора, поле системы возбуждения вращающейся вместе с валом и поле неподвижной обмотки соединённой с сетью поворачиваются встречно друг другу, тем самым ослабляю друг друга. Генерация электроэнергии при понижении магнитного поля внутри генератора уменьшается. Техника ушла далеко в перёд, и современные генераторы оснащены автоматическими регуляторами возбуждения, и когда реактивные потребители "провалят" напряжение в сети, регулятор сразу же повысит ток возбуждения генератора, магнитный поток восстановится до нормы и напряжение в сети восстановится Понятно, что ток возбуждения имеет и активную составляющую, так что извольте добавить и топливо в дизеле.. В любом случае, реактивная нагрузка негативно влияет на работу электросети, особенно в момент подключения реактивного потребителя к сети, например, асинхронного электродвигателя...При значительной мощности последнего всё может закончится плачевно, аварией. В заключение, могу добавить для пытливого и продвинутого оппонента, что, есть и реактивные потребители с полезными свойствами. Это всё те что обладают электроёмкостью...Включи такие устройства в сеть и уже электрокомпания должна вам)). В чистом виде это конденсаторы. Они тоже отдают электроэнергию 50 раз в секунду, но при этом магнитный поток генератора наоборот увеличивается, так что регулятор может даже понизить ток возбуждения, экономя затраты. Почему мы раньше об этом не оговорились...а зачем...Дорогой читатель обойди свой дом и поищи емкостной реактивный потребитель...не найдешь...Разве только раскурочишь телевизор или стиральную машину...но пользы от этого понятно не будет....<