Деаэратор вакуумный сдв в 100. Испытание вакуумного деаэратора. Обслуживание деаэрационной установки

13.03.2019

Бравиков А. М.

Экономичность вакуумных деаэраторов во многом зависит от подогрева в деаэраторе деаэрируемой воды. Чем меньше подогрев воды в деаэраторе, тем экономичнее режим деаэрации. Однако подогрев воды в деаэраторе влияет не только на экономичность режима, но и на качество деаэрации, а конкретнее - чем больше подогрев воды в деаэраторе, тем лучше качество деаэрации.
Одним из требований, предъявляемых к работе вакуумных деаэраторов, является обеспечение содержания кислорода в деаэрированной воде не более 50 мкг/кг. В этой связи оптимальным нагревом воды в деаэраторе является минимальный нагрев, при котором обеспечивается требуемое содержание кислорода в деаэрированной воде.
Опыт эксплуатации вакуумных деаэраторов показывает, что типовые вакуумные деаэраторы на разных объектах имеют разные технические характеристики. К числу таких характеристик может быть отнесен оптимальный нагрев воды в деаэраторе. Согласно оптимальный нагрев воды на разных объектах составляет от 5 до 15°С. Кроме того, опыт эксплуатации вакуумных деаэраторов показывает, что оптимальный нагрев может составлять 5 - 25°С.
На рис. 1 показано содержание кислорода в деаэрированной воде в зависимости от нагрева воды в деаэраторе (дегазационные характеристики деаэраторов), полученное экспериментально в одинаковых температурных и гидродинамических режимах на деаэраторах, установленных на разных объектах.

Рис. 1. Зависимости содержания кислорода в деаэрированной воде от нагрева воды в деаэраторах ДВ-400 и ДВ-800:
1 - ТЭЦ Горьковского автозавода; 2 - Усть-Каменогорская ТЭЦ; 3 - тепловые сети г. Курска; 4 - Новосибирская ТЭЦ-5

Кроме того, опыт эксплуатации вакуумных деаэраторов показывает, что в процессе эксплуатации дегазационная характеристика деаэратора может изменяться при неизменных температурных и гидродинамических параметрах режима работы деаэратора. При этом оптимальный нагрев воды в деаэраторе может как увеличиваться, так и уменьшаться. Причина, вызвавшая изменение дегазационной характеристики, как правило, остается неизвестной, так как теоретические положения о термической деаэрации не дают оценки данному явлению .
Вопрос изменения дегазационной характеристики деаэратора при неизменных температурных и гидродинамических параметрах в открытой печати впервые обсуждался в , где высказывалась точка зрения, что причиной изменения дегазационной характеристики деаэратора при неизменных температурных и гидродинамических параметрах режима работы является изменение кавитационной прочности деаэрируемой воды. Данное свойство воды характеризует условия, при которых в воде зарождаются и растут газовые пузырьки, и оно подробно рассмотрено в специальной литературе, например, в . Согласно теории кавитации интенсивность выделения растворенных газов из воды за счет образования пузырьков зависит от кавитационной прочности воды. Чем меньше кавитационная прочность воды (в некоторых источниках она называется “объемная прочность воды”), тем интенсивнее из нее выделяются газы за счет образования пузырьков и, следовательно, тем меньше минимально необходимый нагрев воды в деаэраторе.
Из теории кавитации известно, что кавитационная прочность воды зависит от многих факторов, например, от механических микроскопических примесей в жидкости, от присутствия растворенных солей в жидкости, от обработки воды давлением, от воздействия космических лучей, от гидродинамического состояния потока (от турбулентности) и др. При определении дегазационной характеристики деаэратора факторы, влияющие на кавитационную прочность деаэрируемой воды, как правило, не учитываются, а, следовательно, и кавитационная прочность деаэрируемой воды тоже не учитывается. Однако кавитационная прочность на разных объектах может быть различной.


Рис. 2. Схема реконструированных деаэраторов ДВ-400 и ДВ-800:
1 - корпус; 2, 3, 4, 5 - тарелка; 6 - патрубок подвода недеаэри- рованной воды; 7 - патрубок подвода греющей воды; 8 - патрубок отвода деаэрированной воды; 9 - патрубок отвода неконденсирующихся газов; 10 - решетка турбулизирующая; 11 - лопатка направляющая; 12 - сопло

Кроме того, кавитационная прочность воды может изменяться в процессе эксплуатации деаэратора. В этой связи изменяется и дегазационная характеристика деаэратора. Изменение дегазационной характеристики в процессе эксплуатации может приводить к ухудшению качества деаэрации или к необоснованно завышенному нагреву воды в деаэраторе, что экономически невыгодно.
В последнее время в совершенствовании процессов деаэрации наметилась тенденция повышения интенсивности процесса деаэрации за счет уменьшения кавитационной прочности деаэрируемой воды. Например, обработка деаэрируемой воды ультразвуком улучшает качество деаэрации. Замечено также, что при повышении хлоридов в деаэрируемой воде улучшается качество деаэрации, что, вероятно, связано также с уменьшением кавитационной прочности деаэрируемой воды.
Снижение кавитационной прочности деаэрируемой воды происходит и в деаэраторе (получившем распространение в теплоэнергетике), разработанном на основе изобретения . Отличительной особенностью данного деаэратора является то, что в патрубке подвода в деаэратор недеаэрированной воды установлено сопло. В сопле вода разгоняется до больших скоростей и турбулизуется, в результате кавитационная прочность деаэрируемой воды уменьшается, а интенсивность выделения газов из деаэрируемой воды за счет образования пузырьков повышается.
Однако данный деаэратор имеет существенный недостаток, выражающийся в том, что перед ним требуется создавать повышенное давление недеаэрированной воды. Указанный недостаток устранен в деаэраторе, показанном на рис. 2, в котором для повышения турбулентности потока деаэрируемой воды в патрубке 6 установлены решетка турбулентности 10, винтовые направляющие лопатки 11 и сопло 12. Данный деаэратор создан на основе изобретения . В разработанном деаэраторе поток деаэрируемой воды, проходя через патрубок 6, турбулизуется решеткой 10, закручивается по спирали лопатками 11 и затем поступает в сопло 12. При поступлении в сопло давление в потоке воды понижается, при этом из деаэрируемой воды интенсивно выделяются газы за счет образования пузырьков. При выходе из сопла 12 под действием центробежных сил закрученный поток распадается на мелкие капли, которые затем, двигаясь в паровом отсеке, подогреваются паром; при этом из капель, за счет диффузии, интенсивно выделяются газы.
Патрубок 6 с установленными в нем решеткой 10, лопатками 11 и соплом 12 выполняет роль форсунки, от эффективности работы которой зависит качество деаэрации воды.
Необходимым условием для распада потока воды на мелкие капли при выходе из форсунки является возрастание тангенциальной составляющей скорости течения жидкости в поперечном сечении потока от центральной оси к периферии. Данное условие может быть достигнуто за счет выбора оптимального угла закрутки направляющей лопатки.
Для определения угла закрутки направляющей лопатки определим математическую модель потока, закрученного винтовыми лопатками. Для этого зададимся законом закрутки лопатки
(1)
где а - угол закрутки лопатки на расстоянии r от оси патрубка, равный углу между образующей цилиндра, соосного с патрубком, и касательной к лопатке, исходящей из выходной кромки лопатки; r - расстояние (радиус) от угла а до оси патрубка; dH - диаметр патрубка; ан - угол закрутки лопатки на расстоянии dH/2 от оси патрубка.
Составим дифференциальное уравнение элементарной струйки потока. Запишем закон сохранения энергии для элементарной струйки в форме уравнения Бернулли, считая, что жидкость идеальная

(2)
где P - статическое давление элементарной струйки, образовавшееся от закрутки потока; р - плотность жидкости; и - тангенциальная составляющая скорости движения элементарной струйки; z - осевая составляющая скорости движения элементарной струйки; Рт - динамический напор элементарной струйки до закрутки потока.
Считаем, что угол закрутки потока равен углу закрутки лопатки.
Центробежная сила, действующая на элементарную струйку закрученного потока, равна разности давлений, действующих на боковые поверхности этой струйки, что выражается формулой
(3)
Из уравнений (1), (2), (3) получаем
(4)
где

Решение уравнения (4) имеет вид

(5)
После упрощения уравнение (5) может быть представлено в виде
(6)
где С1 - постоянная интегрирования.
Уравнение (6) представляет математическую модель потока жидкости в патрубке, закрученного винтовыми лопатками, закон закрутки которых описан уравнением (1).
Уравнение (6) позволяет определить поле скоростей потока и плотность орошения в факеле при различных значениях а, и dH, а также определить оптимальные ан и dH при заданном расходе воды.
На рис. 3 показана характеристика форсунки, направляющие лопатки которой рассчитаны с помощью формулы (6). Данная характеристика определена экспериментально при испытании одной из пяти форсунок, установленных в деаэраторе ДВ-800. Форсунки рассчитаны на расход воды 120 т/ч каждая при перепаде давления на форсунке 0,10 МПа.
При испытании форсунки деаэратор работал в следующем режиме:
расход недеаэрированной воды в деаэратор 575 т/ч;
температура недеаэрированной воды 26°С;
давление в деаэраторе 0,006 МПа;
давление воды перед форсункой 0,079 МПа.
Из результатов испытаний видно, что в указанном режиме пропускная способность форсунки близка расчетному значению, а плотность орошения одинакова по всему поперечному сечению факела.


Рис. 3. Плотность орошения в поперечном сечении факела:
r - расстояние от оси факела

Следует отметить, что расчетная производительность форсунки 120 т/ч определялась из условия максимально возможного расхода недеаэрированной воды в деаэратор 600 т/ч. Увеличивать производительность деаэратора более 600 т/ч не было необходимости, поскольку суммарная производительность деаэраторов, установленных на объекте, значительно превышает максимально возможный расход воды в деаэраторы.
В настоящее время в промышленной эксплуатации находится более 10 реконструированных деаэраторов, конструктивное исполнение которых аналогично деаэратору, показанному на рис. 2. Первый реконструированный деаэратор находится в эксплуатации с 1994 г. Испытания первого реконструированного деаэратора показали, что за счет реконструкции в нем уменьшился минимально необходимый нагрев воды с 24 до 16°С и понизилась минимально необходимая температура греющей воды. До реконструкции в качестве греющей среды в деаэраторе использовалась прямая сетевая вода с температурой 90°С и более и для достижения данной температуры использовался специальный подогреватель, который включался в работу при температуре прямой сетевой воды ниже 90°С. После реконструкции деаэратор обеспечивает нормальное качество деаэрации при температуре греющей воды 80°С и более. Снижать температуру греющей воды менее 80°С при испытании не было необходимости, так как для данного объекта указанная температура соответствует минимальному значению температуры прямой сетевой воды, определенной по температурному графику тепловых сетей. В этой связи данный деаэратор не испытан при температуре греющей воды ниже 80°С. Однако опыт эксплуатации реконструированных деаэраторов на других объектах показал, что снижение температуры греющей воды в них до 70°С не оказывает заметного влияния на качество деаэрации. Что касается максимальной производительности реконструированного деаэратора, то при температуре недеаэрированной воды
30°С и температуре греющей воды 70°С и более реконструированный деаэратор обеспечивает качественную деаэрацию 950 т/ч воды. Нереконструированные деаэраторы согласно при температуре недеаэрированной воды 30°С могут продеаэрировать не более 620 т/ч.
Имеется также положительный опыт эксплуатации реконструированных деаэраторов в течение длительного времени (с 1996 г.) при использовании в них в качестве греющей среды обратной сетевой воды с температурой 50 - 70°С. Опыт эксплуатации показал, что при температуре греющей воды 50 - 70°С деаэраторы стабильно обеспечивают требуемое качество деаэрации, однако производительность деаэратора при этом уменьшается и при температуре греющей воды 50°С производительность деаэратора составляет 40 - 50% номинальной производительности деаэратора.
Экономический эффект от реконструкции деаэратора ДВ-800, установленного на ТЭЦ в схеме подпитки теплосети, составляет 800 т/год условного топлива.

Выводы

  1. Кавитационная прочность воды является одним из факторов, определяющих интенсивность процесса деаэрации воды в термических деаэраторах.
  2. Различие дегазационных характеристик вакуумных деаэраторов, установленных на разных объектах, вызвано различием кавитационной прочности деаэрируемой воды на этих объектах.
  3. Изменение дегазационной характеристики деаэратора без изменения температурных и гидродинамических параметров режима работы деаэратора происходит в связи с изменением кавитационной прочности воды.
  4. Применение в вакуумных деаэраторах форсунок с направляющими винтовыми лопатками улучшает дегазационную характеристику деаэратора, а именно:
    уменьшает минимально необходимый нагрев воды в деаэраторе с 24 до 16°С;
    снижает минимально допустимую температуру греющей воды с 85 - 90 до 70°С.
  5. Производительность реконструированного деаэратора, в конструкции которого применены форсунки с направляющими винтовыми лопатками, составляет 950 т/ч при температуре недеаэрированной воды 30°С и температуре греющей воды 70°С и более.

Список литературы

  1. Типовая инструкция по эксплуатации автоматизированных деаэрационных установок подпитки теплосети. М.: Союзтехэнерго, 1985.
  2. РТМ 108.030.21-78. Расчет и проектирование термических деаэраторов. Л.: ЦКТИ, 1979.
  3. Бравиков А. М. Разработка и исследование деаэратора перегретой воды. - Теплоэнергетика, 1990, № 12.
  4. Карелин В. Я. Кавитационные явления в центробежных и осевых насосах. М.: Машиностроение, 1975.
  5. Водолазов О. А. Новый способ деаэрации воды. - Энергетик, 1999, № 2.
  6. А.с. 1255805 (СССР). Вакуумный деаэратор / Комарчев И. Г., Нестеренко Б. М., Качанова-Махова Н. И. Опубл. в Б. И., 1986, № 33.
  7. Пат. 2054384 (РФ). Термический деаэратор / Бравиков А. М. Опубл. в Б. И., 1996, № 5.
  8. Шарапов В. И., Кувшинов О. Н. О рабочей производительности вакуумных деаэраторов. - Электрические станции, 1998, № 8.

Вакуумный деаэратор применяется для деаэрации воды, если ее температура ниже 100 °С (температура кипения воды при атмосферном давлении).

Областью для проектирования, монтажа и эксплуатирования вакуумного деаэратора являются водогрейные котельные (особенно в блочном варианте) и тепловые пункты. Так же вакуумные деаэраторы активно используются в пищевой промышленности для деаэрации воды необходимой в технологии приготовления широкого спектра напитков.

Вакуумной деаэрации подвергаются потоки воды идущей на подпитку тепловой сети, котлового контура, сети горячего водоснабжения.

Особенности работы вакуумного деаэратора.

Так как процесс вакуумной деаэрации происходит при относительной невысоких температурах воды (в среднем от 40 до 80 °С в зависимости от типа деаэратора) для работы вакуумного деаэратора не требуется использование теплоносителя с температурой выше 90 °С. Теплоноситель необходим для нагрева воды перед вакуумным деаэратором. Температура теплоносителя до 90 °С обеспечивается на большинстве объектов, где потенциально возможно применить вакуумный деаэратор.

Основное отличие вакуумного деаэратора от атмосферного деаэратора в системе отвода выпара из деаэратора.

В вакуумном деаэраторе выпар (парогазовая смесь образующаяся при выделении из воды насыщенных паров и растворенных газов) удаляется при помощи вакуумного насоса.

В качестве вакуумного насоса можно использовать: вакуумный водокольцевой насос, водоструйный эжектор, пароструйный эжектор. Они различны по конструкции, но основаны на одном принципе - уменьшение статического давления (создание разряжения - вакуума) в потоке жидкости при увеличении скорости потока.

Скорость потока жидкости увеличивается либо при движении через сужающееся сопло (водоструйный эжектор), либо при закручивании жидкости при вращении рабочего колеса.

При удалении выпара из вакуумного деаэратора давление в деаэраторе падает до давления насыщения соответствующего температуре воды поступающей в деаэратор. Вода в деаэраторе находится в точке кипения. На границе раздела фаз вода - газ возникает разница концентраций по растворенным в воде газам (кислород, углекислота) и соответственно появляется движущая сила процесса деаэрации.

От эффективности работы вакуумного насоса зависит качество деаэрированной воды после вакуумного деаэратор.

Особенности установки вакуумного деаэратора.

Т.к. температура воды в вакуумном деаэраторе ниже 100 °С и соответственно давление в вакуумном деаэраторе ниже атмосферного - вакуум, возникает главный вопрос при проектировании и эксплуатации вакуумного деаэратора - как подать деаэрированную воду после вакуумного деаэратора далее в систему теплоснабжения. В этом заключается основная проблема использования вакуумного деаэратора для деаэрации воды на котельных и тепловых пунктах.

В основном это решалось установкой вакуумного деаэратора на высоте не менее 16 м, что обеспечивало необходимую разницу давлений между разряжением в деаэраторе и атмосферным давлением. Вода самотеком стекала в аккумуляторный бак расположенным на нулевой отметке. Высота установки вакуумного деаэратора выбиралась из расчета максимально возможного вакуума (-10 м.вод.ст.), высоты столба воды в аккумуляторном баке, сопротивления сливного трубопровода и перепада давлений необходимого для обеспечения движения деаэрированной воды. Но это влекло за собой ряд существенных недостатков: увеличение первоначальных затрат на строительство (этажерка высотой 16 м с площадкой обслуживания), возможность замерзания воды в сливном трубопроводе при прекращении подачи воды в деаэратор, гидроудары в сливном трубопроводе, трудности в осмотре и обслуживании деаэратора в зимний период.

Для блочных котельных, которые активно проектируются и монтируются данное решение на применимо.

Вторым вариантом решения вопроса подачи деаэрированной воды после вакуумного деаэратора является использование промежуточного бака запаса деаэрированной воды - деаэраторного бака и насосов подачи деаэрированной воды. Деаэраторный бак находится под таким же разряжением, что и сам вакуумный деаэратор. По сути дела вакуумный деаэратор и деаэраторный бак представляют собой один сосуд. Основная нагрузка ложится на насосы подачи деаэрированной воды которые забирают деаэрированную воду из под вакуума и подают ее далее в систему. Для предотвращения возникновения явления кавитации в насосе подачи деаэрированной воды необходимо обеспечить высоту водяного столба (расстояние между зеркалом воды в деаэраторном баке и осью всаса насоса) на всасе насоса не менее величины указанной в паспорте насоса как кавитационный запас или NPFS. Кавитационный запас в зависимости от марки и производительности насоса колеблется в диапазоне от 1 до 5 м.

Преимуществом второго варианта компоновки вакуумного деаэратора является возможность устанавливать вакуумный деаэратор на небольшой высоте, в помещении. Насосы подачи деаэрированной воды обеспечат перекачивание деаэрированной воды далее в аккумуляторные баки или на подпитку. Для обеспечения стабильного процесса перекачивания деаэрированой воды из деаэраторного бака важно правильно подобрать насосы подачи деаэрированной воды.

Повышение эффективности работы вакуумного деаэратора.

Так как вакуумная деаэрация воды проводится при температуре воды ниже 100 °С повышаются требования к технологии процесса деаэрации. Чем ниже температура воды, тем выше коэффициент растворимости газов в воде, тем сложнее процесс деаэрации. Необходимо повышать интенсивность процесса деаэрации, соответственно применяются конструктивные решения на основе новых научных разработок и экспериментов в области гидродинамики и массопереноса.

Использование высокоскоростных течений с турбулентным массопереносом при создании условий в потоке жидкости для дополнительного снижения статического давления относительно давления насыщения и получения перегретого состояния воды позволяет значительно повысить эффективность процесса деаэрации и уменьшить габаритные размеры и вес вакуумного деаэратора.

Для комплексного решения вопроса установки вакуумного деаэратора в помещении котельной на нулевой отметке с минимальной габаритной высотой был разработан, испытан, и успешно введен в серийное производство блочный вакуумный деаэратор БВД. При высоте деаэратора чуть менее 4 м блочный вакуумный деаэратор БВД позволяет производить эффективную деаэрацию воды в диапазоне производительностей от 2 до 40 м3/ч по деаэрированной воде. Блочный вакуумный деаэратор занимает пространство в помещении котельной не более чем 3х3 м (в основании) в своем самом производительном исполнении.

Отопительные котлы чаще всего изготавливаются из стали. Проходящая через них вода в своем составе имеет кислород и углекислый газ. Оба эти элемента оказывают на металлические конструкции котла крайне негативное влияние. Постоянный контакт стали с этими газами неизбежно приводит к ее ржавлению. Для того чтобы исправить ситуацию и продлить срок службы оборудования, в котельных включаются специальная установка — деаэратор. Что это такое? Об этом и поговорим далее в статье.

Определение

Деаэратором называется специальное оборудование, предназначенное для удаления кислорода из теплоносителя отопительных систем путем подогревания последнего паром. Таким образом, помимо очищающей функции, устройства этого типа выполняют также термическую. Одна и та же установка деаэрации может применяться для подогрева и очистки как питательной, так и подпиточной воды.

Особенности конструкции

Относительная простота конструкции — это то, что отличает деаэратор. Что это такое, мы с вами выяснили. Теперь давайте посмотрим, как устроено это оборудование. Представляет собой деаэратор котельной цистерну (БДА) со смонтированной на ней вертикальной колонной (КДА), установленную на опорах. Дополнительным элементом оборудования этого типа является гидравлическая система, защищающая его от превышения давления. Колонка приваривается к баку без фланца — напрямую.

На горизонтальном баке деаэратора смонтированы входной и выходной патрубки для подключения магистралей подачи и отвода среды. Снизу установлены сливы. Еще одним элементом конструкции является предназначенный для сбора дегазованной воды сборный бак. Расположен он под днищем БДА.

Такого оборудования, как деаэратор, схема которого представлена ниже, обычно состоит из двух гидрозатворов. Один из них защищает устройство от любого превышения допустимого давления, а второй — от опасного. Также в конструкцию гидравлической системы деаэратора входит расширительный бачок. Выпары из деаэратора поступают в специальный охладитель, имеющий вид горизонтального цилиндра.

Конструкция колонны

Колонна представляет собой цилиндрическую обечайку с дном эллиптической формы. Как и на баке, на ней имеются патрубки для подвода и отвода среды. Внутри колонны установлены специальные тарелки с отверстиями, через которые проходит вода. Такая конструкция позволяет значительно увеличить площадь соприкосновения среды и пара, а следовательно, производить нагрев с максимальной скоростью.

Виды оборудования

В современных котельных может устанавливаться деаэратор воды:

    вакуумный;

    атмосферный.

В первом типе деаэраторов удаление газов из воды производится в вакууме. В конструкцию таких установок дополнительно включается паро- или водоструйный эжектор. Последняя разновидность узлов чаще всего используется в системах с котлами средней или малой мощности. Вместо эжекторов для создания вакуума могут применяться специальные насосы. Некоторым недостатком такого оборудования, как вакуумный деаэратор, является то, что пар из него нужно удалять принудительно, в то время как из атмосферных он выходит естественным путем — под давлением.

Помимо двух рассмотренных видов деаэраторов, в котельных могут устанавливаться устройства повышенного давления. Работают они при 0.6-0.8 МПа. Иногда в тепловую схему котельных также включается оборудование пониженного давления.

Сфера использования

Где же может применяться деаэратор? Что это такое, вы теперь знаете. Поскольку такое устройство предназначено для дегазации рабочей среды, применяется оно в основном там, где есть нагревательное оборудование, изготовленное из стали.

Чаще всего деаэраторы используются в системах отопления и ГВС. Котельные с водогрейными котлами обычно оснащаются установками вакуумного типа. Также в таких схемах могут использоваться деаэраторы атмосферные. Установки пониженного и повышенного давления применяются по большей мере в системах, функционирующих благодаря работе парового котла. Первая разновидность (на 0.025-0.2 МПа) монтируется в не слишком мощных системах, рассчитанных на малое количество потребителей. используются в тепловых схемах с котлами, подающими большое количество пара.

Тарельчатый деаэратор: принцип работы

Схема очистки газов в деаэраторах реализуется двухступенчатая: струйная (в колонне) и барботажная (в баке). Помимо этого, в систему включается затопленное барботажное устройство. Вода подается в колонну, где обрабатывается паром. Далее она стекает в бак, выдерживается в нем и отводится обратно в систему. Пар первоначально подается в БДА. После вентиляции внутреннего объема он поступает в колонну. Проходя через отверстия барботажной тарелки, пар подогревает воду до температуры насыщения.

Струйным методом из воды удаляются все газы. Одновременно с этим происходит конденсация пара. Его остатки смешиваются с выделившимся из среды газом и отводятся в охладитель. Конденсат от выпара сливается в дренажную емкость. Во время отстаивания воды в баке из нее выходят остаточные мелкие пузырьки газа. Отводится вода в сборный бак. Иногда горизонтальная емкость используется только для отстаивания. В таких установках обе ступени дегазации размещаются в колонне.

Деаэрация подпиточной воды

Теплоноситель в системе отопления циркулирует непрерывно. Но объем его со временем, в результате утечек, все же понемногу уменьшается. Поэтому в систему отопления подается подпиточная вода. Как и основная, она должна проходить процесс деаэрации. Первоначально вода поступает в подогреватель, а затем проходит через фильтры химической очистки. Далее, как и питательная, она попадает в колонну деаэратора. Освобожденная от перетекает к Последний направляет ее во всасывающий коллектор или в бак хранения.

Химическая деаэрация

Таким образом, ответ на вопрос о том, что такое деаэратор котельной, прост. Это оборудование, предназначенное для кипячения воды горячим паром с целью удаления кислорода. Однако иногда газы из теплоносителя в таких установках удаляются не полностью. В этом случае для дополнительной очистки в воду котельных могут добавляться разного рода реагенты, предназначенные для связывания кислорода. Это может быть, к примеру, В данном случае для качественной деаэрации воды требуется ее подогрев. Иначе химические реакции будут происходить слишком медленно. Также для ускорения процесса связывания кислорода могут использоваться разного рода катализаторы. Иногда воду деаэрируют и путем пропускания через слой обычных металлических стружек. Последние в этом случае быстро окисляются.

Особенности монтажа

Устройство деаэратора не слишком сложное. Однако его монтаж должен производиться с точным соблюдением всех положенных технологий. При установке такого оборудования руководствуются прежде всего приложенными к нему производителем чертежами и проектом котельной. Перед началом монтажа производится осмотр установки и ее расконсервация. Обнаруженные дефекты устраняются. Собственно сама процедура установки включает в себя следующие этапы:

    бак монтируется на фундаменте;

    к нему приваривается водосливная горловина;

    нижняя часть колонки обрезается по наружному диаметру;

    колонна устанавливается на бак (при этом закрепленные внутри нее тарелки должны располагаться строго горизонтально);

    колонна приваривается к баку;

    монтируются охладитель выпара и гидрозатвор;

    в соответствии с чертежами производится подключение магистралей;

    устанавливается запорная и регулирующая арматура;

    проводятся гидравлические испытания оборудования.

Распылительные установки

Рассмотренные выше конструкции называются тарельчатыми. Существуют также распылительные деаэраторы. Устройства этого типа используются реже и также представляют собой горизонтальный накопительный бак большой емкости. Отсутствие колонны — это то, что отличает такой деаэратор. Принцип работы его также немного другой. Пар в таких установках поступает снизу - из расположенной в баке горизонтально гребенки. Сама емкость разделена на зону подогрева и деаэрации. Питающая вода котла поступает в первый отсек из расположенного сверху распылителя. Здесь она разогревается до точки кипения и поступает в зону деаэрации, где паром из нее удаляется кислород.

Итак, вот и все, что можно сказать о таком устройстве, как деаэратор. Что это такое, надеемся, вы поняли, так как мы дали достаточно подробный ответ на этот вопрос. Так называют установку, обеспечивающую длительную работу водогрейных и паровых котлов. Выбор разновидности и способов монтажа этого оборудования осуществляется в соответствии с техническими характеристиками нагревательного оборудования и проектом котельной.

Назначение и техническая характеристика.

Вакуумный деаэратор ВД-400 (см. рис.4.3) предназначен для удаления коррозийно-агрессивных газов из подпиточной воды энергетических котлов. В соответствии с ГОСТ 16860-77 ВД-400 должен обеспечить средний подогрев воды на величину от 15є до 25°С при изменении произ-водительности в деаэраторе от 30% до 120% от номинальной, содержание кислорода в деаэрированной воде не должно превышать 30 мкг/кг, свободная углекислота должна отсутствовать.

В качестве теплоносителя используется пар от РУ-16/3 .

Эжектор типа ЭПО-3-25/75 предназначен для отсоса паровоздушной смеси из вакуумного деаэратора.

Рабочей средой является пар с абсолютным давлением 0,588 мПа (6 ата), охлаждающей водой служит ХОВ с БЗК.

Основные технические характеристики ВД-400:

Номинальная производительность - 400 т/ч

Максимальная производительность - 480 т/ч

Минимальная производительность - 120 т/ч

Рабочее абсолютное давление - 0,075-0,5 кгс/смІ

Температура теплоносителя - 70-180°

Основные технические характеристики эжектора:

Расход пара - 1000 кг/ч

Абсолютное давление пара перед соплами - 7 ата

Температура пара - 158єС

Расход охлаждающей воды - 165000 кг/ч

Температура охлаждающей воды - 30єС

Производительность по паровоздушной смеси - 87 кг/ч

Рис 5.3.

Описание конструкции и принцип работы.

В вакуумном деаэраторе ВД-400 применена двухступенчатая деаэрация воды: I-я ступень струйная, 2-я - барбатажная, что надежно обеспечивает требуемое нормами остаточное содержание кислорода и углекислоты в широком диапазоне и изменение тепловой и гидравлической нагрузки деаэратора.

Деаэратор работает следующим образом: химически обессоленная вода поступает в деаэратори попадает в распределительный коллектор, откуда стекает на первую тарелку. Прошедшая сквозь отверстия первой тарелки вода попадает на вторую тарелку. Такая конструкция первых двух тарелок объясняется выполняемой ими функцией встроенного охладителя выпара, т.е. должны обеспечить полную конденсацию необходимого количества выпара. Третья является основной, обеспечивающей работу деаэратора при всех нагрузках. В деаэраторе имеется отсек, куда подается пар. Пар поступает под барбатажный лист, а оставшаяся вода по каналу вытесняется на уровень барбатажного листа и отводится из деаэратора вместе с деаэраторной водой.

Проходя сквозь отверстия барбатажного листа и слой воды на нем, обеспечиваемый переливным порогом, пар догревает воду до температуры насыщения и подвергает интенсивной обработке.

При этом под листом образуется соответствующая паровая подушка, которая с увеличением расхода пара возрастает и избыточный пар перепускается в обвод барбатажного листа в струйный отсек между третьей и четвертой тарелками. Пар, прошедший сквозь барбатажный лист пересекает струйный поток, сливающийся с четвертой тарелки, частично конденсируясь и нагревая при этом воду, и также поступает в струйный отсек между третьей и четвертой тарелками. В этом отсеке происходит основная конденсация пара и нагрев воды до температуры, близкой к температуре насыщения. Затем пар поступает в отсек между второй и третьей тарелками, где практически полностью конденсируется. В отсеке между первой и второй тарелками происходит охлаждение паровоздушной смеси и охлаждение неконденсирующихся газов, которые отсасываются эжектором.

Такая конструкция деаэратора обеспечивает полный противоток между паром и водой на всем пути осуществления процесса дегазации, исключения мертвых зон и интенсивную вентиляцию всех паровых объемов, многократность и непрерывность обработки воды. Корпус деаэратора изготовлен из углеродистой стали, все внутренние элементы из нержавеющей стали. Крепление всех элементов к корпусу и между собой осуществляются электрической сваркой.

Эжектор имеет три ступени сжатия и состоит из следующих основных элементов: стального сварного корпуса трубной системы, верхней крышки, водяной камеры, сопел и диффузоров.

Корпус образован тремя сваренными между собой цилиндрическими камерами, объединенными верхним и нижним фланцами. В камерах размещены три ступени трубной системы, диффузор.

Трубная система выполнена из трех групп охлаждающих трубок U-образной формы Ш19х1 и сплава МНЖ-5-1, развальцованных в трубной доске. С целью обеспечения интенсивной конденсации пара и охлаждения паровоздушной смеси, каждая ступень трубной системы разделена горизонтальными перегородками, образующими проходы для паровоздушной смеси.

В трубной доске имеются отверстия для протока конденсата из третьей ступени эжектора во вторую, из второй ступени в первую. Трубная система при помощи шпилек крепится к нижнему фланцу корпуса и устанавливается на водяной камере.

Водяная камера выполнена сварной и состоит из днища с входным и выходным фланцами, перегородок и общего фланца, к которому крепится трубная система и корпус.

Крышка эжектора состоит из трех камер, собранных на общем фланце. К всасывающей камере первой ступени приварен входной приемный патрубок паровоздушной смеси. В верхней части каждой камеры имеются соответствующие гнезда под паровые сопла и во фланце отверстия для перехода паровоздушной смеси во вторую и третью камеры. Помимо этого во фланце имеются три посадочных отверстия для установки в них диффузоров, сопла и диффузоры расположены по центральной продольной оси корпуса каждой ступени. Сопла выполнены из нержавеющей стали, а диффузоры - литые, латунные.

Паровоздушная смесь поступает во всасывающую камеру эжектора и увлекается выходящей из сопла с большой скоростью струей пара через смесительную камеру в диффузор первой ступени, где происходит сжатие ее давления, устанавливающегося в охладителе первой ступени. Из диффузора паровоздушная смесь поступает в нижнюю часть корпуса, откуда перегородками направляется в холодильник, смывая его трубки снаружи. Охлаждающая вода поступает в водяную камеру и проходит последовательно по трубкам холодильников.

При этом происходит конденсация пара, находящегося в смеси и несконденсировавшаяся часть проходит во всасывающую камеру и входную часть диффузора второй, а затем и третьей ступени.

Образовавшийся конденсат рабочего пара третьей ступени отводится в отсек охладителя второй ступени, здесь часть его испаряется, а часть смешивается с конденсатом второй ступени и поступает в охладитель первой ступени, а оттуда в бак низких точек.

Деаэратор ВД-400 не имеет запаса по уровню воды в своем корпусе, поэтому для устройства работы последнего имеется ВУС и промежуточный бак с регулируемым уровнем воды, подающейся на всас перекачивающих насосов.

Установка промбака с регулируемым уровнем (Н доп.= 80ч220 см.) обусловлена тем, что самослив из ВД-400 к ПН менее 10 метров.

Паровое пространство промбака соединено с паровым пространством вакуумного деаэратора трубой Ду 100 (заведена между I и II тарелкой), что позволяет удалить остаточный кислород после прохождения деаэратора.

Для защиты деаэратора от переполнения и превышения допустимого давления с промежуточного бака выполнен гидрозатвор в БЗК. Для достижения минимальной гидравлической загрузки деаэратора в 30% от номинальной имеется линия рециркуляции с ПН Ду 100.

Cтраница 1


Вакуумные деаэраторы работают при вакууме 540 - 900 Па, при этом температура кипения воды составляет 40 - 70 С.  

Вакуумные деаэраторы (типа ДВ) применяют чаще всего для дегазации подпиточной воды систем теплоснабжения на ТЭЦ и в котельных. Нормы качества воды (О2, СО2) приведены в гл. Остаточная концентрация кислорода в деаэрированной питательной воде не должна превышать значения, указанного в табл. 6.3. Свободный СО2 в деаэрированной воде должен отсутствовать.  

Вакуумные деаэраторы могут работать и по способу холодной деаэрации. Такая деаэрация происходит при температуре воды, поступающей в деаэратор, ниже температуры кипения в нем.  

Вакуумный деаэратор может работать с нагревом воды в колонке деаэратора или по способу деаэрации перегретой воды, или по способу холодной деаэрации.  

Схема деаэрации химочищенной воды и конденсата пара в конденсаторе деаэраторным конденса-тооборником.  

Вакуумные деаэраторы в схемах химводоочисток включают по-разному в зависимости от схем химводоочисток.  

Вакуумный деаэратор может работать и в качестве декарбонизатора в схемах химводоочисток с Н - катиони-товыми фильтрами.  

Вакуумные деаэраторы обладают статической (см. стр. Динамическая саморегулирующая способность заключается в изменении поступления пара в деаэратор при изменении давления в нем.  

Вакуумные деаэраторы, Энергетика и электротехническая промышленность, № 2, 1965, Киев.  

Схема вакуумной аэрационной установки.  

Вакуумные деаэраторы, имеют распространение в системах горячего водоснабжения для термической деаэрации подпиточ-ной воды тепловых сетей, а также питательной воды котлов низкого давления и малой мощности.  

Вакуумные деаэраторы применяются в схемах ВПУ перед анионитными фильтрами II ступени, а также для деаэрации подпиточной воды тепловых сетей и питательной воды котлов низкого давления. По способу распределения воды и пара деаэраторы разделяются на струйные, пленочные и барботаж-ные. Интервал рабочего давления в них составляет 0 0075 - 0 05 МПа. Это обстоятельство предъявляет особые требования к герметичности аппаратов. К недостаткам вакуумных деаэраторов следует отнести также необходимость иметь устройства для создания вакуума и отвода выпара, большую, чем для других типов деаэраторов, металлоемкость, дополнительные энергетические затраты на создание вакуума. Преимуществами их являются сокращение затрат пара на подогрев воды и возможность деаэрации при температуре воды 313 - 343 К.  

Вакуумные деаэраторы имеют ограниченное распространение. Их существенным недостатком является возможность присоса воздуха, что затрудняет достижение хорошей дегазации. Для удаления воздуха при вакуумной деаэрации необходима установка эжектора или присоединение воздухопровода к конденсатору.  

Вакуумные деаэраторы в системах горячего водоснабжения работают по так называемому принципу перегретой воды, без подвода пара. Температура воды, поступающей в деаэратор, оказывается выше температуры кипения, соответствующей давлению в деаэраторе.  

Вакуумные деаэраторы включаются в работу так, как это указано в гл. Эффективность работы их оценивается по глубине удаления из обрабатываемой воды как кислорода, так и углекислоты. Для более полного удаления последней необходимо увеличивать количество пара, подаваемого на барботаж.