Схема включения насоса по уровню. Поплавковый выключатель уровня воды для управления насосом. Схема установки поверхностного насоса с автоматикой

24.06.2020

Электросхема насосных станций состоит из электроаппаратов общего назначения и специализированных устройств, применяемые в цепях автоматического контроля и защиты. В электросхемах насосных станций широко применяются магнитные пускатели и автоматы, контакторы и электродвигатели насосов, устройства сигнализации, кнопки управления, устройства защиты от перенапряжений, прочая аппаратура.

К специализированным устройствам, помогающим реализовать систему автоматического управления насосной станции относятся:

  1. Реле давления и контроля уровня жидкости (поплавковое реле);
  2. Манометры и датчики;
  3. Реле, контролирующие заполнение центробежных насосов.

Простейшая электросхема управления насосным агрегатом.

Рис.1 Схема управления электрическими агрегатами насосной станции.

Простейшая схема управления насосным агрегатом может предусматривать два режима работы электронасосов:

  1. Автоматический режим;
  2. Ручное управление.

Текущий режим управления выбирается ключом КУ.

Ручное управление:

1. Переключателем КУ выбирается ручной режим.
2. Для запуска насосного агрегата нужно замкнуть кнопку включения SBC и подать напряжение на магнитный пускатель КМ.
3. Магнитный пускатель включается и через контакты KM1 становится на самоудержание.
4. Силовые контакты пускателя подают напряжение к электродвигателю, насосный агрегат начинает работать.
5. Отключение насоса осуществляется кнопкой SBT.
Контроль за работой оборудования осуществляет оператор вручную.

Автоматическое управление

1. Переключателем КУ устанавливается в положение автоматического управления, контакт SB замкнут и шунтирует цепь самоудержания.
2. Контакт КК поплавкового реле разомкнут при малом уровне жидкости в емкости. Насос не работает.
3. Если уровень жидкости достигнет определенного уровня, контакт поплавкового реле замыкается, включается магнитный пускатель, насос начинает откачивать жидкость из бака.
4. При уменьшении уровня жидкости в баке контакты КК размыкаются, насос останавливается.

Защита электродвигателей

Для защиты электродвигателей от перегрузки и токов КЗ используется автоматический выключатель QF с комбинированным расцепителем. Защита электродвигателя от исчезновения напряжения (нулевая защита) осуществляется катушкой магнитного пускателя.
Электрохема управления двумя гидроагрегатами насосной станции.

Рис.2 Схема автоматического управления двумя насосами.

Схема управления двумя насосными агрегатами насосной станции позволяет организовать автоматическое управление насосной станцией без участия дежурного персонала. Электросхема насосной станции включает в себя 2 гидронасоса. Один насос работает в нормальном режиме. Второй насос находится в резерве и автоматически включается в работу, если первый не справляется с нагрузкой либо вышел из строя. Какой из насосов в данный момент работает в рабочем режиме, а какой — резервный, определяет переключатель режима откачки ПО:

  1. первое положение переключателя - в рабочем режиме насос 1;
  2. второе положение - в рабочем режиме насос 2.

Схема позволяет автоматически управлять электродвигателями гидроагрегатов, имеющих постоянно открытые выходные заглушки. Для определения уровня воды в емкости в схеме используется четырехуровневый электронный датчик уровня ДУ. Его контактами Э1, Э2, Э3, Э4 подаются команды управления на запуск и отключения двигателей системы водоснабжения.
Рассмотрим работу схемы в автоматическом режиме, при рабочем насосе 1 с двигателем М1. Переключатель ПО в 1 положении. Контакты 1, 3 переключателя отсечки замкнуты, но реле РУ1, РУ2 не срабатывают, так как их цепь разомкнута контактами Э2, Э3 датчика ДУ. Если уровень жидкости повышается до уровня датчика Э2, цепь катушки реле РУ1 замыкается. Реле срабатывает. Замыкается его контакт РУ1, которым подается напряжение к катушке магнитного пускателя. Магнитный пускатель своими контактами КМ1.1 подает питание к электродвигателю насоса М1. Запускается электронасос Н1 и начинает откачку.

В нормальном режиме уровень воды в емкости снижается, цепь контакта Э2 разрывается, однако двигатель продолжает работать. Он отключится только тогда, когда уровень воды упадет ниже контакта Э1. Это сделано для того, чтобы избежать частых циклов включение-выключение двигателя при небольшом колебании уровня жидкости возле уровня контакта Э2.
Если производительности насоса Н1 не хватает или он вышел из строя, уровень жидкости будет подниматься и замкнет контакты датчика Э3, которое подаст питание в цепь катушки реле РУ2. В результате будет подано напряжение на магнитный пускатель ПМ2, контакты которого обеспечат запуск электродвигателя М2 резервного агрегата. Резервный насос отключится при снижении уровня ниже контакта Э1.

Если уровень жидкости по какой-либо причине достигнет уровня максимально допустимого уровня, замкнется контакт Э4. Это вызовет срабатывание аварийного реле РА, которое оповестит персонал о ненормальном режиме. Контроль напряжения в схеме осуществляется с помощью реле РКН. Цепи сигнализации питаются от шин гарантированного питания. Лампа НL сигнализирует о наличии напряжения в цепях управления насосами. При необходимости, можно перевести насосы на ручное управление и управлять процессами включения и отключения вручную.

Схема управления задвижками насосной станции

Рассмотрим схему насосной задвижки, которая управляется через редуктор малогабаритным асинхронным электродвигателем. При поданном напряжении на схему начинает вполнакала светится зеленая лампа. Она сигнализирует о закрытом положении заглушки. Запуск насосного агрегата осуществляется реле уровня РУ. Один из контактов РУ дает команду на запуск электродвигателя М1 насосного агрегата, а второй - замыкает цепь катушки реле РП1, управляющей работой двигателя заглушки М2.

После пуска насоса и повышении давления в водопроводной системе до нормального уровня, замыкается контакт реле давления РД, включенный последовательно с контактном РУ в цепи катушки РП1. Реле РП1 подтягивается, замыкает нормально разомкнутый контакт и подает напряжение на контактор открытия задвижки КО. Контактор запускает электродвигатель М2 на открытие задвижки. Процесс открытия задвижки контролируется концевиком ВК2, а также ярко горящей красной лампой. После того, как задвижка полностью откроется, контакты ВК2 разомкнутся, отключится КО, двигатель управления задвижкой остановится. Красная лампа станет гореть вполнакала, а зеленая полностью погаснет. Аналогично работает схема закрытия задвижки. Для аварийного отключения схемы управления используется аварийный выключатель ВКА. При срабатывании выключателя гаснут обе сигнальные лампы.

Зачастую случается мало иметь только насос дл откачки или пополнения воды, еще необходимо и править им, то есть включать и включать вовремя. Все бы ничего если подобные процессы у вас запланированы, а если нет, то как же быть? Произнесём, у вас есть погреб, где вода прибывает… Или обратная ситуация. Есть бак, какой должен быть всегда полный, готов для полива. В течение дня вода согревается, а вечерком вы поливаете. Так вот, за тем и другим необходимо постоянно следить, а это все время, заботы, ваши труды. Но наш век, такие задачи уже решаются на раз-два, то есть можно автоматизировать процесс. В итоге, автоматика будет все выполнять за вас, накачивать или откачивать воду, а вам лишь останется весьма редко следить за ней, проверять ее работоспособность. Что же, наша статья как раз и будет отдана такой теме как реализация схемы по откачки или накачке воды, дальше мы поговорим об этом более подробно и предметно.

Схема управления (отключения) насосом на откачку воды по степени

Начнем мы со схемы по откачке воды, то есть когда перед вами стоит задача откачивать воду до определенного степени, а затем отключать насос, чтобы он не работал на холостом ходу. Взгляните на схему ниже.

Собственно такая принципиальная электрическая схема способна обеспечить откачку воды, до заданного степени. Давайте разберем принцип ее работы, что здесь и зачем. Итак, представим что вода пополняет наш резервуар, не значительно что это ваше помещение, погреб или бак… В итоге, когда вода доходит до верхнего геркона SV1, то на катушку прабольшего реле Р1 подается напряжение. Его контакты замыкаются, и через них происходит параллельное подключение геркону. Таким манером реле самоподхватывается. Также включается и силовое реле Р2, которое коммутирует контакты насоса, то есть насос включается на откачку. Далее уровень воды начинает понижаться и доходит до геркона SV2, в этом случае замыкается он и подает позитивный потенциал на обмотку катушки. В итоге, на катушке с двух сторон оказывается позитивный потенциал, ток не идет, магнитное поле реле ослабевает — реле Р1 отключается. При отключении Р1 отключается и подача столы для реле Р2, то есть насос тоже перестает откачивать воду. В подневольности от мощности насоса, вы можете подобрать реле на необходимый вам ток.
Мы ничего не произнесли о резисторе 200 Ом. Он необходимо для того, чтобы в процессе включения геркона SV2 не случилось короткого замыкания с минусом, через контакты реле. Резистор лучше итого подобрать такой, чтобы он позволял уверенно срабатывать реле Р1, но был при этом максимально большенного возможного потенциала. В нашем случае это было 200 Ом. Еще одной особенность схемы является применение герконов. Их плюс при применении очевиден, они не контактируют с водой, а значит, на электрическую схему не будут воздействовать возможные изменения токов и потенциалов при различных жизненных ситуациях, будь то вода соленая или нечистая… Схема будет работать всегда стабильно и «без осечек».
Что же, теперь подавайте разберем обратную ситуацию, когда необходимо воду наоборот закачивать в бак и отключать при рослом уровне.

Схема управления (отключения) насосом на налив воды по степени

Если вы охватите нашу статью всю бегло и разом своим взором, то заметите, что второй схемы мы просто напросто в статье и не привели, кроме той, что рослее. На само деле, это само собой разумеющийся факт, ведь чем по сути выделяется схема откачивания от схемы накачивания, разве что тем, что герконы расположены одинешенек снизу второй внизу. То есть если переставить местами герконы, или переподключить контакты к ним, то одна схема обратиться в другую. То есть резюмируем, что для того чтобы переделать вышеприложенную схему в схему по накачке воды, поменяйте пунктами герконы. В итоге, насос будет включать от нижнего датчика – геркона SV1, а отключаться на верхнем степени от геркона SV2.

Реализация установки герконов в качестве концевых датчиков для срабатывания насоса в подневольности от уровня воды

Кроме электрической схемы, вам необходимо будет сделать и конструкцию обеспечивающую замыкание герконов, в подневольности от уровня воды. Мы со свой стороны можем предложить вам парочку вариантов, какие будут удовлетворять таким условиям. Взгляните на них ниже.

В первом случае реализована конструкция с использованием нити, троса. Во втором жесткая конструкция, когда магниты введены на стержне, плавающем на поплавке. Описывать элементы каждой из конструкций особого резона нети, здесь в принципе и так все предельно понятно.

Подключение насоса по схеме срабатывания в подневольности от уровня воды в баке – подводя итоги

Самое главное, это то, что эти схема очень проста, не требует наладки и повторить ее может утилитарны любой, даже не имея опыта работы с электроникой. Второе, схема весьма надежная и потребляет минимальную мощность в режиме ожидания, так как все ее цепи разомкнуты. Это значит, что потребление будет ограничиваться лишь утратами тока в блоке питания, не более.

Диммер, схемы подключения и его разновидности Таблица соответствия мощностей по освещенности светодиодных, люминесцентных, галогенных и ламп накаливания Как найти и изменить, удалить программы из Автозагрузки в Windows 8 Соотношения сторон телевизора Программа для записи телефонных разговоров для устройств Android

Если вы по финансовым соображениям или по каким-то другим не хотите приобретать готовое устройство управления насосом, то вам поможет набор "Мастер КИТ NF250", который позволяет собрать простое электронное устройство для поддержания в накопительном баке необходимого уровня воды.

Принцип работы "умного помощника" следующий. Когда уровень воды в душевом баке падает ниже определённого уровня "L", насос включается и начинает закачивать воду в ёмкость. Когда уровень воды достигает заданного уровня "Н", устройство отключает насос (рис. 1). Общий вид устройства показан на рис.2.

Рис. 1. Принцип работы устройства для управления дачным насосом.


Рис. 2. Общий вид устройства.


Рис. 3. Схема электрическая принципиальная.

Технические характеристики устройства
Напряжение питания, В - 12
Ток в режиме покоя, мА - 1
Ток в режиме срабатывания реле, мА Коммутируемая мощность, Вт - 1300
Размеры печатной платы, мм - 61x41
Схема электрическая принципиальная приведена на рис.3.

Принцип действия

Вода обладает электрической проводимостью. Пока в ёмкости нет воды, транзисторы Т1 и Т2 закрыты, на коллекторе транзистора Т1 присутствует высокое напряжение. Данное высокое напряжение, поступая через диод D1 на базу транзистора ТЗ, открывает его и транзистор Т4, что приводит к включению исполнительного реле, к силовым контактам которого подсоединён насос.

Насос начинает качать воду в ёмкость. Светодиод LED при этом включается, индицируя работу насоса. Когда уровень воды достигает датчика "L", транзистор Т1 открывается, напряжение на его коллекторе пропадает. Однако насос продолжает работать, потому что на базу транзистора ТЗ подается напряжение через резистор R8 и поддерживает ключ ТЗ-Т4 в открытом состоянии.

Когда уровень воды достигает датчика "Н", транзистор Т2 открывается и на базу транзистора ТЗ поступает низкий уровень. Ключ ТЗ-Т4 закрывается - реле выключается. Лишь когда уровень воды вновь опустится ниже уровня "L", реле включится опять.
Перечень элементов приведен в таблице.


Рис. 4. Внешний вид печатной платы со стороны деталей и со стороны токопроводящих дорожек.

Конструкция

Конструктивно устройство выполнено на печатной плате из фольгированного стеклотекстолита размерами 61x41 мм (рис. 4). В качестве датчиков "L" и "Н" можно использовать подручные материалы, например, медные водопроводные полдюймовые гайки, прочно прикреплённые к изолированным проводам.

Включение устройства

Подключите к плате провода датчиков и расположите их в экспериментальной ёмкости такой же высоты, как и используемый бак таким образом, чтобы соответствовали положения:
"COM" - на дне (если ёмкость - железная, то можно соединить этот провод с корпусом ёмкости);
"L" - на желаемом нижнем уровне воды (уровне включения насоса),
"Н" - на уровне отключения насоса.

Подключите устройство к источнику питания, соблюдая полярность. Сетевое напряжение и насос пока не подключайте. Включите питание. Должен загореться индикаторный светодиод и "щелкнуть" реле, подключив насос. Наливайте воду в емкость. Когда уровень воды достигнет датчика "Н", реле должно отключиться. Выливайте воду из емкости. Когда уровень воды опустится чуть ниже датчика "L", реле должно включиться.

Теперь можно окончательно смонтировать датчики на реальном объекте и, соблюдая осторожность, подключить к контактам схемы 220 В и насос.

Ю. САДИКОВ, Москва

Евгений 2016-05-01 21:43:00

В схеме где то делся R8 ?!


[Ответить] [Ответить с цитатой] [Отменить ответ]
Виталий

Уверен, что многим нужен простой, надёжный и лёгкий в изготовлении блок управления водяным насосом . Предлагаю схему, которой в этом плане трудно найти равную, к тому же при самостоятельном изготовлении устройство обойдётся почти даром, так как не содержит дефицитных деталей, и все нужные детали обычно имеются в наличии. Магазинный же аналог данного блока «тянет» не на одну сотню рублей. Отмечу также, подобное устройство может работать и в системе водозабора, когда насос наполняет какую-либо емкость, и в дренажных системах при откачке воды из резервуара по мере его наполнения.

Простое устройство для управления водяным насосом - самодельный блок управления насосом

Схема устройства представлена на рис. 1. О деталях схемы мы поговорим ниже, а пока познакомимся с принципом действия датчиков уровня.


На рис. 2 приведена схема датчика для металлической емкости. Особенность ее состоит в том, что здесь один провод подключен непосредственно к баку, в результате уменьшается (на один) число необходимых проводов. Чувствительные элементы датчика - два штыря (электрода) из нержавеющей проволоки. У датчика для неметаллической емкости - две пары пластин (рис. З.), о конструкции которых будет рассказано ниже.

Принцип действия устройства для управления водяным насосом довольно прост. Рассмотрим случай водозабора в металлический бак, в котором установлен датчик из двух штырей (см. рис. 2). Для наглядности контакты К 1.3 реле К1, приведенного на схеме на рис. 1, нарисованы рядом с баком, на самом деле они, конечно, находятся внутри реле и подключены к датчикам проводами.

Пока воды нет, контакта между корпусом бака и электродом F1 не будет, следовательно, на управляющий электрод тиристора VS1 напряжение не подается, и он закрыт, реле К1 обесточено и его контакт К1.3 разомкнут, а контакты К1.1 и К1.2 замкнуты. Когда вода поднимается до штыря F1, то между ним и корпусом бака пойдёт ток, достаточный для того, чтобы открыть тиристор VS1. В результате сработает реле К, которое отключит насос, разомкнув контакты К1.1 и К1.2. Кроме этого, реле замкнет К1.3 и тем самым «удлинит» штырь F1, подключив к нему штырь F2, что обеспечит необходимый рабочий объём в баке, а значит, нормальную работу всей системы управления. Регулируемый объём воды, понятно, будет зависеть от разницы уровней нижних концов штырей F1 и F2. Этот объем желательно предусмотреть побольше, тогда насос станет реже включаться. Насос будет обесточен, пока вода не опустится ниже штыря F2, после чего насос снова включится и весь цикл заполнения бака повторится.

Для периодической откачки воды из резервуара (дренажа) потребуется у реле К1 заменить нормально замкнутые контакты К1.1 и К1.2 на нормально разомкнутые, как показано на рис. 4, при этом остальная часть схемы не изменяется.

Важное преимущество этой схемы состоит в том, что через контакты датчиков идёт переменный ток. Ведь при постоянном токе контакты корродируют, что приводит к нестабильной работе и даже полному отказу системы. На переменном же токе, как показывает практика, такие устройства работают безотказно.

Теперь о деталях. Трансформатор Т1 - сетевой, маломощный, подойдет и малогабаритный. Обмотка I - сетевая, на 220 В. Напряжение на вторичной обмотке II примерно вдвое больше знамения постоянного рабочего напряжения реле. Например, если обмотка реле рассчитана на постоянное напряжение 24 В, на вторичной обмотке II должно быть 48 В (на практике 40...50 В). Если реле греется, то последовательно с ним необходимо включать гасящий резистор, его сопротивление подбирается опытным путем. При этом напряжение как на обмотке II, так и на обмотке III не должно превышать безопасной границы в 70 В, так как в случае пробоя тиристора и диодов оно может оказаться на электродах.

Напряжение на вторичной обмотке III (5...30 В) определяется имеющейся у трансформатора обмоткой.

Если есть возможность, то попытайтесь отмотать часть витков от имеющейся второй вторичной обмотки или намотать новую (примерно 20...40 витков) из почти любого провода. Обязательно предусмотрите надежную изоляционную прокладку (из фторопласта, стеклоткани, ПВХ, ткани, пропитанной лаком), отделяющую вторичную обмотку от сетевой, чтобы на электроды не попало опасное напряжение 220 В.

Тиристор VS1 - типа КУ201 или КУ202 с буквенными индексами Д, Е, Ж, И, К и Л. При напряжении на вторичной обмотке III меньше 50 В подойдут также тиристоры с буквенный индексами В, Г, при напряжении менее 25 В - с индексами А и Б.

Резистор R1 ограничивает управляющий ток тиристора, обезопасивая его от сгорания при замыкании электродов датчиков. При напряжении на вторичной обмотке III менее 20 В резистор не нужен и его заменяют перемычкой, а вообще сопротивление резистора должно быть таким, чтобы при замыкании электродов датчиков ток, проходящий через управляющий электрод тиристора, был меньше предельно допустимого для этого тиристора. При увеличении напряжения на вторичной обмотке III сопротивление R1 пропорционально увеличивают по сравнению с номиналом, приведённым на схеме, при этом отклонение допустимо примерно на 40%.

Реле К1 подбирают в соответствии с напряжением на вторичной обмотке II (8...30 В), контакты реле должны быть рассчитаны на 220 В и ток вашего . Например, для центробежного насоса мощностью 500 Вт контакты обязаны выдерживать ток более 2 А.

В качестве реле К1 подойдут РЭС 22 (24 В), РП21 (24 В) и др. Если нет реле, имеющего нужные замкнутые и разомкнутые группы, разрешается применить два и даже три параллельно включенных реле. В этом случае подойдут РЭС6, разные автомобильные реле и др. с подходящими контактами. При использовании автомобильного реле, возможно, потребуется большая мощность трансформатора. Диодный мост VD1 - любая сборка, например КЦ401. Для этого места подойдут диоды Д226, Д7, КД105, Д522 и пр. (ток моста не превышает 20 мА).

Электроды - штыри (см. рис. 2) устанавливают на изоляторах. Электроды датчиков, приведенных на рис. 5, сделаны из бритвенных лезвий с хромовым покрытием, укрепленных на П-образной пластине из диэлектрика: полиэтилена, ПХВ, фторопласта, оргстекла. Лезвия крепят любым способом, провода к ним припаивают с кислотным флюсом, пайку желательно защитить лаком.

Датчики устанавливают в емкости на нужном уровне. Зазор между электродами зависит от свойств воды и может потребовать подгонки. Он должен быть таким, чтобы при погружении электродов в воду реле чётко срабатывало. Это относится и к штыревым электродам.

Автоматизация насосных установок позволяет повышать надежность и бесперебойность водоснабжения, уменьшать затраты труда и эксплуатационные расходы, размеры регулирующих резервуаров.

Для автоматизации насосных установок кроме аппаратуры общего применения ( , переключателей, промежуточных реле) применяются специальные аппараты управления и контроля, например, реле контроля заливки центробежных насосов, струйные реле, поплавковое реле, электродные реле уровня, различные манометры, датчики емкостного типа и др.

Комплектное устройство до 1 кВ, предназначенное для дистанционного управления электроустановками или их частями с автоматизированным выполнением функций управления, регулирования, зашиты и сигнализации. Конструктивно станция управления представляет собой блок, панель, шкаф, щит.

Блок управления - станция управления, все элементы которого монтируют на отдельной плите или каркасе.

Панель управления - станция управления, все элементы которой монтируют на щитах, рейках или других конструктивных элементах, собранных на общей раме или металлическом листе.

Щит управления (щит станций управления ЩСУ) - это сборка из нескольких панелей или блоков на объемном каркасе.

Шкаф управления - станция управления, защищенная со всех сторон таким образом, что при закрытых дверях и крышках исключается доступ к токоведущим частям.


Автоматизация насосов и насосных станций , как правило, сводится к управлению погружным электронасосом по уровню воды в баке или давлению в напорном трубопроводе.

Рассмотрим примеры автоматизации насосных установок.

На рис. 1, а показана схема автоматизации простейшей насосной установки - дренажного насоса 1, а на рис. 1, б приведена электрическая схема этой установки. Автоматизация насосной установки осуществляется с помощью поплавкового реле уровня. Ключ управления КУ имеет два положения: для ручного и автоматического управления.

Рис. 1. Конструкция дренажной насосной установки (а) и ее электрическая схема автоматизации (б)

На рис. 2 приведена схема автоматизации управления погружным насосом по уровню воды в баке водонапорной башни, реализованная на релейно-контактных элементах .

Рис. 2. Принципиальная электрическая схема автоматизации погружным насосом по уровню воды в баке- водонапорной башни

Режим работы схемы автоматизации насосом задается переключателем S А1. При установке его в положение «А» и включении автоматического выключателя QF подается напряжение на электрическую схему управления. Если уровень воды в напорном баке находится ниже электрода нижнего уровня датчика ДУ, то контакты SL 1 и SL 2 в схеме разомкнуты, реле КV 1 обесточено и его контакты в цепи катушки магнитного пускателя КМ замкнуты. В этом случае магнитный пускатель включит электродвигатель насоса, одновременно погаснет сигнальная лампа НL 1 и загорится лампа НL 2. Насос будет подавать воду в напорный бак.

Когда вода заполнит пространство между электродом нижнего уровня SL 2 и корпусом датчика, подключенным к нулевому проводу, цепь SL 2 замкнется, но реле K V1 не включится, так как его контакты, включенные последовательно с SL 2, разомкнуты.

Когда вода достигнет электрода верхнего уровня, цепь SL 1 замкнется, реле КV 1 включится и, разомкнув свои контакты в цепи катушки магнитного пускателя КМ, отключит последний, а замкнув замыкающие контакты, станет на самопитание через цепь датчика SL 2. Электродвигатель насоса отключится, погаснет сигнальная лампа НL 2 и загорится лампа НL 1. Повторное включение электродвигателя насоса произойдет при понижении уровня воды до положения, когда разомкнётся цепь SL 2 и реле КV 1 будет отключено.

Включение насоса в любом режиме возможно только в том случае, если замкнута цепь датчика «сухого хода» ДСХ (SL 3), контролирующего уровень воды в скважине.

Основным недостатком управления по уровню является подверженность обмерзанию электродов датчиков уровня в зимнее время, из-за чего насос не выключается и происходит переливание воды из бака. Бывают случаи разрушения водонапорных башен из-за намерзания большой массы льда на их поверхности.

При управлении работой насоса по давлению электроконтактный манометр или реле давления можно смонтировать на напорном трубопроводе в помещении насосной. Это облегчает обслуживание датчиков и исключает воздействие низких температур.

На рис. 3 приведена принципиальная электрическая схема управления башенной водоснабжающей (насосной) установкой по сигналам электроконтактного манометра (по давлению) .

Рис. 3. Принципиальная электрическая схема управления башенной водоснабжающей установкой от электроконтактного манометра

При отсутствии воды в баке контакт манометра S Р1 (нижний уровень) замкнут, а контакт S Р2 (верхний уровень) разомкнут. Реле КV1 срабатывает, замыкая контакты КV1.1 и КV1.2, в результате чего включается магнитный пускатель КМ, который подключает электронасос к трехфазной сети (на схеме силовые цепи не показаны).

Насос подает воду в бак, давление растет до замыкания контакта манометра S Р2, настроенного на верхний уровень воды. После замыкания контакта S Р2 срабатывает реле КV 2, которое размыкает контакты КV 2.2 в цепи катушки реле КV1 и КV2.1 в цепи катушки магнитного пускателя КМ; электродвигатель насоса отключается.

При расходе воды из бака давление снижается, S Р2 размыкается, отключая КV 2, но включение насоса не происходит, так как контакт манометра S Р1 разомкнут и катушка реле КV1 обесточена. Таким образом, включение насоса происходит, когда уровень воды в баке снизится до замыкания контакта манометра S Р1.

Питание цепей управления производится через понижающий трансформатор напряжением 12 В, что повышает безопасность обслуживания схемы управления и электроконтактного манометра.

Для обеспечения работы насоса при неисправности электроконтактного манометра или схемы управления предназначен тумблер S А1. При его включении шунтируются управляющие контакты КV1.2, КV2.1 и катушка магнитного пускателя КМ непосредственно подключается к сети напряжением 380 В.

В разрыв фазы L1 в цепь управления включен контакт РОФ (реле обрыва фазы), который размыкается при неполнофазном или несимметричном режиме питающей сети. В этом случае цепь катушки КМ разрывается и насос автоматически отключается до устранения повреждения.

Защита силовых цепей в данной схеме от перегрузок и коротких замыканий осуществляется автоматическим выключателем.

На рис. 4 приведена схема автоматизации водонасосной установки, которая содержит электронасосный агрегат 7 погружного типа , размещенный в скважине 6. В напорном трубопроводе установлены обратный клапан 5 и расходомер 4.

Насосная установка имеет напорный бак 1 (водонапорная башня или воздущно-водяной котел) и (или уровня) 2, 3, причем датчик 2 реагирует на верхнее давление (уровень) в баке, а датчик 3 - на нижнее давление (уровень) в баке. Управление насосной станцией обеспечивает блок управления 8.

Рис. 4. Схема автоматизации водонасосной установки с частотно-регулируемым электроприводом

Управление насосной установкой происходит следующим образом. Предположим, что насосный агрегат отключен, а давление в напорном баке уменьшается и становится ниже Рmin . В этом случае от датчика поступает сигнал на включение электронасосного агрегата. Происходит его запуск путем плавного увеличения частоты f тока, питающего электродвигатель насосного агрегата.

Когда частота вращения насосного агрегата достигнет заданного значения, насос выйдет на рабочий режим. Программированием режима работы можно обеспечить нужную интенсивность разбега насоса, его плавный пуск иостанов.

Применение регулируемого электропривода погружного насоса позволяет реализовать прямоточные системы водоснабжения с автоматическим поддержанием давления в водопроводной сети.

Станция управления, обеспечивающая плавный пуск и останов электронасоса, автоматическое поддержание давления в трубопроводе, содержит преобразователь частоты А1, датчик давления ВР1, электронное реле А2, схему управления и вспомогательные элементы, повышающие надежность работы электронного оборудования (рис. 5).

Схема управления насосом и преобразователь частоты обеспечивают выполнение следующих функций :

Плавный пуск и торможение насоса;

Автоматическое управление по уровню или давлению;

Защиту от «сухого хода»;

Автоматическое отключение электронасоса при неполнофазном режиме, недопустимом снижении напряжения, при аварии в водопроводной сети;

Защиту от перенапряжений на входе преобразователя частоты А1;

Сигнализацию о включении и выключении насоса, а также об аварийных режимах;

Обогрев шкафа управления при отрицательных температурах в помещении насосной.

Плавный пуск и плавное торможение насоса осуществляют с помощью преобразователя частоты А1 типа FR -Е-5,5к-540ЕС.

Рис. 5. Принципиальная электрическая схема автоматизации погружным насосом с устройством плавного пуска и автоматического поддержания давления

Электродвигатель погружного насоса подключается к выводам U , V и W преобразователя частоты. При нажатии кнопки S В2 «Пуск» срабатывает реле К1, контакт которого К1.1 соединяет входы STF и РС преобразователя частоты, обеспечивая плавный пуск электронасоса по программе, заданной при настройке частотного преобразователя.

При аварии частотного преобразователя или цепей электродвигателя насоса замыкается цепь А-С преобразователя, обеспечивая срабатывание реле К2. После срабатывания К2 замыкаются его контакты К2.1, К2.2, а контакт К2.1 в цепи К1 размыкается. Происходит отключение выхода частотного преобразователя и реле К2. Повторное включение схемы возможно только после устранения аварии и сброса защиты кнопкой 8В3.1.

Датчик давления ВР1 с аналоговым выходом 4...20 мА подключен к аналоговому входу частотного преобразователя (контакты 4, 5), обеспечивая отрицательную обратную связь в системе стабилизации давления.

Функционирование системы стабилизации обеспечивается ПИД-регулятором преобразователя частоты. Требуемое давление задается потенциометром К1 или с пульта управления частотного преобразователя. При «сухом ходе» насоса в цепи катушки реле КЗ замыкается контакт 7-8 электронного реле сопротивления А2, к контактам которого 3-4 подключен датчик «сухого хода».

После срабатывания реле КЗ замыкаются его контакты К3.1 и КЗ.2, в результате чего срабатывает реле защиты К2, обеспечивая отключение электродвигателя насоса. Реле КЗ при этом становится на самопитание через контакт К3.1.

При всех аварийных режимах зажигается лампа НL1; лампа НL2 зажигается при недопустимом снижении уровня воды (при «сухом ходе» насоса). Подогрев шкафа управления в холодное время года осуществляется с помощью электронагревателей ЕК1...ЕК4, которые включаются контактором КМ1 при срабатывании термореле ВК1. Защита входных цепей преобразователя частоты от коротких замыканий и перегрузок осуществляется автоматическим выключателем QF1.

В статье использованы материалы книги Дайнеко В.А Электрооборудование сельскохозяйственных предприятий.