Сферы использования газоанализаторов для воздуха рабочей зоны. Устройства для определения состояния газа в помещении Портативные газоанализаторы подразделяются на следующие типы

13.06.2019

Газоанализаторы - приборы, измеряющие содержание (концентрацию) одного или нескольких компонентов в газовых смесях. Каждый газоанализатор предназначен для измерения концентрации только определенных компонентов на фоне конкретной газовой смеси в нормированных условиях. Наряду с использованием отдельных газоанализаторов создаются системы газового контроля, объединяющие десятки таких приборов.

Газоанализаторы классифицируют по типу на пневматические, магнитные, электрохимические, полупроводниковые и др.

Термокондуктометрические газоанализаторы. Их действие основано на зависимости теплопроводности газовой смеси от ее состава.

Термокондуктометрические газоанализаторы не обладают высокой избирательностью и используются, если контролируемый компонент по теплопроводности существенно отличается от остальных, напр. для определения концентраций Н 2 , Не, Аг, СО 2 в газовых смесях, содержащих N 2 , О 2 и др. Диапазон измерения - от единиц до десятков процентов по объему.

Термохимические газоанализаторы. В этих приборах измеряют тепловой эффект химической реакции, в которой участвует определяемый компонент. В большинстве случаев используется окисление компонента кислородом воздуха; катализаторы - марганцевомедный (гопкалит) или мелкодисперсная Pt, нанесенная на поверхность пористого носителя. Изменение т-ры при окислении измеряют с помощью металлич. или полупроводникового терморезистора. В ряде случаев пов-сть платинового терморезистора используют как катализатор. Величина связана с числом молейМ окислившегося компонента и тепловым эффектом соотношением: , где k-коэф., учитывающий потери тепла, зависящие от конструкции прибора.

Магнитные газоанализаторы. Этот тип применяют для определения О 2 . Их действие основано на зависимости магнитной восприимчивости газовой смеси от концентрации О 2 , объемная магнитная восприимчивость которого на два порядка больше, чем у большинства остальных газов. Такие газоанализаторы позволяют избирательно определять О 2 в сложных газовых смесях. Диапазон измеряемых концентраций 10 -2 - 100%. Наиболее распространены магнитомех. и термомагн. газоанализаторы.

В магнитомеханических газоанализаторах измеряют силы, действующие в неоднородном магн. поле на помещенное в анализируемую смесь тело (обычно ротор).

Пневматические газоанализаторы. Их действие основано на зависимости плотности и вязкости газовой смеси от ее состава. Изменения плотности и вязкости определяют измеряя гидромех. параметры потока.

Инфракрасные газоанализаторы. Их действие основано на избирательном поглощении молекулами газов и паров ИК-излучения в диапазоне 1-15 мкм. Это излучение поглощают все газы, молекулы к-рых состоят не менее чем из двух различных атомов.

Ультрафиолетовые газоанализаторы. Принцип их действия основан на избирательном поглощении молекулами газов и паров излучения в диапазоне 200-450 нм. Избирательность определения одноатомных газов весьма велика. Двух- и многоатомные газы имеют в УФ-области сплошной спектр поглощения, что снижает избирательность их определения. Однако отсутствие УФ-спектра поглощения у N 2 , O 2 , СО 2 и паров воды позволяет во многих практически важных случаях проводить достаточно селективные измерения в присут. этих компонентов. Диапазон определяемыхконцентраций обычно 10 -2 -100% (для паров Hg ниж. граница диапазона 2,5-10 -6 %).

Люминесцентные газоанализаторы. Вхемилюминесцентных газоанализаторах измеряют интенсивностьлюминесценции, возбужденной благодаря химической реакции контролируемого компонента с реагентом в твердой, жидкой или газообразной фазе.

Фотоколориметрические газоанализаторы. Эти приборы измеряют интенсивность окраски продуктов избират. р-ции между определяемым компонентом и специально подобранным реагентом. Реакцию осуществляют, как правило, в растворе (жидкостные газоанализаторы) или на твердом носителе в виде ленты, таблетки, порошка (соотв. ленточные, таблеточные, порошковые газоанализаторы).

Фотоколориметрич. газоанализаторы применяют для измерения концентраций токсичных примесей (напр.,оксидов азота, О 2 , С1 2 , CS 2 , O 3 , H 2 S, NH 3 , HF, фосгена, ряда орг. соед.) в атмосфере пром. зон и в воздухе пром. помещений. При контроле загрязнений воздуха широко используют переносные приборы периодического действия. Большое число фотоколориметрич. газоанализаторов применяют в качестве газосигнализаторов.

Электрохимические газоанализаторы . Их действие основано на зависимости между параметром электрохим. системы и составом анализируемой смеси, поступающей в эту систему.

В кондуктометрических газоанализаторах измеряется электропроводность р-ра при селективном поглощении им определяемого компонента. Недостатки этих газоанализаторов - низкая избирательность и длительность установления показаний при измерении малых концентраций. Кондуктометрические газоанализаторы широко применяют для определения О 2 , СО, SO 2 , H 2 S, NH 3 и др.

Ионизационные газоанализаторы. Действие основано на зависимости электрической проводимости газов от их состава. Появление в газе примесей оказывает дополнительное воздействие на процесс образования ионов или на их подвижность и, следовательно, рекомбинацию. Возникающее при этом изменение проводимости пропорционально содержанию примесей.

Все ионизационные газоанализаторы содержат проточную ионизац. камеру, на электроды которой налагают определенную разность потенциалов. Эти приборы широко применяют для контроля микропримесей в воздухе, а также в кач-ве детекторов в газовых хроматографах.

Анализ газовых сред является обязательным мероприятием в работе химических производств, а также на многих промышленных предприятиях. Такие исследования представляют собой процедуры по измерению того или иного компонента в газовой смеси. Например, в горнодобывающих предприятиях знание характеристик воздуха в шахте является вопросом безопасности, а экологи таким образом определяют концентрацию вредных элементов. Не так часто подобные анализы применяют в бытовых целях, но если такая задача и возникает, то лучше всего использовать газоанализатор. Это измерительное устройство, позволяющее определить состав газовой смеси. При этом есть множество разновидностей данного прибора, которые имеют принципиальные отличия.

Устройство газоанализатора

Несмотря на множество конструкционных вариаций прибора, существует набор базовых компонентов, которые присутствуют в каждой модели. В первую очередь это корпус, в который заключены все рабочие элементы газоанализатора. Дело в том, что такие аппараты требуют высокой степени защиты, поэтому к внешней оболочке следует предъявлять серьезные требования. Практически каждый прибор требует питания энергией - соответственно, аккумулятор также можно рассматривать как обязательную часть устройства. Далее стоит перейти к более ответственному компоненту. Это первичный преобразователь, то есть датчик газоанализатора или чувствительный элемент, обеспечивающий непосредственные данные для измерения.

Надо сказать, что существует несколько видов таких сенсоров, в том числе термокаталитические, инфракрасные и электрохимические. Задача данного элемента заключается в преобразовании искомого компонента газового состава в электрический сигнал. После этого в работу вступает измерительно-показывающее устройство, которое обрабатывает данный сигнал и демонстрирует его показатели в виде индикации или отображения на дисплее. Теперь стоит рассмотреть виды существующих газоанализаторов.

Термохимические модели

В устройствах такого типа предусматривается принцип измерения за счет определения теплового эффекта от химической реакции с участием искомого компонента. Как правило, в процессе работы применяется техника окисления кислородом. Поэтому такой прибор можно рассматривать как газоанализатор кислорода, а функцию катализаторов выполняет гопкалит, который наносится на пористый носитель. Измерение показателей окисления осуществляется при помощи металлических или полупроводниковых терморезисторов. В некоторых случаях поверхность платиновых терморезисторов также выступает катализатором. Обычно термохимические модели применяются для работы с горючими газами и парами, а также в процессе С его помощью можно определить, к примеру, содержание кислорода в водороде.

Магнитные устройства

В данном случае речь также идет о приборах, ориентированных на определение кислорода. Газоанализатор этого типа отслеживает показатели восприимчивости магнитов относительно исследуемой среды в зависимости от концентрации в ней кислорода. Казалось бы, данный компонент может определяться и другими разновидностями прибора, но есть одна особенность. Дело в том, что магнитный газоанализатор - это измеритель, который способен с более высокой точностью определять концентрацию в сложных смесях. Также следует различать магнитомеханические и термомагнитные устройства. В первом случае прибор измеряет силу, действующую в неоднородном магнитном поле на размещенный в исследуемой среде чувствительный элемент - например, ротор. Показания будут зависеть от температуры среды и давления. Принцип действия термомагнитных моделей основан на конвенции, которая возникает при взаимодействии газовой смеси с неоднородными температурным и магнитным полями.

Пневматические модели

Такие приборы работают на основе измерения показателей вязкости и плотности. Для этого анализируются данные гидромеханических свойств потока. Сразу надо сказать, что существует три варианта подобных устройств: дроссельные, струйные и пневмоакустические. Дроссельный газоанализатор - это устройство с преобразователем, которое измеряет при пропускании через себя газовой смеси. Модели струйного типа измеряют динамические характеристики напора газовой смеси, вытекающей из сопла. Обычно устройства этого типа применяются в работе с азотными и хлористыми составами.

Пневмоакустический прибор включает свою конструкцию два свистка с приблизительно равными частотами порядка 4 кГц. Первый свисток пропускает через себя анализируемый газ, а второй - состав для сравнения. В итоге газоанализатор воздуха позволяет сопоставить частоты колебаний, преобразуя показатели в пневматические вибрации с помощью усилителя. Для обеспечения подачи сигнала используется типа.

Инфракрасные модели

Принцип работы таких газоанализаторов базируется на избирательном поглощении инфракрасным излучением молекул пара и газа. Важно учитывать, что устройство предусматривает поглощение тех газовых смесей, молекулы которых содержат не менее двух разных атомов. Специфика молекулярных спектров в различных газах определяет и повышенную избирательность подобных устройств. Например, существуют обычные и дисперсионные версии преобразователя. Дисперсионный газоанализатор - это прибор, в работе которого используется излучение, вырабатываемое монохроматорами, то есть или призмами. В обычных представителях этого класса применяется немонохроматическое излучение, обеспечиваемое за счет особенностей оптических схем. Для этого используются светофильтры, специальные приемники излучения и другие компоненты. Также в инфракрасных газоанализаторах могут применяться приемники излучения неселективного типа - в частности, термобатареи, болометры и полупроводниковые компоненты.

Как пользоваться прибором?

Для пользователя прибором важно ознакомиться с дисплеем или другим устройством для вывода информации, которым снабжается аппарат. Как правило, на современных дисплеях отображается дата, а также несколько полей для данных о составе газовой смеси. Получить полные сведения о значении полей и каналов прибора позволит инструкция газоанализатора в конкретной комплектации. Собственно, управление функциями прибора также зависит от конкретной модели. Как правило, достаточно активировать устройство при нахождении в газовой среде. Далее, когда будут достигнуты пороговые показатели концентрации искомого компонента, устройство подаст сигнал. В некоторых моделях возможна и световая индикация. В этот же момент на экране прибора должны быть заполнены основные строки о химическом составе газовой смеси и свойствах определенного компонента, на который был настроен прибор.

Поверка устройства

Как и любой газоанализатор нуждается в поверке. Эта процедура позволит оценить техническое состояние, рабочие показатели устройства, а также его соответствие Чаще всего сбоям в рабочих показателях подвергаются переносные газоанализаторы, поэтому их обслуживание следует производить чаще. Итак, как проводится поверка? Процедура выполняется на специальном поверочном стенде. Начинается она с осмотра прибора, тестирования замены неисправных элементов. Далее следуют калибровочные мероприятия и выполнение необходимых настроек.

Непосредственно поверка предполагает использование прибора для оценки концентрации определенного компонента в баллоне со сжатым газом. То есть, применяются специальные смеси, при помощи которых осуществляется поверка газоанализаторов на предмет анализа конкретного компонента.

Газоанализаторы - приборы, измеряющие содержание (концентрацию) одного или нескольких компонентов в газовых смесях. Каждый газоанализатор предназначен для измерения концентрации только определенных компонентов на фоне конкретной газовой смеси в нормированных условиях. Наряду с использованием отдельных газоанализаторов создаются системы газового контроля, объединяющие десятки таких приборов.

Газоанализаторы классифицируют по типу на пневматические, магнитные, электрохимические, полупроводниковые и др.

Термокондуктометрические газоанализаторы. Их действие основано на зависимости теплопроводности газовой смеси от ее состава.

Термокондуктометрические газоанализаторы не обладают высокой избирательностью и используются, если контролируемый компонент по теплопроводности существенно отличается от остальных, напр. для определения концентраций Н 2 , Не, Аг, СО 2 в газовых смесях, содержащих N 2 , О 2 и др. Диапазон измерения - от единиц до десятков процентов по объему.

Термохимические газоанализаторы. В этих приборах измеряют тепловой эффект химической реакции, в которой участвует определяемый компонент. В большинстве случаев используется окисление компонента кислородом воздуха; катализаторы - марганцевомедный (гопкалит) или мелкодисперсная Pt, нанесенная на поверхность пористого носителя. Изменение т-рыпри окислении измеряют с помощью металлич. или полупроводникового терморезистора. В ряде случаев пов-сть платинового терморезистора используют как катализатор. Величинасвязана с числом молейМ окислившегося компонента и тепловым эффектомсоотношением:, где k-коэф., учитывающий потери тепла, зависящие от конструкции прибора.

Магнитные газоанализаторы. Этот тип применяют для определения О 2 . Их действие основано на зависимости магнитной восприимчивости газовой смеси от концентрации О 2 , объемная магнитная восприимчивость которого на два порядка больше, чем у большинства остальных газов. Такие газоанализаторы позволяют избирательно определять О 2 в сложных газовых смесях. Диапазон измеряемых концентраций 10 -2 - 100%. Наиболее распространены магнитомех. и термомагн. газоанализаторы.

В магнитомеханических газоанализаторах измеряют силы, действующие в неоднородном магн. поле на помещенное в анализируемую смесь тело (обычно ротор).

Более точны газоанализаторы, выполненные по компенсационной схеме. В них момент вращения ротора, функционально связанный с концентрацией О 2 в анализируемой смеси, уравновешивается известным моментом, для создания которого используются магнитоэлектрич. или электростатич. системы. Роторные газоанализаторы ненадежны в промышленных условиях, их сложно юстировать.

Пневматические газоанализаторы. Их действие основано на зависимости плотности и вязкостигазовой смеси от ее состава. Изменения плотности и вязкости определяют измеряя гидромех. параметры потока. Распространены пневматические газоанализаторы трех типов.

Газоанализаторы с дроссельными преобразователями измеряют гидравлич. сопротивление дросселя (капилляра) при пропускании через него анализируемого газа. При постоянном расходе газа перепад давления на дросселе - ф-ция плотности (турбулентный дроссель), вязкости (ламинарный дроссель) или того и другого параметра одновременно.

Струйные газоанализаторы измеряют динамич. напор струи газа, вытекающего из сопла. Их используют, например, в азотной промышленности для измерения содержания Н 2 в азоте (диапазон измерения 0-50%), в хлорной промышленности - для определения С1 2 (0-50 и 50-100%). Время установления показаний этих газоанализаторов не превышает неск. секунд, поэтому их применяют также в газосигнализаторах довзрывныхконцентраций газов и паров некоторых в-в (напр., дихлорэтана, винилхлорида) в воздухе пром. помещений.

Инфракрасные газоанализаторы. Их действие основано на избйрательном поглощении молекулами газов и паров ИК-излучения в диапазоне 1-15 мкм. Это излучение поглощают все газы, молекулы к-рых состоят не менее чем из двух различных атомов. Высокая специфичность молекулярных спектров поглощения различных газов обусловливает высокую избирательность таких газоанализаторов и их широкое применение в лабораториях и промышленности. Диапазон измеряемыхконцентраций 10 -3 -100%. В дисперсионных газоанализаторах используют излучение одной длины волны, полученное с помощью монохроматоров (призмы, дифракц. решетки). В недисперсионных газоанализаторах, благодаря особенностям оптич. схемы прибора (применению светофильтров, спец. приемников излучения и т.д.), используют немонохроматич. излучение.

Ультрафиолетовые газоанализаторы. Принцип их действия основан на избирательном поглощении молекулами газови паров излучения в диапазоне 200-450 нм. Избирательность определения одноатомных газов весьма велика. Двух- и многоатомные газы имеют в УФ-области сплошной спектр поглощения, что снижает избирательность их определения. Однако отсутствие УФ-спектра поглощения у N 2 , O 2 , СО 2 и паров воды позволяет во многих практически важных случаях проводить достаточно селективные измерения в присут. этих компонентов. Диапазон определяемыхконцентраций обычно 10 -2 -100% (для паров Hg ниж. граница диапазона 2,5-10 -6 %).

Ультрафиолетовые газоанализаторы применяют гл. образом для автоматического контроля содержания С1 2 , О 3 , SO 2 , NO 2 , H 2 S, C1O 2 , дихлорэтана, в частности в выбросах промышленных предприятий, а также для обнаружения паров Hg, реже Ni (СО) 4 , в воздухе помещений.

Люминесцентные газоанализаторы. Вхемилюминесцентных газоанализаторах измеряют интенсивностьлюминесценции, возбужденной благодаря химической реакции контролируемого компонента с реагентом в твердой, жидкой или газообразной фазе. Пример - взаимод. NO с О 3 , используемое для определения оксидов азота:

N0 + 0 3 -> N0 2 + + 0 2 -> N0 2 + hv + 0 2

Фотоколориметрические газоанализаторы. Эти приборы измеряют интенсивность окраски продуктов избират. р-ции между определяемым компонентом и специально подобранным реагентом. Реакцию осуществляют, как правило, в растворе (жидкостные газоанализаторы) или на твердом носителе в виде ленты, таблетки, порошка (соотв. ленточные, таблеточные, порошковые газоанализаторы).

Фотоколориметрич. газоанализаторы применяют для измерения концентраций токсичных примесей (напр.,оксидов азота, О 2 , С1 2 , CS 2 , O 3 , H 2 S, NH 3 , HF, фосгена, ряда орг. соед.) в атмосфере пром. зон и в воздухе пром. помещений. При контроле загрязнений воздуха широко используют переносные приборы периодического действия. Большое число фотоколориметрич. газоанализаторов применяют в качестве газосигнализаторов.

Электрохимические газоанализаторы . Их действие основано на зависимости между параметром электрохим. системы и составом анализируемой смеси, поступающей в эту систему.

В кондуктометрических газоанализаторах измеряется электропроводность р-ра при селективном поглощении им определяемого компонента. Недостатки этих газоанализаторов - низкая избирательность и длительность установления показаний при измерении малых концентраций. Кондуктометрические газоанализаторы широко применяют для определения О 2 , СО, SO 2 , H 2 S, NH 3 и др.

Ионизационные газоанализаторы. Действие основано на зависимости электрической проводимости газов от их состава. Появление в газе примесей оказывает дополнительное воздействие на процесс образования ионов или на их подвижность и, следовательно, рекомбинацию. Возникающее при этом изменение проводимости пропорционально содержанию примесей.

Все ионизационные газоанализаторы содержат проточную ионизац. камеру, на электроды которой налагают определенную разность потенциалов. Эти приборы широко применяют для контроля микропримесей в воздухе, а также в кач-ве детекторов в газовых хроматографах.

Предлагаем рассмотреть основные принципы действия, положенные в основу промышленных газоанализаторов, призванных обеспечить безопасность во таких отраслях как промышленность, энергетика, нефтегазовый комплекс, сельское хозяйство, оборонный комплекс, транспорт и т.д. Один класс приборов должен обеспечить обнаружение возможных утечек взрывоопасных газов и паров до достижения нижнего предела взрываемости. (НКПР). Другой класс приборов обеспечивает обнаружение возможных утечек токсичных газов и паров жидкостей до достижения уровня ПДК (предела допустимых концентраций). И в первом, и во втором случае газоанализаторы должны подавать сигналы, которые используются для устранения процессов, приводящих к появлению утечек.

В приведенной ниже таблице рассмотрены принципы действия, достоинства и недостатки различных типов промышленных газоанализаторов.

Принцип действия, достоинства и недостатки различных типов датчиков для газоанализаторов

Название Принцип действия Недостатки Достоинства
Термокаталитические (термохимические) Основан на беспламенном сжигании (окислении) углеводородов на поверхности каталитически активного элемента и измерении количества выделившегося при этом тепла, которое пропорционально концентрации углеводородов Низкая избирательность, недолговечность сенсора, отравляемость сенсора, ограниченный диапазон измеряемых концентраций (не выносит перегрузки по измеряемому компоненту), низкая чувствительность и быстродействие, обязательное присутствие кислорода в контролируемой атмосфере Относительно низкая стоимость
Электрохимические Основан на измерении сопротивления (электропроводности), напряжения или тока, характеризующих прохождение электрического тока в растворах электролитов при их взаимодействии с анализируемым газом Низкая селективность, ограниченное быстродействие, недолговечность ЭХ сенсора, отравляемость сопутствующими газами. Стоимость сопоставима с оптическими, низкое энергопотребление Широкая номенклатура контролируемых газов, возможность измерения сверхнизких концентраций отравляющих газов
Полупроводниковые Основан на изменении поверхностного сопротивления полупроводникового материала в результате адсорбции детектируемого газа Отсутствие селективности, ограниченное быстродействие, недолговечность сенсора, отравляемость, высокая погрешность измерений. Невозможно создание измерительного прибора (только течеискатель газа) Высокая чувствительность, низкая стоимость
Оптические (ИК абсорбционные) Основан на способности молекул большинства газов избирательно поглощать инфракрасное излучение. При этом каждый газ имеет свои, характерные только для него полосы поглощения. Относительно высокая стоимость Высокая чувствительность, селективность и быстродействие, работают в широком диапазоне концентраций, не отравляются высокими концентрациями контролируемых и сопутствующих газов, а также наличием в атмосфере активных реагентов, например, силиконовых соединений

1. ОПТИЧЕСКИЕ ГАЗОАНАЛИЗАТОРЫ

Основой большинства выпускаемых компанией Метеоспецприбор газоанализаторов являются оптические (ИК абсорбционные) датчики. По целому комплексу параметров они значительно превосходят применяемые в промышленности термокаталитические, электрохимические и полупроводниковые газовые сенсоры.

Оптические датчики имеют высокую стабильность нуля, чувствительность, селективность, быстродействие, не отравляются повышенными концентрациями контролируемых и сопутствующих газов, могут функционировать в бескислородной среде.

Базовая оптическая схема

Многие газы имеют характерные полосы поглощения в инфракрасной области спектра.

Поэтому по величине поглощения излучения, прошедшего сквозь газовую пробу, можно измерить концентрацию газа.

В оптических газоанализаторах для увеличения стабильности нуля, а также для компенсации возможного влияния влаги, пыли и других факторов, которые способны поглатить свет, используется автокомпенсационная двухлучевая оптическая схема, в которой измеряется интенсивность двух лучей, проходящих по одному и тому же оптическому пути, причем длина волны одного (измерительного) луча находится в области поглощения, а другого (опорного) – в области прозрачности определяемого газа.

Реальные элементы (излучатели и фотоприемники), используемые в газоанализаторе, меняют свои параметры при изменениях температуры, а также в процессе старения. Для автокомпенсации этих изменений в оптическую схему вводятся еще два луча, не проходящие сквозь анализируемую газовую смесь.

Высокая стабильность нуля и чувствительности, долговечность

Основная причина перехода на оптические газоанализаторы – стабильное положение нуля и стабильная чувствительность к контролируемому газую Это означает отстствие необходимости ежедневной калибровки.
Применение в качестве чувствительных элементов полупроводниковых изделий микроэлектроники обеспечивает функционирование оптических газоанализаторов на протяжении более десяти лет. Все это обеспечивает нашим приборам высокое соотношение качество/цена.

Бесконтактный и неразрушающий характер измерений

Преимущество оптических газоанализаторов по сравнению с электрохимическими, термокаталитическими, полупроводниковыми датчиками заключается в отсутствии контакта между загазованной атмосферой и чувствительными элементами: сквозь газовую пробу проходит лишь луч света, а излучатель и фотоприемник защищены прозрачными окнами из химически стойкого стекла. Поэтому для оптических газоанализаторов безопасны химически агрессивные вещества и соединения (например, хлор, сера, фосфор, фтор, аммиак, окислы азота, тетраэтилсвинец,и т.д.), выводящие из строя газоанализаторы, в основе действия которых лежат химические реакции. Им не страшны концентрационные перегрузки вплоть до 100% концентрации определяемого газа, причем время восстановления после перегрузки определяется только временем обновления содержимого газовой камеры.

Избирательность

Уникальная особенность оптических газоанализаторов – избирательность. В них, в отличие от других типов – термокаталитических, электрохимических, полупроводниковых приборов – исключается реакция на другие вещества, так как спектры поглощения различных газов не совпадают.
В частности, измеряется концентрация метана в атмосфере, содержащей и другие углеводороды.
Инженерами ЗАО "Метеоспецприбор" разработан метод, защищенный европейским патентом, позволивший достигнуть рекордной селективности измерений концентраций метана по отношению к пропану: S=1000.

Высокое быстродействие

К достоинствам оптических газоанализаторов относится также их быстродействие. Если для датчиков, в основе действия которых лежит химическое взаимодействие с определяемым газом, время измерения определяется скоростью протекания химических реакций и составляет несколько секунд, то для оптических газоанализаторов быстродействие достигает долей секунды.

Функционирование в бескислородной среде

Нельзя оставить без внимания также уникальную способность оптических газоанализаторов вести измерения в бескислородной среде, например, в заполненном азотом межстеночном пространстве резервуаров для хранения бензина.

Широкий диапазон измерений

Меняя длину газовой камеры удалось создать приборы для измерения в самых разных диапазонах концентраций и с различной чувствительностью. Длина пути в 4 – 5 метров (для этой цели используются многоходовые оптические кюветы) позволяет измерять концентрации метана на уровне естественного фона - 10-4 доли объема, а для измерения в диапазоне (0-100)% объемных долей с точностью ±1% достаточно пути в 1 см.

Заметим, что термокаталитические газоанализаторы способны вести измерения только в узком диапазоне довзрывоопасных концентраций. Высокие концентрации углеводородов выводят их из строя.

Мы предлагаем линейку газоанализаторов, которые работают как высокоточные измерительные приборы во всевозможном земном диапазоне концентраций углеводородов – от 1 ррm до 100% объема.

Они могут функционировать:
как высокочувствительные течеискатели,
как приборы для экологического контроля (1 ….100 ppm)t
как приборы для измерения довзрывных концентраций углеводородов в системах техники безопасности (100 ррm -5об.д.,%),
как приборы для технического контроля в газовой, нефтяной и нефтеперерабатывающей промышленности

Кроме того, оптические датчики обладают уникальной селективностью.

Подбирая различные сочетания датчиков, работающих в составе данной модели газоанализатора, можно удовлетворить любые конкретные технические требования

2. ТЕРМОКАТАЛИТИЧЕСКИЕ ГАЗОАНАЛИЗАТОРЫ

Важность использования оптики объясняется спецификой принципа работы, например, термокаталитического датчика, который уступает оптическому по безопасности.
Главным недостатком термопреобразовательных элементов является постепенная потеря чувствительности вследствие структурных изменений каталитически активной поверхности при их длительной работе в сложных атмосферных условиях, какие, например, встречаются на реальных объектах.
Как показал опыт эксплуатации, полная потеря чувствительности происходит за отрезок, исчисляемый от нескольких месяцев до нескольких лет. Этот недостаток является принципиальным и обусловлен химической природой процесса взаимодействия между поверхностью каталитически активного чувствительного элемента и анализируемыми газами.
Такое химическое взаимодействие на атомно-молекулярном уровне приводит к постепенному изменению структуры поверхности чувствительного элемента, усугубляемое в реальных условиях наличием паров кислотных и щелочных подземных вод, а также микродоз газов, являющихся ядами для катализаторов – некоторые серосодержащие газы, пары силиконовых соединений техногенного происхождения и др.
В обычных условиях это приводит к постепенному изменению показаний прибора.
В случае аварийной ситуации использование термокаталитического газоанализатора может просто привести к катастрофе.
При возникновении возгорания произойдет отравление прибора продуктами горения и он может не сработать на реальный выброс. Кроме этого, в замкнутом пространстве подземного сооружения при горении происходит резкое падение концентрации кислорода.

3. ЭЛЕКТРОХИМИЧЕСКИЕ ГАЗОАНАЛИЗАТОРЫ

Термокаталитические сенсоры в системе обеспечения безопасности (в силу их специфики) применяются все меньше и меньше. Как правило, это контроль взрывоопасных газов, где оптические сенсоры имеют неоспоримые преимущества. К сожалению, оптические методы не могут эффективно быть использованы в диапазоне 1-100 ppm. Это область ПДК для отравляющих газов. Оптические методы и здесь могут работать эффективно, однако для этого требуется построить очень большие по размерам и весу приборы. Например, для такого газ как H2Sуровень ПДК это ≈100 ppm. Для того, чтобы построить оптический газоанализатор для такого диапазона концентрации необходимо иметь оптической ячейки более 10 м., что является неприемлемым. В связи с этим для решения проблем безопасности на случаи утечки таких газов как H2S, CO, NH3, NO, NO2, H2, O2, Cl2, SO2 и др. в диапазонах ПДК (1-200 ppm) используются электрохимические сенсоры. Несмотря на свои недостатки, они больше подходят по соотношению цена/качество.

4. ПОЛУПРОВОДНИКОВЫЕ ГАЗОАНАЛИЗАТОРЫ

Полупроводниковые сенсоры, из-за своих недостатков невозможно использовать для создания измерительных приборов, однако с успехом их можно использовать для создания всевозможных течеискателей для таких газов как метан, пропан, бутан, ацетилен, угарный газ, аммиак, сероводород, водород, бензин, галогены, фреоны, спирт и других промышленных растворителей.

Заключение.

Таким образом можно сделать следующие выводы:

1. Для обеспечения надежного обнаружения утечек взрывоопасных и горючих газов лучше всего подходят оптические промышленные газоанализаторы (как портативные, так и стационарные).

2. Для надежного обнаружения возможных утечек токсичных газов на уровне ПДК рабочей зоны лучше всего подходят электрохимические газоанализаторы.

3. Для создания эффективных течеискателей как горючих, так и токсичных газов лучше всего подходят приборы, построенные на базе полупроводниковых сенсоров.

Термокаталитические газоанализаторы исчерпали свой ресурс и на современном уровне развития промышленности являются морально устаревшими.

Коммуникация, связь, радиоэлектроника и цифровые приборы

Назначение газоанализаторов: измерять и контролировать концентрацию газов. В технологических процессах металлургического производства контролируется концентрация различных газов: горючие газы продукты сгорания защитные атмосферы газы технологических процессов вредные и взрывоопасные примеси и т. Контроль состава газов в ряде случаев дает возможность судить о правильности протекания технологического процесса. Например по составу колошникового газа в доменной печи ведется процесс плавки; скорость окисления углерода в жидкой ванне...

Вопрос 6. Назначение, принцип работы и типы газоанализаторов.

Назначение газоанализаторов: измерять и контролировать концентрацию газов.

В технологических процессах металлургического производства контролируется концентрация различных газов: горючие газы, продукты сгорания, защитные атмосферы, газы технологических процессов, вредные и взрывоопасные примеси и т.д.

Контроль состава газов в ряде случаев дает возможность судить о правильности протекания технологического процесса. Например, по составу колошникового газа в доменной печи ведется процесс плавки; скорость окисления углерода в жидкой ванне, характеризующая ход конвертерной плавки, определяется на основе анализа газов на содержание СО и СО2 ; непрерывный контроль топочного режима в эксплуатационных условиях на современных ТЭС осуществляется с помощью автоматических газоанализаторов по содержанию в продуктах горения (дымовых газах) О2 и т.д.

Промышленный газоанализатор, как правило, состоит из устройства пробоподготовки, приемника и измерительного прибора.

Устройство пробоподготовки предназначено для отбора пробы анализируемой газовой смеси от технологического объекта, очистки пробы от агрессивных и механических примесей, приведения ее параметров (температуры, давления и т.п.) к значениям, нормированным для параметров пробы на входе приемника газоанализатора.

Приемник газоанализатора предназначен для формирования выходных унифицированных сигналов, значение которых эквивалентно содержанию (концентрации) измеряемого компонента в газовой смеси.

В качестве измерительного устройства, как правило, используются стандартные измерительные приборы.

Типы газоанализаторов: термокондуктометрические; термомагнитные; электрохимические; основанные на поглощении инфракрасного излучения: оптико-акустические и абсорбционные.


А также другие работы, которые могут Вас заинтересовать

76364. Капиллярная дефектоскопия 424.54 KB
Физическая сущность ЦД контроля: пенетрация краевой угол смачивания капиллярные явления и уравнение Лапласа. Технологическая схема ЦД контроля чувствительность метода. Дефектоскопические материалы для ЦД контроля Метод контроля основан на капиллярном проникновении индикаторных жидкостей пенетрантов в полости поверхностных и сквозных несплошностей материала объектов контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя. Капиллярный НК предназначен для обнаружения невидимых или...
76365. Магнитная дефектоскопия 301.42 KB
По способу получения первичной информации различают следующие методы магнитного контроля: магнитопорошковый МП основанный на регистрации магнитных полей рассеяния над дефектами с использованием в качествеиндикатора ферромагнитного порошка или магнитной суспензии; магнитографический МГ основанный на регистрации магнитных полей рассеяния с использованием в качестве индикатора ферромагнитной пленки; феррозондовый ФЗ основанный на измерении напряженности магнитного поля феррозондами; эффекта Холла ЭХ основанный на...
76366. МПД-контроль 300.19 KB
Технологическая схема МПД контроля. Дефектоскопические средства: приборы средства контроля материалы. Размагничивание изделий после контроля. Паспортизация результатов МПДконтроля.
76367. Акустические методы НК 277.5 KB
Природа и свойства ультразвуковых колебаний. Распространение упругих колебаний в сплошной среде представляет собой волнообразный процесс. Диапазоны упругих колебаний в материальных средах Физическая природа упругих колебаний одинакова во всем диапазоне частот. Свойства упругих колебаний...
76368. Базисная теория таможенного тарифа 82.5 KB
Базисная теория таможенного тарифа Несмотря на то что свободная торговля приводит к возрастанию экономического благосостояния всех стран как экспортеров так и импортеров на практике международная торговля практически нигде и никогда не развивалась действительно свободно без вмешательства государства. Инструменты используемые государством для регулирования международной торговли можно разделить на тарифные основанные на использовании таможенного тарифа и нетарифные квоты лицензии субсидии демпинг и т. При введении тарифа...
76369. Нетарифные методы торговой политики 90 KB
Если правительство хочет ограничить объем импорта и устанавливает квоту размером Q то общее предложение зерна на внутреннем рынке с учетом импорта может быть представлено в виде кривой Sd Q. Таким образом в результате введения импортной квоты возникают чистые потери для страны в целом равные области b с то есть результаты воздействия квоты и тарифа на уровень благосостояние идентичны конечно это справедливо если объем лицензированного импорта меньше чем спрос на импорт на внутреннем рынке. Почему же в этом случае государство часто...
76370. Международная экономическая интеграция. Формы (уровни) международной экономической интеграции 260.5 KB
Борьба за упрочение своего экономического положения побуждает страны к образованию различных интеграционных объединений. Партнеры по объединению получают определенные преференции по сравнению с другими странами но платят за это ответными обязательствами по отношению к партнерам. Международная экономическая интеграция это процесс хозяйственнополитического объединения стран на основе глубоких устойчивых взаимосвязей и разделения труда между национальными хозяйствами. На микроуровне этот процесс идет через взаимодействие отдельных фирм...
76371. Международное движение капитала. Сущность и формы движения капитала 121 KB
Международное движение капитала Сущность и формы движения капитала Вывоз капитала зарубежное инвестирование представляет собой процесс изъятия части капитала из национального оборота в данной стране и перемещение его в товарной или денежной форме в производственный процесс и обращение другой страны. Важнейшими причинами вывоза капитала являются: 1. Более низкие экологические стандарты в принимающей стране чем в странедоноре капитала. В зависимости от собственника вывоз капитала делится на 3 вида: 1 частный вывоз капитала крупные...
76372. Международная миграция трудовых ресурсов. Проблемы оптимального размещения трудовых ресурсов в мировой экономике 106.5 KB
Проблемы оптимального размещения трудовых ресурсов в мировой экономике Миграция рабочей силы переселение трудоспособного населения из одних государств в другие сроком более чем на год вызванное причинами экономического и иного характера. Различают внутреннюю миграцию рабочей силы происходящую между регионами одного государства и внешнюю миграцию затрагивающую несколько стран. силы утечка мускулов перемещение высококвалифицированной раб. силы утечка умов Первая форма получила свое развитие еще при рабовладельческом строе...