Сделать индуктивный датчик для сигнализации. Емкостные датчики и реле схемы. Цветовая маркировка выводов

02.09.2019

Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.

Датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

Датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN . Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Как проверить индуктивный датчик?

Для этого нужно подать на него питание, то есть подключить его в схему. Затем – активировать (инициировать) его. При активации будет загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку, и измерить напряжение на ней, чтобы быть уверенным на 100%.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

НО НЗ датчики. Принципиальные схемы.

На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

  • Синий (Blue) – Минус питания
  • Коричневый (Brown) – Плюс
  • Чёрный (Black) – Выход
  • Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.

Система обозначений индуктивных датчиков

Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics. / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан:1247 раз./

/ Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан:1004 раз./

/ Датчики фирмы Turck, pdf, 4.13 MB, скачан:1336 раз./

/ Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан:2163 раз./

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие я встречаю в своей работе.

Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!

Приветствую уважаемых радиолюбителей. Предлагаемый вашему рассмотрению индукционный датчик может использоваться во многих устройствах - отрывания дверей или снятия с полок товаров, в тахометрах, в искробезопасных указателях уровня жидкостей, вместо прерывателей в бензиновых двигателях, в элементах автоматики, к примеру в отключении клапана набора воды в ёмкостях... Схема взята из классических её прототипов, но упрощена и сбалансирована. Она достаточно проста, но, при этом и надёжна, и отличается чёткостью своей работы, легко изготавливается, налаживается и встраивается в различные устройства.

Схема принципиальная датчика

Для более чёткого рассмотрения картинки - сохраните её на ПК и увеличьте.

Схема построена как генератор с индуктивной обратной связью. Колебательный контур на элементах: L2, C2 задаёт частоту, катушка L1 и ёмкость C1 обратной связи обеспечивают генерацию, резисторы: R2, R4 задают режим транзистора по постоянному току и стабилизируют его. Развязку по высокой частоте обеспечивает цепочка: R1, C3.

Важно! Ёмкость С3 должна быть импульсной, хорошего качества и номиналом как указано в схеме.

Формирователь выходного сигнала выполнен по схеме удвоения напряжения на элементах: C4, C5, VD1, VD2, R3 диоды любые высокочастотные, резистор R3 подбирается в зависимости от необходимой скорости убывания выходного напряжения при срыве генерации. При наличии металлического лепестка между катушками генерация срывается.

Печатная плата изготавливается из фольгированного стеклотекстолита, для её крепления используется 2 мм. отверстие, в которое вставляется болт с надетой на него ограничивающей бобышкой (или просто кусок хлорвиниловой трубки от капельницы) и зажимается всё гаечкой, либо болт вкручивается в нарезанную на каком-то основании резьбу...

Файл и чертёж проекта можно скачать по ссылке . Катушки L1 и L2 без сердечников. L2 содержит 30 витков провода ПЭВ-1 (0.1-0.12 мм). L1 20-30 витков провода ПЭВ-1 (0.1-0.12 мм.) в зависимости от щели-расстояния в датчике (подбирается опытным путём, но при щели около 2 мм. 23-26 витков). Мотаются катушки на оправке (маленькое 1-1.5 мм. сверло, или иголка, кусок проволоки) между двумя картонными щёчками, после закрепляются клеем и снимаются с оправки, щёчки отбрасываются тоже. Толщина катушек два - три диаметра провода, мотаются в навал. Обе готовые катушки надеваются на пластиковый стержень, который после можно вынуть, между катушек ставится полиэтиленовая или фторопластовая прокладка подходящей толщины (полиэтилен и фторопласт отстаёт от застывшей эпоксидной смолы).

Из прессшпана вырезается крестовидная развёртка коробочки, в её дне прокалывается четыре отверстия, в которые продевают гибкие многожильные провода для выводов катушек, к ним подпаивают концы катушек, развёртку сгибают для получения коробочки, обматывают скотчем или изолентой, продевают насквозь ещё один пластиковый штырь (пластик после извлекается и получается отверстие для крепления), центрируется и крепится также штырь с катушками и, наконец, заливают эпоксидкой. Гибкими выводами катушки подпаиваются каждая на своё место, фазируются для получения генерации, датчик крепится на своё место, рядом с ним плата генератора.

В нынешнее время такие катушки или подобные им можно найти во многих уже не нужных, сломанных или устаревших устройствах, к примеру в флоппи-приводах. Есть и готовые и катушки и датчики, но не всегда их можно приобрести, и не всегда это дёшево. Ну и сделать своими руками тоже для кого-то удовольствие, особенно если будет работать не хуже, а где-то и лучше готовых изделий.

Фотографий готового устройства нет, так как мопед продал, а прибор был в нём. Так же как и плата самого зажигания, к которому и подсоединён этот датчик. Теперь возможно только побробнейшее описание и ответы на вопросы интересующихся на форуме. Но зажигание вместе с этим датчиком действительно было на порядок лучше промышленного. Искрами в лабораторном испытании даже киповскую бумагу поджигало. Ребята шутили - зачем тебе теперь бензин? На макулатуре будешь ездить... В общем схема отличная, рекомендую! Автор статьи - ПНП .

Обсудить статью УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК

Для обеспечения нормальной работы двигателя используется множество механизмов и контроллеров, предназначенных для выполнения разных функций. Одним из таких девайсов является индуктивный датчик. Что это за контроллер, каков его принцип работы, какие бывают виды устройств? Об этом мы поговорим ниже.

[ Скрыть ]

Характеристика индуктивных преобразователей

Индуктивный датчик или представляет собой бесконтактное устройство, предназначенное для контроля положения того или иного объекта, выполненного из металла. Это важно, поскольку девайс может проявлять чувствительность только к металлу.

Функции и принцип действия

Принцип действия девайса основан на изменении амплитуды колебаний генераторного устройства, встроенного в контроллер, при внесении в активную зону определенного металлического объекта. Соответственно, применение девайса возможно только с такими типами объектов. При подаче напряжения на конечный выключатель, который находится в зоне чувствительности, появляется магнитное поле. Это поле способствует образованию вихревых токов, влияние которых отражается на изменении амплитуды колебаний генераторного устройства.

В итоге такие преобразования способствуют появлению аналогового выходного импульса, значение которого может быть разным в зависимости от расстояния между контроллером и объектом. Индуктивный датчик перемещения играет очень важную роль для узлов, которые используются для отслеживания изменения места расположения металлических объектов. Благодаря контроллеру определяется, правильно ли расположен тот или иной объект или нет. В том случае, если предмет находится не там, где нужно, система управления должна будет предпринять все необходимые действия для того, чтобы обеспечить нормальную работу устройства.

Что касается устройства контроллера, то девайс состоит из следующих элементов:

  1. Генераторный узел, предназначенный для образования электромагнитного поля, которое, в свою очередь, используется для создания зоны активности с объектом.
  2. Усилительное устройство. Используется для повышения значения амплитуды импульса, чтобы сигнал мог достигнуть нужного параметра.
  3. Триггер Шмитта. Этот элемент предназначен для обеспечения гистертезиса при переключении девайса.
  4. Диодный элемент, который свидетельствует о состоянии контроллера. Также светодиод позволяет обеспечить наиболее оптимальный контроль функционирования девайса и указать на оперативность настройки.
  5. Следующий элемент — компаунд. Его предназначение заключается в обеспечении защиты девайса от попадания влаги внутрь корпуса, а также грязи и пыли, что может привести к его поломке.
  6. Сам корпус. Корпус контроллера предназначен для обеспечения установки девайса, а также его защиты от всевозможных механических повреждений. Как правило, корпус выполняется из латуни либо полиамида, а также он оснащается всеми необходимыми фиксаторами для крепления (автор видео — канал Lty D).

Типы контроллеров

Системы с индуктивным датчиком могут использовать разные устройства, которые отличаются между собой по следующим параметрам:

  1. Конструкция девайса, а также тип корпуса, который может быть прямоугольным либо цилиндрическим. Что касается материала, из которого выполняется сам корпус, то он может быть либо металлическим, либо пластмассовым.
  2. Если речь идет о цилиндрических деталях, то они могут иметь разные размеры корпуса. Как правило, диаметры корпуса составляют 12 и 18 мм, но можно найти и другие девайсы- 4, 8, 22 мм и т.д.
  3. Следующий параметр — рабочий люфт девайса, составляющий расстояние до стальной пластины контроллера. Для небольших по размерам контроллеров этот показатель составляет от 0 до 2 мм, для контроллеров, диаметр которых составляет 12 и 18 мм, рабочий зазор должен быть 4 и 8 мм соответственно.
  4. Число проводов для подключения к бортовой сети. Двухпроводные устройства более удобны в плане установки, однако они чувствительно относятся к нагрузке — при слишком высоком или низком сопротивлении их работа может быть нарушена. Трехпроводные детали на сегодняшний день считаются самыми распространенными, в данном случае два контакта используется для питания, а еще один — для нагрузки. Есть также пяти- и четырехпроводные регуляторы, в которых пятый контакт используется для выбора режима функционирования.
  5. Еще один параметр, по которым устройства могут отличаться, заключается в различии полярности. Релейные датчики позволяют коммутировать нужное значение напряжения или один из контактов питания. В транзисторных датчиках типа PNP на выходе устанавливается специальный транзисторный элемент, позволяющий коммутировать плюсовой выход. Что касается минуса, то в данном случае он подключен постоянно. Также есть транзисторные устройства NPN, в данном случае постоянно запитан плюс, а мину коммутируется транзисторным элементом.

Фотогалерея «Схемы подключения»

Достоинства и недостатки

Индуктивный датчик вращающихся оборотов (к примеру, ДПКВ) или другого типа, как и любое устройство, может иметь свои достоинства и недостатки. Предлагаем с ними ознакомиться.

Начнем с преимуществ:

  1. Во-первых, такие регуляторы характеризуются достаточно простой конструкцией, что позволяет обеспечить высокую надежность их работы. Конструктивно в элементе отсутствуют скользящие контакты, благодаря чему обеспечивается надежная работа датчика, так как контакты не изнашиваются и не выходят из строя.
  2. При необходимости такой регулятор можно своими руками подключить к электрической сети с промышленной частотой.
  3. Повышенная чувствительность регулятора, что позволяет обеспечить его наиболее эффективную и бесперебойную работу.
  4. При необходимости такие приборы могут работать в условиях высоких выходных мощностей.

Что касается недостатков:

  1. Нелинейные значения могут привести к появлению погрешностей, что связано с использованием принципа индуктивного преобразования.
  2. Правильная работа детали возможна при определенной температуре. Если температура не будет соответствовать нормированному диапазону, это может привести к появлению больших погрешностей.
  3. Появлению погрешностей могут способствовать и образование электромагнитного поля вне датчика.

Цена вопроса

Стоимость товара зависит от многих характеристик, в частности, области применения. В среднем цены на индуктивные регуляторы начинаются от 500 рублей и выше.

Видео «Как подключить индукционный регулятор?»

Наглядная инструкция на примере подключения регулятора в мотоцикле Юпитер приведена в ролике ниже (автор — Вадим Карамов).

Высоковольтный емкостной датчик (далее датчик) – устройство для снятия формы вторичного напряжения системы зажигания и последующей передачи его на один из входов регистрирующего оборудования.

Датчик состоит из держателя, емкостной пластины, которая гальванически соединена с сигнальным проводом, экранированного кабеля и соответствующего разъема для подключения датчика к входу регистрирующего оборудования.

Из чего следует:

1. Сигнал на выходе датчика будет тем больше чем ближе емкостная пластина к токопроводящей жиле ВВ провода.

2. Влияние электромагнитных наводок с соседних ВВ проводов будет тем меньше чем меньше размер емкостной пластины и чем меньше не экранированный участок сигнального провода.

4. Емкостная связь представляет собой дифференцирующую цепочку (ФВЧ) пропускающую высокочастотные колебания (область пробоя), и не пропускающую низкочастотные колебания (область горения), т.е. форма вторичного напряжения на выходе датчика будет искажена.

Сд – емкость между токопроводящей жилой ВВ провода и емкостной пластиной датчика
Rвх – входное сопротивление регистрирующего оборудования
Свх – входная емкость не учитывается, так как она фактически в данном случае ни на что не влияет

На графике красного цвета изображен исходный сигнал (меандр 1 КГц, скважность 10%, амплитуда 1 В)
На графике синего цвета изображен сигнал, полученный на выходе дифференцирующей цепочки


Сигнал с выхода датчика без использования компенсационной емкости

Для устранения искажения формы вторичного напряжения на выходе датчика, необходимо использовать дополнительную компенсационную емкость, которая с емкостью датчик-жила образует емкостной делитель:

Без учета входного сопротивления регистрирующего оборудования, коэффициент передачи емкостного делителя определяется следующим соотношением: Kп = Сд / (Сд + Ск) . Как видно из соотношения, чем больше значение емкости Ск тем меньше будет значение напряжения на выходе емкостного делителя. Для идеального емкостного делителя без учета входного сопротивления регистрирующего оборудования Ск можно взять сколь угодно малое, при этом форма сигнала на выходе делителя в точности будет соответствовать форме сигнала на его входе.

При учете входного сопротивления соотношение для определения коэффициента передачи становится гораздо объемнее, но зависимость Kп от Ск остается той же. Входное сопротивление регистрирующего оборудования на прямую не влияет на Kп, оно определяет “степень вносимого искажения”.

При увеличении входного сопротивления искажения формы вторичного напряжения значительно уменьшаются. В большинстве случаев входное сопротивления практических все осциллографов используемых для автодиагностики находится в диапазоне 1 МОм, за исключением специализированных входов предназначенных исключительно для подключения ВВ датчиков. По этому при непосредственном подключении датчика к входу осциллографа (без специализированного адаптера) Rвх также можно принять за константу, и ограничится варьированием только Ск.

Примечание!
Подключение датчика к входу осциллографа просто через резистор 10 МОм приведет к увеличению входного сопротивления и соответственно уменьшению искажения формы вторичного напряжения, но при этом примерно в десять раз уменьшиться коэффициент передачи входного тракта канала. Для увеличения входного сопротивления без уменьшения коэффициента передачи необходимо использовать промежуточный буфер (повторитель – простейший адаптер) с высоким входным сопротивлением и низким выходным сопротивлением.
Для текущих Сд (точно не известно) и Rвх (обычно 1 МОм) значение Ск подбирается исходя из компромисса:
1. Чем меньше Ск тем больше амплитуда напряжения на выходе емкостного делителя
2. Чем больше Ск тем меньше степень искажения формы вторичного напряжения

Практически значение Ск возможно увеличивать до тех пор, пока “амплитуда” напряжения на выходе емкостного делителя будет достаточно выделяться на фоне шума.

Местоположение подключения Ск: в начале кабеля (ближе к емкостной пластине) или в конце кабеля (ближе к входу регистрирующего оборудования) – практически не влияет на форму и амплитуду сигнала с выхода датчика.

На графике красного цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной на входе осциллографа, на графике синего цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной непосредственно возле емкостной пластины. Как видно форма сигналов практически одинакова, а амплитуда различается в пределах разброса номинала используемых емкостей +/- 20%.

Примеры осциллограмм вторичного напряжения снятого одним и тем же датчиком с емкостной пластиной в виде круга диаметром ~10 мм при разных значениях Ск, на стенде с DIS катушки 2112-3705010 (форма вторичного напряжения несколько отличается от привычной из-за разряда на открытом воздухе).


Ск = 470 пФ. Область горения значительно проседает, но амплитуда пробоя достигает 5 Вольт.


Ск = 1.8 нФ. Область горения также значительно проседает, амплитуда пробоя уменьшилась до 2 Вольт.


Ск = 3.3 нФ. Область горения не много проседает, амплитуда пробоя уменьшилась до 1 Вольта.


Ск = 10 нФ. Область горения практически не проседает, но и амплитуда пробоя уменьшилась до 0.4 Вольт.

Как видно при Ск = 10 нФ форма вторичного напряжения практически не искажена, а шум довольно не значительный.

Для сравнения приведены осциллограммы вторичного напряжения снятые с одного и того же ВВ провода без использования адаптера и с использованием специализированного адаптера зажигания.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 10 нФ) непосредственно подключенного к входу осциллографа. На графике синего цвета изображен сигнал, полученный с адаптера Постоловского, к которому подключен “родной” ВВ датчик Постоловского.

Как видно форма обеих сигналов практически совпадает, но с адаптера содержащего промежуточные усилители, сигнал имеет в 3 раза большую амплитуду.

Примечание!
Все адаптеры, использующие емкостные датчики искажают форму вторичного напряжения, но при высоком входном сопротивлении и достаточной Ск, вносимое искажение крайне не значительно.

В простейшем случае емкостной съемник это любой металлический предмет расположенный рядом с ВВ проводом, т.е. в роли емкостной пластины могут выступать зажим типа “крокодил”, фольга намотаня на ВВ провод, монетка и т.д.

Практически в качестве высоковольтного емкостного датчика рекомендуется использовать конструкцию, которая удовлетворяет следующим требованием:
1. Высокая степень защиты от пробоя
2. Малая подверженность электромагнитным наводкам от соседних ВВ проводов
3. Удобное конструктивное исполнение для быстрого подключения датчика к ВВ проводу

Примеры конструкции ВВ емкостных датчиков:


Жестяная пластинка 20x70 мм, выгибается, так что бы плотно прижиматься к ВВ проводу.


По сути, та же пластина только в изоляции.


ВВ датчик типа “прищепка”.


ВВ датчик аналогичный одной из конструкций Бош (поставляется по цене $7 / шт).

В качестве примера рассмотрим процесс изготовления ВВ датчика на основании выше приведенной конструкции компании Бош.

Для изготовления датчика необходимо:

1. Выше рассмотренная ручка ВВ датчика.

2. Экранированный кабель 1-3 м. Желательно использовать мягкий микрофонный кабель, так как при эксплуатации он намного удобнее жесткого коаксиального кабеля. Волновое сопротивление кабеля 50 или 75 Ом, значения не имеет, так как все исследуемые сигналы находятся в области низких частот.

3. Разъемы для подключения датчика к осциллографу или адаптеру зажигания BNC-FJ / BNCP / FC-022 Переходник гнездо F / BNC под F-ку (разъем один и тот же только у разных производителей / продавцов он по-разному называется).

BNC-M / FC-001 / RG58 / F разъем

Примечание!
При покупке F разъема и кабеля обращайте внимание на соответствие диаметра кабеля к диметру разъема для накрутки на кабель, иначе либо придется срезать часть изоляции кабеля для уменьшения его диаметра, либо наматывать ленту на кабель для увеличения его диаметра.
4. Сальник / гермоввод / кабельный ввод PG-7 с дюймовой резьбой

5. Емкостная пластина “пятачок” диаметром 9-10 мм

“Пятачок” возможно либо вырезать из жести, либо использовать специальный пробойник (лучше всего использовать пробойник на 8 мм, после развальцовки получится “пятачок” диаметром чуть больше 9 мм):

Также в качестве “пяточка” возможно, использовать подходящие по диаметру канцелярские кнопки.

6. Компенсационная емкость – не полярный (лучше керамический) конденсатор номиналом от 2.2 нФ до 10 нФ на напряжение 50 Вольт (если использовать конденсатор на 1 КВ то в случае пробоя ВВ провода он все равно сгорит). Возможно использовать как выводные конденсаторы так и планарные в корпусе 1206 или 0805.

Порядок изготовления:

1. Удалить изоляцию с экранированного кабеля до оплетки, на участке 12-13 мм. Часть оплетки под снятой изоляцией вывернуть наружу и равномерно расположить вдоль кабеля. С сигнального провода снять изоляцию на участке 10-11 мм и залудить его.

2. Накрутить на кабель F разъем, так что бы он плотно держался на кабеле и хорошо контактировал с частью вывернутой оплетки. При этом сигнальный провод должен выступать на достаточную длину из F разъема для надежного контакта с центральным стержнем разъема BNC-FJ.

3. Накрутить разъем BNC-FJ на F разъем. После чего проверить наличие контакта (прозвонить тестером) между сигнальным проводом и центральным стержнем разъема BNC-FJ, между оплеткой кабеля и экраном разъема BNC-FJ и отсутствие контакта между сигнальным проводом и оплеткой кабеля.

4. Если есть сальник PG-7 то предварительно надеть его на кабель открутив с него гайку.

5. Удалить изоляцию и оплетку с противоположного конца кабеля, на участке 3-5 мм. С сигнального провода снять изоляцию на участке 2-3 мм. Припаять к залуженному сигнальному проводу емкостную пластину.

При необходимости припаять компенсационную емкость между сигнальным проводом и оплеткой.

6. Обмотать участок сигнального провода и припаеную компенсационную емкость изолентой, так что бы емкостная пластина не болталась и была поджата краем изоленты. После чего емкостную пластину обильно смазывать солидолом.

Солидол “улучшает” диэлектрическую проницаемость и устраняет скачки области горения.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) без солидола. На графике синего цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) с использованием солидола. Без использования солидола область горения иногда “подскакивает” на 20-30%.

7. Надеть ручку ВВ датчика так, что бы емкостная пластина упиралась в дно колпачка датчика. После чего зажать кабель либо с помощью сальника PG-7 либо закрепить изолентой (при этом с датчиком нужно обращаться крайне осторожно, что бы случайно не вырвать кабель из ручки датчика).

В результате должен получится высоковольтный емкостной датчик, который возможно непосредственно подключать к одному из аналоговых (с наличием Ск) или к логическому (без Ск) входов осциллографа.

Датчики для автоматических устройств радиоэлектронной аппаратуры являются важнейшими элементами в электрических схемах. Датчики, широко известные радиолюбителям, применяются повсеместно в профессиональной промышленной и непрофессиональной аппаратуре, изготовленной самими радиолюбителями. Например, датчик удара в автомобильных сигнализациях, или датчик шума в акустических устройствах, или датчик ИК излучения в устройствах дистанционного контроля параметров. Вариантов конструкций датчиков бесконечно много. Например, датчик качки (или удара) в автомобильной сигнализации с одинаковой эффективностью может быть изготовлен несколькими разными способами. Сами по себе датчики являются только частью электронной схемы, поэтому не будем забывать, что и от схемы управления зависит надежная работа всего устройства. Что же такое датчик?

Определений его множество, но самое простое - это прибор, изменяющий свое состояние в зависимости от внешних воздействий. Ниже мы рассмотрим несколько вариантов датчиков, которые можно без больших временных и финансовых затрат изготовить в домашних условиях своими руками. Эти датчики посылают однократные импульсы или пачки импульсов (дребезг контактов) на электронное устройство контроля в зависимости от воздействия на них.

В настоящее время радиоэлектронная промышленность предлагает радиолюбителям промышленные варианты датчиков казалось бы на все случаи жизни - даже счетчики Гейгера, регистрирующие радиацию, стали доступны. Следующий материал актуален по причине большой розничной стоимости большинства промышленных датчиков и направлен на поощрение творчества радиолюбителя в бытовых и «полевых» условиях, когда возможно изготовить датчики самостоятельно, без потери их качества.

Механические датчики

На рис. 3.28 изображен вариант изготовления плоского механического датчика. Монтируя один или несколько таких датчиков под ковролином, линолеумом, или под обоями, удается внешне незаметно управлять освещением, например, прихожей.

При нажатии ногой на плоскость датчика (или нажатии рукой на определенное место на стене квартиры, офиса) фольгированные контакты замыкаются, и импульс по соединительным проводам уходит на схему управления. Чувствительность датчика высокая - он реагирует даже на небольшую нагрузку.

Рис. 3.28. Конструкция механического датчика

Как видно из рисунка, на плотную фольгу накладывается картон с прорезанным внутри отверстием, а на него накладывается еще один слой фольги. К токопроводящей фольге (вполне подходит плотная фольга на бумажной основе) аккуратно припаиваются тонкие гибкие проводники. Весь получившийся «бутерброд» затем ламинируют. В качестве материала для ламинирования используют полиэтиленовую папку-карман для бумаг или школьных принадлежностей - ее нужно разрезать по размеру датчика, вложить фольгу и картон внутрь и через тряпочку прогладить утюгом. Можно просто обклеить датчик скотчем. Если в схеме управления используются помехоустойчивые элементы (полевые МОП-транзисторы или микросхемы) - длина соединительных проводов от датчиков до схемы может составлять несколько метров. Если требуется большее удаление, то применяются шинные усилители и преобразователи уровня на микросхемах (например, на элементах К561ПУЗ, К561ПУ4, К561ЛП1, К561ЛН2 и других). Если изготовить датчик в несколько слоев, чередуя проводник и диэлектрик, то получившийся «толстый бутерброд» можно использовать как датчик силы воздействия (нажима) - то есть как датчик для взвешивания. Вариантов применения такого датчика много, его особенностью является возможность легкой маскировки. Плоский датчик надежен, долговечен и описан автором подробно в нескольких разработках автоматических бытовых устройств.

Акустические датчики

На рис. 3.29 и 3.30 представлены две чувствительные схемы, осуществляющие функции акустического датчика, вырабатывающего серии (пачки) импульсов при звуковом воздействии, отличном от спокойного акустического фона. Схема на операционном усилителе (рис. 3.29) использует в качестве датчика воздействия пьезоэлемент.

Рис. 3.29. Акустический датчик, построенный на ОУ

Такой вариант неоднократно публиковался в сочетании с другими типами ОУ и поэтому он не претендует на оригинальность. В качестве пьезоэлемента использован капсюль ЗП-22 и из-за относительной чувствительности - реагирует только на удары - он не очень эффективен, однако с успехом может применяться в охранных устройствах, например, для охраны окон. Для этого капсюль нужно надежно приклеить к стеклу и датчик будет выдавать одиночные импульсы при ударах по стеклу. Чем больше площадь стекла (охраняемой зоны) - тем более чувствителен датчик. Он может применяться для охраны со стороны внешних стекол и витрин в магазинах. Чем больше сопротивление резисторов R4 и R2 на входе компаратора - тем чувствительнее схема. С выхода компаратора (вывод 6) импульс поступает на ключевую или формирующую схему. Конденсатор С1 (К50-24) фильтрует помехи по питанию.

На рис. 3.30 показан более чувствительный, хотя и более старомодный вариант. В качестве ВМ1 используется любой угольный микрофон от старых телефонных аппаратов (МК-10 и аналогичные). Транзисторный усилитель собран по схеме последовательного усиления таким образом, что коэффициент усиления второго каскада вдвое больше первого и т.д. На рисунке мы видим трехкаскадный усилитель, позволяющий использовать эту схему как сверхчувствительную, однако, если такая чувствительность не является столь необходимой - можно обойтись и только одним каскадом на составном транзисторе. Усилитель работоспособен в широких пределах напряжения питания схемы. С коллектора последнего транзистора пачки импульсов поступают на ключевую или формирующую последовательность импульсов схему (например, одновибратор). Усиление эффективно регулируется резистором R1 (чем больше его сопротивление - тем чувствительнее схема) и в незначительных пределах резистором R6. Как известно, в таких микрофонах находится угольный порошок, очень чувствительный к сотрясениям и звуковым волнам, он изменяет сопротивление микрофона по постоянному току. Эти импульсы и улавливает усилитель на транзисторах VT1-VT4. Отрицательной особенностью схемы является ее инерционность, обусловленная свойствами угольных микрофонов. Но для многих радиолюбительских разработок такая чувствительная схема практически незаменима по своей простоте и эффективности. Положительные качества - простота в изготовлении, некритичность к обратному включению и перепадам напряжения питания, надежность. Проводники от микрофона к электрической схеме должны иметь минимальную длину. Транзисторы допустимо применять любые из серий КТ3107, КТ361. В практике автора устройство, показанное на рис. 3.30, успешно и стабильно применяется в качестве звукового датчика для подачи рыбам в аквариум воздуха. Микрофон вместе со схемой датчика устанавливается в пластмассовом компактном корпусе, который надежно крепится к стенке аквариума так, чтобы обеспечить плотное прилегание рабочей поверхности угольного микрофона к стеклу. Практика показала, что любое движение за стенкой аквариума даже небольшой рыбки вблизи микрофона-датчика, а тем более всплывание рыбы к верхнему краю воды за воздухом улавливается датчиком и он выдает пачку импульсов. Угольный микрофон изменяет свое сопротивление в зависимости от внешних акустических воздействий. Это изменение затем воспринимается усилительной схемой на транзисторах. Количество импульсов в пачке пропорционально силе воздействия звуковой волны на микрофон. Импульсы преобразуются схемой управления, и автоматически включается компрессор на 1…2 часа (время, обусловленное дополнительным таймером).

Этот датчик может найти и другое применение, например, как акустический датчик, реагирующий на разговор в помещении, и включающий подсветку. Если корпус устройства вместе с микрофоном монтировать на полу - схема будет оповещать о приближении человека задолго до его подхода к датчику. Так как шаги человека по полу, как показывает практика в городских квартирах, воздействуют на его поверхность и передаются на большое расстояние. Таким образом, вариантов применения такого датчика очень много.

Индуктивный датчик

На рис. 3.31 показан простой датчик, реагирующий на магнитную индукцию. Когда вблизи обмотки катушки И появляется небольшой ток (например, в проводах линии связи), он наводится в катушке и передается на усилительный каскад на составном транзисторе. Усилитель для этой схемы может быть любой конфигурации, с большим коэффициентом усиления. С положительной обкладки конденсатора С2 снимается переменное напряжение, наведенное в катушке И. Если в качестве катушки применить магнитную антенну, можно получить прибор, реагирующий на

Рис. 3.31. Усилитель для индукционного датчика

радиоволны определенной длины, то есть контролировать радиоэфир. Чувствительность схемы регулируется резистором R1, задающим смещение на составной транзистор.

Чем больше сопротивление переменного резистора - тем чувствительнее схема. Для оптимального режима усиления (т.к. напряжение питания схемы может существенно изменяться) подбирается номинал резистора R2 так, чтобы ток, потребляемый этим узлом от источника питания, был в пределах 2 мА. На практике датчик улавливает переменный ток от 50 мА в проводах на расстоянии до 5 см. Длина проводов от катушки L1 до входного каскада схемы для исключения помех должна стремиться к минимуму.

Катушка наматывается проводом ПЭВ или ПЭЛ диаметром 0,1…0,15 мм внавал и содержит 2500 витков на любом подходящем картонном, деревянном или пластмассовом каркасе диаметром 8 мм. Внутрь каркаса вставляется сердечник из феррита марки 600 - 2000НН. Длина каркаса соответствует длине сердечника и находится в пределах 25…40 мм.

Датчик тока

Конструкция устройства показана на рисунке 3.32.

Датчик представляет собой геркон с намотанным по длине его стеклянного корпуса проводом диаметром 0,08…0,1 мм. Намотка внавал (300-400 витков) - в зависимости от назначения датчика. Когда по обмотке такого датчика протекает электрический ток, геркон под воздействием магнитной индукции замыкает (размыкает) свои контакты, коммутируя периферийную цепь. На основе этого датчика радиолюбитель может самостоятельно изготовить «токовое реле», соединив один из контактов геркона с концом обмотки, как показано на рис. 3.33.

Сразу после включения протекающий через нагрузку ток создает падение напряжения на обмотке L1. Падение напряжения на обмотке прямо пропорционально силе тока в цепи. Наведенное напряжение создаст небольшое электромагнитное поле, которое будет достаточным для воздействия на контакты геркона, которые заблокируют электрическую цепь. Когда нагрузка обесточит – ся (или ток в ее цепи уменьшится, что может произойти в силу очень разных причин), падение напряжения на L1 уменьшится, уменьшится магнитное поле, и контакты геркона разомкнуться. Чувствительность такого датчика зависит от количества витков L1 и силы тока в цепи. Токовое реле, как и электромагнитный датчик, имеет много вариантов применения в радиотехнических конструкциях.

Датчик малого тока

Рис. 3.36. Оптический датчик

параллельно передатчику и под углом к нему расположены фотоприемники (блок 2), также обращенные в пространство. При отсутствии отражающего объекта энергия, излучаемая свето- диодом, рассеивается, не попадая на чувствительную поверхность фотоприемников. При появлении объекта в пределах действия активного излучения световой отраженный луч улавливается одним или несколькими датчиками-приемниками, вследствие этого от фотоприемника на управляющую схему поступает импульс. Расстояние от излучателя сигнала до приемника (датчика) в плоскости излучения не должно превышать 4…5 сантиметров. Однако, если в качестве объекта-отражателя использовать зеркальную поверхность (даже без фокусирующей линзы) с радиусом кривизны 50…80 мм, то устройство может эффективно срабатывать на расстоянии до отражающего объекта до 25 см.

По этому принципу был создан специальный датчик, который испытывался в системе обеспечения жизнедеятельности аквариумов и в качестве датчика дождя для автомобилей. Рассмотрим работу узла (принципиальная схема показана на рис. 3.36, б) на примере аквариума. Датчик (оптрон АОРС113А - оптопара с открытым оптическим каналом, в данной схеме его излучающие светодиоды и принимающие фоторезисторы включены параллельно) монтируется с внешней стороны на одну из стенок аквариума и рабочей поверхностью обращен внутрь аквариума. Аноды излучающих диодов внутри корпуса оптрона объединены и имеют общий вывод 8. Корпус АОР113А и АОРС113А - металлический, с шестнадцатью выводами, на основе керамической подложки, типа «планар», со стеклянным окном. Это позволяет упростить монтаж к ровной контролируемой поверхности.

Отличие АОР113А от АОРС113А в том, что в составе АОРС113А находятся два идентичных приемо-передатчика (подобные одному в АОР113А). Оптрон АОРС113А позволяет контролировать соответственно две координаты и включать дифференциальные фотоприемники последовательно либо параллельно.

В больших аквариумах (объемом более 60 литров) имеются определенные трудности с заменой воды. Поэтому там устанавливаются компрессоры для фильтрации, очистки воды и постоянного снабжения воздухом акватории. Воду в больших аквариумах заменяют частично, а полностью очень редко, в случае крайней необходимости. В результате на дне и на стенках аквариума скапливаются различные органические отложения, загрязняющие воду. В некоторых случаях внутри акватории начинает цвести трава и вода совсем теряет прозрачность. Для ответственных хозяев это недопустимо. Рассматриваемый здесь оригинальный датчик практически не отражает излучение в случае чистых стенок аквариума и прозрачной воды, и начинает отражать луч, если есть загрязнение. Импульс от датчиков поступает на схему контроля параметров (реализованную на составном транзисторе), тогда при подаче питания на нагрузку (устройство сигнализации) последняя звуком сигнализирует о загрязнении аквариума. В схеме управления должна быть предусмотрена задержка подачи сигнала тревоги (таймер на несколько минут) для того, чтобы исключить ложные срабатывания системы сигнализации в случае появления в пределах активной зоны датчиков рыбы или, например, проползания улиток. Практикой доказано, что живым организмам в аквариуме не вредит небольшое излучение датчика. Скорее, можно констатировать обратный факт - рыбы часто появляются в рабочей зоне датчиков и живо интересуются происходящим.

Принцип действия датчика дождя для автомобиля аналогичен приведенному выше. Сами датчики (излучатели и приемники) соединены со схемой управления экранированными проводниками наименьшей длины. Исполнительное устройство датчика дождя призвано замыкать цепь автомобильной электроники - контакты выключателя стеклоочистителей. В автомобиле не нужна задержка на включение устройств нагрузки. Ночью, в темноте прибор ведет себя стабильно. Чувствительность устройства регулируется только один раз при установке на стекло автомобиля для исключения ложных срабатываний от солнечного спектра излучения в ясную погоду. Питание схемы - стабилизированное, может быть в пределах 10…18 В. Если точность срабатывания схемы не принципиальна, то в качестве нагрузки можно использовать любое автомобильное реле на напряжение 12 В.

Разница с предыдущим вариантом состоит в креплении корпуса с устройством к лобовому стеклу автомобиля (изнутри). В ясную погоду постоянное излучение свободно проходит через чистое стекло и рассеивается в пространстве. Во время дождя стекло с внешней стороны загрязняется дождевыми каплями, которые незначительно отражают лучи. Отраженный сигнал, соответственно, изменяет сопротивление фоторезисторов в корпусе оптрона с открытым оптическим каналом. Это приводит к изменению режима составного транзистора и появлению импульса тока на выходе. Так же как и в первом случае, фотоприемники (фоторезисторы) подключаются параллельно (их общее сопротивление при световом воздействии уменьшается быстрее - происходит увеличение чувствительности узла). Когда отражающего сигнала нет - суммарное сопротивление фоторезисторов оптрона высокое, порядка сотни кОм. На выходе схемы напряжение стремится к нулю относительно отрицательного полюса источника питания. Отраженное световое излучение уменьшит суммарное сопротивление фоторезисторов и откроет VT1, VT2. На выходе схемы появится напряжение высокого уровня, почти равное напряжению питания. Регулировка чувствительности схемы осуществляется переменным резистором R1, который следует выбрать с линейной характеристикой. С выхода схемы управляющий сигнал можно подавать на компаратор, сравнивающий базовое напряжение с входным (собранный по любой стандартной схеме, например на К521САЗ). Компаратор на своем выходе выдаст постоянный положительный сигнал при изменении напряжения на его входе. Сигнал с выхода компаратора через любой транзисторный ключ включит исполнительное реле, которое своими контактами замкнет цепь сигнализации (нагрузки).

Пара слов о монтаже к аквариумной стенке. Прозрачное окно корпуса оптрона моментальным клеем монтируется к стеклу, при этом следует следить, чтобы клей не попал на рабочую поверхность оптрона. Вместо АОРС113А можно применить два прибора АОР113А (на рис. 3.36, в, показана цоколевка и различие между данными оптронами). Они имеют аналогичные электрические параметры. Применение только одного элемента из пары не замедлит сказаться на работе всей схемы в сторону уменьшения чувствительности.

При использовании схемы в качестве датчика дождя для автомобиля необходимо учитывать следующий факт. Устройство хорошо работает в температурном диапазоне 0…50°С, поэтому зимой, если автомобиль не ставится в теплый гараж при отрицательной температуре воздуха, в первые моменты начала движения автомобиля, пока температура в салоне не поднимется до нуля градусов, датчик дождя может некорректно реагировать на внешние факторы.

Датчик возгорания

В радиолюбительской практике популярны простые и надежные устройства - датчики, реагирующие на изменение каких-либо параметров на входе. Одним из таких устройств является приведенная на рис. 3.51 схема, реагирующая на повышение…….

Фотодатчики и реализованные на их основе электронные устройства, управляющие различными бытовыми приборами, давно популярны среди радиолюбителей. Казалось бы, невозможно уже найти что-либо новое в схемном решении для таких устройств. Тем…….

Фоторезисторами называют полупроводниковые приборы, проводимость которых меняется под действием света. Монокристаллический фоторезистор Рис. 2.2. Монокристаллический фоторезистор Пленочный фоторезистор Рис. 2.3. Пленочный фоторезистор Рис. 2.4. Включение фоторезистора в цепь постоянного…….