Прогнозирование с применением уравнения регрессии. Простая линейная регрессия

22.09.2019

Прогнозирование по модели множественной линейной регрессии предполагает оценку ожидаемых значений зависимой переменной при заданных значениях независимых переменных, входящих в уравнение регрессии. Различают точечный и интервальный прогнозы.

Точечный прогноз – это расчетное значение зависимой переменной, полученное подстановкой в уравнение множественной линейной регрессии прогнозных (заданных исследователем) значений независимых переменных. Если заданы значения , то прогнозное значение зависимой переменной (точечный прогноз) будет равно

Интервальный прогноз – это минимальное и максимальное значения зависимой переменной, в промежуток между

которыми она попадает с заданной долей вероятности и при заданных значениях независимых переменных.

Интервальный прогноз для линейной функции вычисляется по формуле

где t T – теоретическое значение критерия Стьюдента при df=n- – т – 1 степенях свободы; s y – стандартная ошибка прогноза, вычисляемая по формуле

(2.57)

где Х – матрица исходных значений независимых переменных; Х пр – матрица-столбец прогнозных значений независимых переменных вида

Найдем прогнозные значения поступления налогов (пример 2.1), при условии, что связь между показателями описывается уравнением

Зададим прогнозные значения независимых переменных:

  • – количество занятых Xj: 500 тыс. человек;
  • – объем отгрузки в обрабатывающих производствах х 2: 65 000 млн руб.;
  • – производство энергии х3:15 000 млн руб.

Найдем точечный и интервальный прогноз поступления налогов.

При заданных значения независимых переменных поступление налогов в среднем составит

Вектор прогнозных значений независимых переменных будет иметь вид

Ошибка прогноза, рассчитанная по формуле (2.57), составила 5556,7. Табличное значение t-критерия при числе степеней свободы df = 44 и уровне значимости а = 0,05 равно 2,0154. Следовательно, прогнозные значения поступления налогов будут с вероятностью 0,95 находиться в границах:

от 18 013,69 – 2,0154-5556,7=6814,1 млн руб.;

до 18 013,69 + 2,0154-5556,7=29 212 млн руб.

Прогнозирование по нелинейным моделям множественной регрессии также можно осуществлять по формулам (2.55)–(2.57), предварительно линеаризовав указанные модели.

Мультиколлинеарность данных

При построении эконометрической модели предполагается, что независимые переменные воздействуют на зависимую изолированно, т. е. влияние отдельной переменной на результативный признак не связано с влиянием других переменных. В реальной экономической действительности все явления в той или иной мере связаны, поэтому добиться выполнения этого предположения практически невозможно. Наличие связи между независимыми переменными приводит к необходимости оценки ее влияния на результаты корреляционно-регрессионного анализа.

Различают функциональные и стохастические связи между объясняющими переменными. В первом случае говорят об ошибках спецификации модели, которые должны быть исправлены.

Функциональная связь возникает, если в уравнение регрессии в качестве объясняющих переменных включают, в частности, все переменные, входящие в тождество. Например, можно сказать, что доход У складывается из потребления С и инвестиций I, т. е. имеет место тождество. Мы предполагаем, что уровень процентных ставок г зависит от дохода, т.е. модель в общем виде может быть представлена в виде

Неопытный исследователь, желая улучшить модель, может включить в уравнение также переменные "потребление" и "инвестиции", что приведет к функциональной связи между объясняющими переменными:

Функциональная взаимосвязь столбцов матрицы X приведет к невозможности найти единственное решение уравнения

регрессии, так как, а нахождение обратной

матрицыпредполагает деление алгебраических дополнений матрицына ее определитель, который в дан

ном случае будет равен нулю.

Более часто между объясняющими переменными наблюдается стохастическая связь, что приводит к уменьшению

величины определителя матрицы: чем сильнее связь,

тем меньше будет определитель. Это приводит к росту не только оценок параметров, полученных с использованием МНК, но и их стандартных ошибок, которые вычисляются по формуле (2.24):

в которой, как мы видим, также используется матрица Корреляционная связь может существовать как между двумя объясняющими переменными (интеркорреляция ), так и между несколькими (мультиколлинеарность).

Существует несколько признаков, указывающих на наличие мультиколлинеарности. В частности, такими признаками являются:

  • – не соответствующие экономической теории знаки коэффициентов регрессии. Например, нам известно, что объясняющая переменная х оказывает прямое воздействие на объясняемую переменную у, в то же время коэффициент регрессии при этой переменной меньше нуля;
  • – значительные изменения параметров модели при небольшом сокращении (увеличении) объема исследуемой совокупности;
  • – незначимость параметров регрессии, обусловленная высокими значениями стандартных ошибок параметров.

Существование корреляционной связи между независимыми переменными может быть выявлено с помощью показателей корреляции между ними, в частности с помощью парных коэффициентов корреляции r XiX, которые можно записать в виде матрицы

(2.58)

Коэффициент корреляции переменной с самой собой равен единице хх = 1), а коэффициент корреляции переменной*, с переменной *,■ равен коэффициенту корреляции переменной XjC переменной X, х х х х ). Следовательно, данная матрица является симметрической, поэтому в ней указывают только главную диагональ и элементы под ней:

Высокие значения парных линейных коэффициентов корреляции указывают на наличие интеркорреляции, т.е. линейной связи между двумя объясняющими переменными. Чем выше величина , тем выше интеркорреляция. Так как при построении моделей избежать отсутствия связей между объясняющими переменными практически невозможно, существует следующая рекомендация относительно включения двух переменных в модель в качестве объясняющих. Обе переменные можно включить в модель, если выполняются соотношения

т.е. теснота связи результирующей и объясняющей переменных больше, чем теснота связи между объясняющими переменными.

Наличие мультиколлинеарности можно подтвердить, найдя определитель матрицы (2.58). Если связь между независимыми переменными полностью отсутствует, то недиагональные элементы будут равны нулю, а определитель матрицы – единице. Если связь между независимыми переменными близка к функциональной (т.е. является очень тесной), то определитель матрицы гхг будет близок к нулю.

Еще один метод измерения мультиколлинеарности является следствием анализа формулы стандартной ошибки коэффициента регрессии (2.28):

Как следует из данной формулы, стандартная ошибка будет тем больше, чем меньше будет величина, которую называют фактор инфляции дисперсии (или фактор вздутия дисперсии ) VIF:

где – коэффициент детерминации, найденный для уравнения зависимости переменной Xj от других переменных , входящих в рассматриваемую модель множественной регрессии.

Так как величина отражает тесноту связи между переменной Xj и прочими объясняющими переменными, то она, по сути, характеризует мультиколлинеарность применительно К данной переменной Xj. При отсутствии связи показатель VIF X будет равен (или близок) единице, усиление связи ведет к стремлению этого показателя к бесконечности. Считают, что если VIF X >3 для каждой переменной *, то имеет место мультиколлинеарность.

Измерителем мультиколлинеарности является также так называемый показатель (число) обусловленности матрицы . Он равен отношению максимального и минимального собственных чисел этой матрицы:

Считается, что если порядок этого соотношения превышает 10s–106, то имеет место сильная мультиколлинеарность .

Проверим наличие мультиколлинеарности в рассматриваемом нами примере 2.1. Матрица парных коэффициентов корреляции имеет вид

Можно отметить, что связи между объясняющими переменными достаточно тесные, особенно между переменными.Xj и х2; X] и х3, что указывает на интеркорреляцию этих переменных. Более слабая связь наблюдается между переменными х2 и х3. Найдем определитель матрицы г^..

Полученное значение ближе к нулю, чем к единице, что указывает на наличие мультиколлинеарности объясняющих переменных.

Проверим обоснованность включения всех трех независимых переменных в модель регрессии, используя правило (2.59). Парные линейные коэффициенты корреляции зависимой и независимых переменных равны

Они больше, чем показатели тесноты связи между независимыми переменными, следовательно, правило (2.59) выполняется, все три переменные можно включить в модель регрессии.

Измерим степень мультиколлинеарности переменных с помощью фактора инфляции дисперсии (VIF ). Для этого необходимо рассчитать коэффициенты детерминации для регрессий:

Для этого к каждой регрессии необходимо применить МНК, оценить ее параметры и рассчитать коэффициент детерминации. Для нашего примера результаты расчетов следующие:

Следовательно, фактор инфляции дисперсии для каждой независимой переменной будет равен

Все рассчитанные величины не превысили критического значения, равного трем, следовательно, при построении модели можно пренебречь существованием связей между независимыми переменными.

Для нахождения собственных чисел матрицы (с целью расчета показателя обусловленности η (2.60)) необходи мо найти решение характеристического уравнения

Матрица для нашего примера имеет вид

а матрица, модуль определителя которой нужно приравнять нулю, получится следующей:

Характеристический многочлен в данном случае будет иметь четвертую степень, что затрудняет решение задачи вручную. В данном случае рекомендуется воспользоваться возможностями вычислительной техники. Например, в ППП EViews получены следующие собственные числа матрицы :

Следовательно, показатель обусловленности η будет равен

что свидетельствует о наличии в модели сильной мультиколлинеарности.

Методами устранения мультиколлинеарности являются следующие.

  • 1. Анализ связей между переменными, включаемыми в модель регрессии в качестве объясняющих (независимых), с целью отбора только тех переменных, которые слабо связаны друг с другом.
  • 2. Функциональные преобразования тесно связанных между собой переменных. Например, мы предполагаем, что поступление налогов в городах зависит от количества жителей и площади города. Очевидно, что эти переменные будут тесно связаны. Их можно заменить одной относительной переменной "плотность населения".
  • 3. Если по каким-то причинам перечень независимых переменных не подлежит изменению, то можно воспользоваться специальными методами корректировки моделей с целью исключения мультиколинеарности: ридж-регрессией (гребневой регрессией), методом главных компонент.

Применение ридж-регрессии предполагает корректировку элементов главной диагонали матрицы на некую произвольно задаваемую положительную величину τ. Значение рекомендуется брать от 0,1 до 0,4. Н. Дрейпер, Г. Смит в своей работе приводят один из способов "автоматического" выбора величины τ, предложенный Хоэрлом, Кеннардом и Белдвином :

(2.61)

где т – количество параметров (без учета свободного члена) в исходной модели регрессии; SS e – остаточная сумма квадратов, полученная по исходной модели регрессии без корректировки на мультиколлинеарность; а – вектор-столбец коэффициентов регрессии, преобразованных по формуле

(2.62)

где cij – параметр при переменной у, в исходной модели регрессии.

После выбора величины τ формула для оценки параметров регрессии будет иметь вид

(2.63)

где I – единичная матрица; X, – матрица значений независимых переменных: исходных или преобразованных по формуле (2.64); Υ τ – вектор значений зависимой переменной: исходных или преобразованных по формуле (2.65).

(2.64)

и результативную переменную

В этом случае после оценки параметров по формуле (2.63) необходимо перейти к регрессии по исходным переменным, используя соотношения

Оценки параметров регрессии, полученные с помощью формулы (2.63), будут смещенными. Однако, так как определитель матрицы больше определителя матрицы , дисперсия оценок параметров регрессии уменьшится, что положительно повлияет на прогнозные свойства модели.

Рассмотрим применение ридж-регрессии для примера 2.1. Найдем величину τ с помощью формулы (2.61). Для этого сначала рассчитаем вектор преобразованных коэффициентов регрессии по формуле (2.62):

Произведение равно 1,737-109. Следовательно, рекомендуемое τ составит

После применения формулы (2.63) и преобразований по фор муле (2.66) получим уравнение регрессии

Применение метода главных компонент предполагает переход от взаимозависимых переменных х к независимым друг от друга переменным ζ, которые называют главными

компонентами . Каждая главная компонента z, может быть представлена как линейная комбинация центрированных (или стандартизованных) объясняющих переменных t:. Напомним, что центрирование переменной предполагает вычитание из каждого і-го значения данной j-й переменной ее среднего значения:

а стандартизация (масштабирование) –деление выражения (2.67) на среднее квадратическое отклонение, рассчитанное для исходных значений переменной Xj

Так как независимые переменные часто имеют разный масштаб измерения, формула (2.68) считается более предпочтительной.

Количество компонент может быть меньше или равно количеству исходных независимых переменных р. Компоненту с номером к можно записать следующим образом:

(2.69)

Можно показать, что оценки в формуле (2.69) соответствуют элементам к- го собственного вектора матрицы , где Т – матрица размером , содержащая стандартизованные переменные. Нумерация главных компонент не является произвольной. Первая главная компонента имеет максимальную дисперсию, ей соответствует максимальное собственное число матрицы ; последняя – минимальную дисперсию и наименьшее собственное число.

Доля дисперсии к- й компоненты в общей дисперсии независимых переменных рассчитывается по формуле

где Х к – собственное число, соответствующее данной компоненте; в знаменателе формулы (2.70) приведена сумма всех собственных чисел матрицы .

После расчета значений компонент z, строят регрессию, используя МНК. Зависимую переменную в регрессии по главным компонентам (2.71) целесообразно центрировать (стандартизовать) по формулам (2.67) или (2.68).

где t y – стандартизованная (центрированная) зависимая переменная; – коэффициенты регрессии по главным компонентам; – главные компоненты, упорядоченные по убыванию собственных чисел Х к; δ – случайный остаток.

После оценки параметров регрессии (2.71) можно перейти к уравнению регрессии в исходных переменных, используя выражения (2.67)–(2.69).

Рассмотрим применение метода главных компонент на данных примера 2.1. Отметим, что матрица для стандартизованных переменных является в то же время матрицей парных линейных коэффициентов корреляции между независимыми переменными. Она уже была рассчитана и равна

Найдем собственные числа и собственные векторы этой матрицы, используя ППП Eviews. Получим следующие результаты.

Собственные числа матрицы :

Доля дисперсии независимых переменных, отражаемой компонентами, составила

Объединим собственные векторы матрицы , записав их как столбцы приведенной ниже матрицы F. Они упорядочены по убыванию собственных чисел, т.е. первый столбец является собственным вектором максимального собственного числа и т.д.:

Следовательно, три компоненты (соответствующие трем собственным векторам) можно записать в виде

После стандартизации исходных переменных по формуле (2.68) и расчета значений компонент (по n значений каждой компоненты) с помощью МНК найдем параметры уравнения (2.71):

В полученном уравнении регрессии значим только параметр при первой компоненте. Это закономерный результат с учетом того, что данная компонента описывает 70,8% вариации независимых переменных. Так как компоненты независимы, при исключении из модели одних компонент параметры уравнения при других компонентах не меняются. Таким образом, имеем уравнение регрессии с одной компонентой:

Преобразуем полученное выражение в регрессию с исходными переменными

Таким образом, используя метод главных компонент, мы получили уравнение регрессии

Устранение мультиколлинеарности с помощью ридж-регрессии и метода главных компонент привело к определенному изменению параметров исходной регрессии, которая имела вид

Отметим, что эти изменения были относительно невелики, что указывает на невысокую степень мультиколлинеарности.

  • См., например, Вучков И., Бояджиева Л., Солаков Е. Прикладной регрессионный анализ: пер. с болг. M.: Финансы и статистика, 1987. С. 110.
  • Дрейпер Н., Смит Г. Указ. соч. С. 514.

Пусть требуется оценить прогнозное значение призна­ка-результата для заданного значения признака-фактора .

Прогнозируемое значение признака-результата с дове­рительной вероятностью равной (1-a) принадлежит интер­валу прогноза:

где - точечный прогноз;

t - коэффициент доверия, определяемый по таблицам распределения Стьюдента в зависимости от уровня значи­мости a и числа степеней свободы (n-2);

Средняя ошибка прогноза.

Точечный прогноз рассчитывается по линейному уравнению регрессии:

.

Средняя ошибка прогноза в свою очередь:

10.Средняя ошибка аппроксимации

Фактическое значение результативного признака y отличается от теоретических значений , рассчитанных по уравнению регрессии. Чем меньше это отличие, тем ближе теоретические значения подходят к эмпирическим, и лучше качество модели.

Величина отклонений фактических и расчетных значений результативного признака по каждому наблюдению представляет собойошибку аппроксимации .

Поскольку может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.

Отклонения можно рассматривать как абсолютную ошибку аппроксимации, а- как относительную ошибку аппроксимации.

Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению определяют среднюю ошибку аппроксимации:

Возможно и иное определение средней ошибки аппроксимации:

Если А£10-12%, то можно говорить о хорошем качестве модели.

12.Корреляция и детерминация для нелинейной регрессии.

Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции (R):

или

Величина данного показателя находится в границах: 0 ≤ R ≤ 1, чем ближе к единице, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии.

Поскольку в расчете индекса корреляции используется соотношение факторной и общей суммы квадратов отклонений, то R2 имеет тот же смысл, что и коэффициент детерминации. В специ­альных исследованиях величину R2 для нелинейных связей называют индексом детерминации .

Оценка существенности индекса корреляции проводится, так же как и оценка надежности коэффициента корреляции.

Индекс детерминации используется для проверки существенности в целом уравнения нелинейной регрессии по F-критерию Фишера :

где R2 - индекс детерминации;

n - число наблюдений;

т - число параметров при переменных х.

Величина т характеризует число степеней свободы для факторной суммы квадратов, а (n - т - 1) - число степеней свободы для остаточной суммы квадратов.

Индекс детерминации R2yx можно сравнивать с коэффициентом детерминации r2yx для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина коэффициента детерминации r2yx меньше индекса детерминации R2yx. Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию. Практически если величина (R2yx - г2yx) не превышает 0,1, то предположение о линейной форме связи считается оправданным. В противном случае проводится оценка существенности различия R2yx, вычисленных по одним и тем же исходным данным, через t-критерий Стьюдента :

где m|R - r| - ошибка разности между R2yx и r2yx .

Если tфакт > tтабл ., то различия между рассматриваемыми показателями корреляции существенны и замена нелинейной регрессии уравнением линейной функции невозможна. Практически если величина t < 2 , то различия между Ryx и ryx несущественны, и, следовательно, возможно применение линейной регрессии, даже если есть предположения о некоторой нелинейности рассматриваемых соотношений признаков фактора и результата.

Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации как среднюю арифметическую простую.

Ошибка аппроксимации в пределах 5-7 % свидетельствует о хорошем подборе модели к исходным данным.

Интервалы прогноза по линейному уравнению регрессии.

В прогнозных расчётах по уравнению регрессии определяется то, что уравнение не является реальным , для есть ещё стандартная ошибка . Поэтому интервальная оценка прогнозного значения

Выразим из уравнения

То есть стандартная ошибка зависит и ошибки коэффициента регрессии b,

Из теории выборки известно, что . Используя в качестве оценки остаточную дисперсию на одну степень свободы , получим формулу расчёта ошибки среднего значения переменной y: .

Ошибка коэффициента регрессии: .

В прогнозных расчетах по уравнению регрессии определяется уравнение как точечный прогноз при , то есть путём подстановки в уравнение регрессии . Однако точечный прогноз явно нереален.

- формула стандартной ошибки предсказываемого значения y при заданных , характеризует ошибку положения линии регрессии. Величина стандартной ошибки , достигает min при , и возрастает по мере того, как «удаляется» от в любом направлении. То есть чем больше разность между и x, тем больше ошибка , с которой предсказывается среднее значение y для заданного значения .

Можно ожидать наилучшие результаты прогноза, если признак - фактор x находится в центре области наблюдений х и нельзя ожидать хороших результатов прогноза при удалении от .

Если же значение оказывается за пределами наблюдаемых значений х, используемых при построении ЛР, то результаты прогноза ухудшаются в зависимости то того, насколько отклоняется от области наблюдаемых значений фактора х. Доверит. интервалы при .

На графике доверительной границы представляет собой гиперболы, расположенные по обе стороны от линии регрессии.

Две гиперболы по обе стороны от ЛР определяют 95%-ные доверительные интервалы для среднего значения y при заданном значении x.

Однако фактические значения y варьируют около среднего значения . Индивидуальные значения y могут отклоняться от на величину случайной ошибки , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы . Поэтому ошибка предсказываемого индивидуального значения y должна включать не только стандартную ошибку , но и случайную ошибку.

Средняя ошибка прогнозируемого индивидуального значения y составит:

.

При прогнозировании на основе УР следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения y, но и от точности прогноза значений фактора x.

Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.

Рассмотренная формула средней ошибки индивидуального значения признака y() может быть использована также для оценки существенности различия предсказываемого значения исходя из регрессионной модели и выдвинутой гипотезы развития событий.

Понятие о множественной регрессии. Классическая линейная модель множественной регрессии (КЛММР). Определение параметров уравнения множественной регрессии методом наименьших квадратов.

Парная регрессия используется при моделировании, если влияние других факторов, воздействующих на объект исследования можно пренебречь.

Например, при построении модели потребления того или иного товара от дохода исследователь предполагает, что в каждой группе дохода одинаково влияние на потребление таких факторов, как цена товара, размер семьи, ее состав. Однако, уверенности в справедливости данного утверждения нет.

Прямой путь решения такой задачи состоит в отборе единиц совокупности с одинаковыми значениями всех других факторов, кроме дохода. Он приводит к планированию эксперимента – метод, который используется в естественно-научных исследованиях. Экономист лишен возможности регулировать другие факторы. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство прочих условий для оценки влияния одного исследуемого фактора.

Как поступить в этом случае? Надо выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии.

такого рода уравнения используется при изучении потребления.

Коэффициенты b j – частные производные у по факторами х i

при условии, что все остальные х i = const

Рассмотрим современную потребительскую функцию (впервые 30е годы предложил Кейнс Дж.М.) как модель вида С = f(y,P,M,Z)

c- потребление. у – доход

P – цена, индекс стоимости.

M – наличные деньги

Z – ликвидные активы

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функций издержек производства, в макроэкономических вопросах и других вопросах эконометрики.

В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого их них в отдельности, а также совокупное воздействие на моделируемый показатель.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя 2 круга вопросов:

1. отбор факторов

2. выбор уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Требования к факторам, включаемым во множественную регрессию

1. они должны быть количественно измеримы, если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости: районы должны быть проранжированы).

2. факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, когда R у x 1

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются интерпретируемыми.

В уравнение предполагается, что факторы х 1 и х 2 независимы друг от друга, r х1х2 = 0, тогда параметр b1 измеряет силу влияния фактора х 1 на результат у при неизменном значении фактора х 2 . Если r х1х2 =1, то с изменением фактора х 1 фактор х 2 не может оставаться неизменным. Отсюда b 1 и b 2 нельзя интерпретировать как показатели раздельного влияния х 1 и х 2 и на у.



Пример, рассмотрим регрессию себестоимости единицы продукции у (руб.) от заработной платы работника х (руб.) и производительности труда z (ед. в час).

у = 22600 - 5x - 10z + e

коэффициент b 2 = -10, показывает, что с ростом производительности труда на 1 ед. себестоимость единицы продукции снижается на 10 руб. при постоянном уровне оплаты.

Вместе с тем параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии при переменной х обусловлено высокой корреляцией между х и z (r х z = 0,95). Поэтому роста заработной платы при неизменности производительности труда (не учитывая инфляции) быть не может.

Включенные во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строиться модель с набором р факторов, то для нее рассчитывается показатель детерминации R 2 , которая фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р факторов. Влияние других неучтенных в модели факторов оценивается как 1-R 2 c соответствующей остаточной дисперсией S 2 .

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшается.

R 2 p +1 >= R 2 p и S 2 p +1 <= S 2 p

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включенный в анализ фактор x р+1 не улучшает модель и практически является лишним фактором.

Если для регрессии, включающей 5 факторов R 2 = 0,857, и включенный 6 дало R 2 = 0,858, то нецелесообразно включать в модель этот фактор.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической не значимости параметров регрессии по критерию t-Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости.

Отбор факторов производиться на основе теоретико-экономического анализа. Однако, он часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов осуществляется в две стадии:

на первой – подбирают факторы, исходя из сущности проблемы.

на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Коэффициенты интеркоррелиции (т.е. корреляция между объясняющими переменными) позволяют исключить из моделей дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если r х i х j >=0.7.

Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, т.е. Rх i x j = 0, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Рассмотрим матрицу парных коэффициентов корреляции при изучении зависимости у = f(x, z, v)

y x z v
y
x 0,8
z 0,7 0,8
v 0,6 0,5 0,2

Очевидно, факторы x и z дублируют друг друга. В анализ целесообразно включит фактор z, а не х, так как корреляция z с у слабее чем корреляция фактора х с у (r у z < r ух), но зато слабее межфакторная корреляция (r zv < r х v)

Поэтому в данном случае в уравнение множественной регрессии включает факторы z и v

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Но наиболее трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарности факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК.

Если рассмотренная регрессия у = a + bx + cx + dv + e, то для расчета параметров, применяется МНК

S y = S факт +S e

общая сумма = факторная + остаточная

Кв.отклонения

В свою очередь, при независимости факторов друг от друга выполнимо равенство:

S = S x +S z + S v

Суммы квадратов отклонения, обусловленных влиянием соответствующих факторов

Если же факторы интеркоррелированы, то данное равенство нарушается.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующего:

· затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл;

· оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарных факторов будем использовать определитель матрицы парных коэффициентов корреляции между факторами. Если бы факторы не коррелировали между собой, то матрица парных коэффициентов была бы единичной.

y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + e

Если же между факторами существует полная линейная зависимость, то:

Чем ближе к 0 определитель, тем сильнее межколлинеарность факторов и ненадежны результаты множественной регрессии. Чем ближе к 1, тем меньше мультиколлинеарность факторов.

Оценка значимости мультиколлинеарности факторов может быть проведена методами испытания гипотезы 0 независимости переменных H 0:

Доказано, что величина имеет приближенное распределение с степенями свободы. Если фактически значение превосходит табличное (критическое) то гипотеза H 0 отклоняется. Это означает, что , недиагональные коэффициенты указывают на коллинеарность факторов. Мультиколлинеарности считается доказанной.

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов. Для этого в качестве зависимой переменной рассматривается каждый из факторов. Чем ближе значение R 2 к 1, тем сильнее проявляется мультиколлинеарность. Сравнивая между собой коэффициенты множественной детерминации и т.п.

Можно выделить переменные, ответственные за мультиколлинеарность, следовательно, решить проблему отбора факторов, оставляя в уравнения факторы с минимальной величиной коэффициента множественной детерминации.

Существует ряд походов преодоления сильной межфакторной корреляции. Самый простой путь устранения МК состоит в исключении из модели одного или несколько факторов.

Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Если y = f(x 1 , x 2 , x 3), то возможно построение следующего совмещенного уравнения:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 12 x 1 x 2 + b 13 x 1 x 3 + b 23 x 2 x 3 + e.

Это уравнение включает взаимодействие первого порядка (взаимодействие двух факторов).

Возможно включение в уравнение взаимодействий и более высокого порядка, если будет доказано их статистически значимость по F-критерию

b 123 x 1 x 2 х 3 – взаимодействие второго порядка.

Если анализ совмещенного уравнения показал значимость только взаимодействия факторов х 1 и х 3 , то уравнение будет имеет вид:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 13 x 1 x 3 + e.

Взаимодействие факторов х 1 и х 3 означает, что на разных уровнях фактора х 3 влияние фактора х 1 на у будет неодинаково, т.е. оно зависит от значения фактора х 3 . На рис. 3.1 взаимодействие факторов представляет непараллельными линями связи с результатом у. И наоборот, параллельные линии влияние фактора х 1 на у при разных уровнях фактора х 3 означают отсутствие взаимодействия факторов х 1 и х 3 .

Рис 3.1. Графическая иллюстрация взаимодействия факторов.

а - х 1 влияет на у, причем это влияние одинаково при х 3 =В 1 , так и при х 3 =В 2 (одинаковый наклон линий регрессии), что означает отсутствие взаимодействия факторов х 1 и х 3 ;

б – с ростом х 1 результативный признак у возрастает при х 3 =В 1 , с ростом х 1 результативный признак у снижается при х 3 =В 2 . Между х 1 и х 3 существует взаимодействие.

Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений (комбинации азота и фосфора).

Решению проблемы устранения мультиколлинеарности факторов может помочь и переход к устранениям приведенной формы. С этой целью в уравнение регрессии производится подстановка рассматриваемого фактора через выражение его из другого уравнения.

которое представляет собой приведенную форму уравнения для определения результативного признака у. Это уравнение может быть представлено в виде:

К нему для оценки параметров может быть применен МНК.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Походы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно разным методикам. В зависимости от того, какая методика построение уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построение уравнения множественной регрессии :

· метод исключения;

· метод включения;

· шаговый регрессионный анализ.

Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты – отсев факторов из полного его отбора (метод исключение), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется в процедура отсева фактора. При отборе факторов рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6-7 раз меньше объема совокупности, по которой строит регрессии. Если это отношение нарушено, то число степеней свободны остаточной вариаций очень мало. Это приводит к тому, что параметры уравнения регресс оказываются статистически незначимыми, а F-критерий меньше табличного значения.

Точечный прогноз заключается в получении прогнозного значения уp , которое определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения xp:

уp = a + b* xp

Интервальный прогноз заключается в построении доверительного интервала прогноза, т. е. нижней и верхней границ уpmin , уpmax интервала, содержащего точную величину для прогнозного значения yp (ypmin < yp < ypmin ) с заданной вероятностью.

При построении доверительного интервала прогноза используется стандартная ошибка прогноза :

Где

Строится доверительный интервал прогноза :

Множественный регрессионный анализ

(слайд 1) Множественная регрессия применяется в ситуациях, когда из множества факторов, влияющих на результативный признак, нельзя выделить один доминирующий фактор и необходимо учитывать влияние нескольких факторов. Например, объем выпуска продукции определяется величиной основных и оборотных средств, численностью персонала, уровнем менеджмента и т. д., уровень спроса зависит не только от цены, но и от имеющихся у населения денежных средств.

Основная цель множественной регрессии – построить модель с несколькими факторами и определить при этом влияние каждого фактора в отдельности, а также их совместное воздействие на изучаемый показатель.

Таким образом, множественная регрессия – это уравнение связи с несколькими независимыми переменными:

(слайд 2) Построение уравнения множественной регрессии

1. Постановка задачи

По имеющимся данным n наблюдений (табл. 3.1) за совместным изменением p +1 параметра y и xj и ((yi,xj,i ); j =1, 2, ..., p ; i =1, 2, ..., n ) необходимо определить аналитическую зависимость ŷ = f(x1 ,x2 ,...,xp) , наилучшим образом описывающую данные наблюдений.

Таблица 3.1

Данные наблюдений

x1 1

х1 2

х1 n

x 2 n

Каждая строка таблицы представляет собой результат одного наблюдения. Наблюдения различаются условиями их проведения.

Вопрос о том, какую зависимость следует считать наилучшей, решается на основе какого-либо критерия. В качестве такого критерия обычно используется минимум суммы квадратов отклонений расчетных значений результативного показателя ŷi от наблюдаемых значений yi:

2. Спецификация модели

(слайд 3) Спецификация модели включает в себя решение двух задач:

– отбор факторов, подлежащих включению в модель;

– выбор формы уравнения регрессии.

2.1. Отбор факторов при построении множественной регрессии

Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлениями исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями.

К факторам, включаемым в модель, предъявляются следующие требования :

1. Факторы должны быть количественно измеримы. Включение фактора в модель должно приводить к существенному увеличению доли объясненной части в общей вариации зависимой переменной. Поскольку данная величина характеризуется коэффициентом детерминации , включение нового фактора в модель должно приводить к заметному изменению коэффициента. Если этого не происходит, то включаемый в анализ фактор не улучшает модель и является лишним.

Например, если для регрессии, включающей 5 факторов, коэффициент детерминации составил 0,85, и включение шестого фактора дало коэффициент детерминации 0,86, то вряд ли целесообразно дополнять модель этим фактором.

Если необходимо включить в модель качественный фактор, не имеющий количественной оценки, то нужно придать ему количественную определенность. В этом случае в модель включается соответствующая ему «фиктивная» переменная , имеющая конечное количество формально численных значений, соответствующих градациям качественного фактора (балл, ранг).

Например, если нужно учесть влияние уровня образования (на размер заработной платы), то в уравнение регрессии можно включить переменную, принимающую значения: 0 – при начальном образовании, 1 – при среднем, 2 – при высшем.

Несмотря на то, что теоретически регрессионная модель позволяет учесть любое количество факторов, на практике в этом нет необходимости, т.к. неоправданное их увеличение приводит к затруднениям в интерпретации модели и снижению достоверности результатов.

2. Факторы не должны быть взаимно коррелированы и, тем более, находиться в точной функциональной связи. Наличие высокой степени коррелированности между факторами может привести к неустойчивости и ненадежности оценок коэффициентов регрессии, а также к невозможности выделить изолированное влияние факторов на результативный показатель. В результате параметры регрессии оказываются неинтерпретируемыми.

Пример . Рассмотрим регрессию себестоимости единицы продукции (у ) от заработной платы работника (х ) и производительности труда в час (z ).

Коэффициент регрессии при переменной z показывает, что с ростом производительности труда на 1 ед-цу в час себестоимость единицы продукции снижается в среднем на 10 руб. при постоянном уровне оплаты труда.

А параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии в данном случае обусловлено высокой корреляцией между х и z (0,95).

(слайд 4) Считается, что две переменные явно коллинеарны , т.е. находятся между собой в линейной зависимости, если коэффициент интеркорреляции (корреляции между двумя объясняющими переменными) ≥ 0,7. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из уравнения. Предпочтение при этом отдается не тому фактору, который более тесно связан с результатом, а тому, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Наряду с парной коллинеарностью может иметь место линейная зависимость между более чем двумя переменными – мультиколлинеарность , т.е. совокупное воздействие факторов друг на друга.

Наличие мультиколлинеарности факторов может означать, что некоторые факторы всегда будут действовать в унисон. В результате вариация в исходных данных перестанет быть полностью независимой, что не позволит оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК.

(слайд 5) Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам :

    затрудняется интерпретация параметров множественной регрессии; параметры линейной регрессии теряют экономический смысл;

    оценки параметров не надежны, имеют большие стандартные ошибки и меняются с изменением количества наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

(слайд 6) Для оценки мультиколлинеарности используется определитель матрицы парных коэффициентов интеркорреляции :

(!) Если факторы не коррелируют между собой , то матрица коэффициентов интеркорреляции является единичной, поскольку в этом случае все недиагональные элементы равны 0. Например, для уравнения с тремя переменными матрица коэффициентов интеркорреляции имела бы определитель, равный 1, поскольку
и
.

(слайд 7)

(!) Если между факторами существует полная линейная зависимость и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0 (Если две строки матрицы совпадают, то её определитель равен нулю).

Чем ближе к 0 определитель матрицы коэффициентов интеркорреляции, тем сильнее мультиколлинеарность и ненадежнее результаты множественной регрессии.

Чем ближе к 1 определитель матрицы коэффициентов интеркорреляции, тем меньше мультиколлинеарность факторов.

(слайд 8) Способы преодоления мультиколлинеарности факторов :

1) исключение из модели одного или нескольких факторов;

2) переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Например, если
, то можно построить следующее совмещенное уравнение:;

3) переход к уравнениям приведенной формы (в уравнение регрессии подставляется рассматриваемый фактор, выраженный из другого уравнения).

(слайд 9) 2.2. Выбор формы уравнения регрессии

Различают следующие виды уравнений множественной регрессии :

    линейные,

    нелинейные, сводящиеся к линейным,

    нелинейные, не сводящиеся к линейным (внутренне нелинейные).

В первых двух случаях для оценки параметров модели применяются методы классического линейного регрессионного анализа. В случае внутренне нелинейных уравнений для оценки параметров применяются методы нелинейной оптимизации.

Основное требование, предъявляемое к уравнениям регрессии, заключается в наличии наглядной экономической интерпретации модели и ее параметров. Исходя из этих соображений, наиболее часто используются линейная и степенная зависимости.

Линейная множественная регрессия имеет вид:

Параметры bi при факторах хi называются коэффициентами «чистой» регрессии . Они показывают, на сколько единиц в среднем изменится результативный признак за счет изменения соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

(слайд 10) Например, зависимость спроса на товар (Qd) от цены (P) и дохода (I) характеризуется следующим уравнением:

Qd = 2,5 - 0,12P + 0,23 I.

Коэффициенты данного уравнения говорят о том, что при увеличении цены на единицу, спрос уменьшится в среднем на 0,12 единиц, а при увеличении дохода на единицу, спрос возрастет в среднем 0,23 единицы.

Параметр а не всегда может быть содержательно проинтерпретирован.

Степенная множественная регрессия имеет вид:

Параметры bj (степени факторов хi ) являются коэффициентами эластичности. Они показывают, на сколько % в среднем изменится результативный признак за счет изменения соответствующего фактора на 1% при неизмененном значении остальных факторов.

Наиболее широкое применение этот вид уравнения регрессии получил в производственных функциях, а также при исследовании спроса и потребления.

Например, зависимость выпуска продукции Y от затрат капитала K и труда L:
говорит о том, что увеличение затрат капитала K на 1% при неизменных затратах труда вызывает увеличение выпуска продукции Y на 0,23%. Увеличение затрат труда L на 1% при неизменных затратах капитала K вызывает увеличение выпуска продукции Y на 0,81 %.

Возможны и другие линеаризуемые функции для построения уравнения множественной регрессии:


Чем сложнее функция, тем менее интерпретируемы ее параметры. Кроме того, необходимо помнить о соотношении между количеством наблюдений и количеством факторов в модели. Так, для анализа трехфакторной модели должно быть проведено не менее 21 наблюдения.

(слайд 11) 3. Оценка параметров модели

Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов , согласно которому следует выбирать такие значения параметров а и bi , при которых сумма квадратов отклонений фактических значений результативного признака yi от теоретических значений ŷ минимальна, т. е.:

Если , тогдаS является функцией неизвестных параметров a , bi :

Чтобы найти минимум функции, нужно найти частные производные по каждому из параметров и приравнять их к 0:

Отсюда получаем систему уравнений:

(слайд 12) Ее решение может быть осуществлено методом определителей:

,

где – определитель системы;

a , ∆ b 1, ∆ bp – частные определители (j ).

–определитель системы,

j – частные определители, которые получаются из основного определителя путем замены j-го столбца на столбец свободных членов .

При использовании данного метода возможно возникновение следующих ситуаций:

1) если основной определитель системы Δ равен нулю и все определители Δj также равны нулю, то данная система имеет бесконечное множество решений;

2) если основной определитель системы Δ равен нулю и хотя бы один из определителей Δj также равен нулю, то система решений не имеет.

(слайд 13) Помимо классического МНК для определения неизвестных параметров линейной модели множественной регрессии используется метод оценки параметров через β -коэффициенты – стандартизованные коэффициенты регрессии.

Построение модели множественной регрессии в стандартизированном, или нормированном, масштабе означает, что все переменные, включенные в модель регрессии, стандартизируются с помощью специальных формул.

У равнение регрессии в стандартизованном масштабе:

где
,
- стандартизованные переменные;

- стандартизованные коэффициенты регрессии.

Т.е. посредством процесса стандартизации точкой отсчета для каждой нормированной переменной устанавливается ее среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается ее среднеквадратическое отклонение σ .

β -коэффициенты показывают , на сколько сигм (средних квадратических отклонений) изменится в среднем результат за счет изменения соответствующего фактора xi на одну сигму при неизменном среднем уровне других факторов.

Стандартизованные коэффициенты регрессии βi сравнимы между собой, что позволяет ранжировать факторы по силе их воздействия на результат. Большее относительное влияние на изменение результативной переменной y оказывает тот фактор, которому соответствует большее по модулю значение коэффициента βi . В этом основное достоинство стандартизованных коэффициентов регрессии , в отличие от коэффициентов «чистой» регрессии, которые не сравнимы между собой.

(слайд 14) Связь коэффициентов «чистой» регрессии bi с коэффициентами βi описывается соотношением:

, или

Параметр a определяется как .

Коэффициенты β определяются при помощи МНК из следующей системы уравнений методом определителей:

Для оценки параметров нелинейных уравнений множественной регрессии предварительно осуществляется преобразование последних в линейную форму (с помощью замены переменных) и МНК применяется для нахождения параметров линейного уравнения множественной регрессии в преобразованных переменных. В случае внутренне нелинейных зависимостей для оценки параметров приходится применять методы нелинейной оптимизации.

(слайд 1) 4. Проверка качества уравнения регрессии

Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – коэффициента детерминации.

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, т.е. оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции рассчитывается по формуле:

Коэффициент множественной корреляции принимает значения в диапазоне 0 ≤ R ≤ 1. Чем ближе он к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

При линейной зависимости признаков формулу индекса множественной корреляции можно записать в виде:

,

где - стандартизованные коэффициенты регрессии,

- парные коэффициенты корреляции результата с каждым фактором.

Данная формула получила название линейного коэффициента множественной корреляции , или совокупного коэффициента корреляции .

Индекс детерминации для нелинейных по оцениваемым параметрам функций принято называть «квази-
».
Для его определения по функциям, использующим логарифмические преобразования (степенная, экспонента), необходимо сначала найти теоретические значения ln y, затем трансформировать их через антилогарифмы (антилогарифм ln y = y) и далее определить индекс детерминации как «квази-
» по формуле:

.

Величина «квази-
» не будет совпадать с совокупным коэффициентом корреляции, который может быть рассчитан для линейного в логарифмах уравнения множественной регрессии, потому что в последнем раскладывается на факторную и остаточную суммы квадратов не
, а
.

(слайд 2) Использование коэффициента множественной детерминации
для оценки качества модели обладает тем недостатком, что включение в модель нового фактора (даже несущественного) автоматически увеличивает величину
.
Поэтому при большом количестве факторов предпочтительней использовать так называемый скорректированный (улучшенный) коэффициент множественной детерминации
, определяемый соотношением:

где n – число наблюдений,

m – число параметров при переменных х (чем больше величина m, тем сильнее различия между к-том множ. детерминации
и скорректированным к-том
).

При заданном объеме наблюдений и при прочих равных условиях с увеличением числа независимых переменных (параметров) скорректированный к-т множ. детерминации убывает. Его величина может стать и отрицательной при слабых связях результата с факторами. При небольшом числе наблюдений нескорректированная величина к-та имеет тенденцию переоценивать долю вариации результативного признака, связанную с влиянием факторов, включенных в регрессионную модель. Чем больше объем совокупности, по которой исчислена регрессия, тем меньше различаются
и
.

Отметим, что низкое значение коэффициента множественной корреляции и коэффициента множественной детерминации может быть обусловлено следующими причинами :

– в регрессионную модель не включены существенные факторы;

– неверно выбрана форма аналитической зависимости, не отражающая реальные соотношения между переменными, включенными в модель.

(слайд 3) Значимость уравнения множественной регрессии в целом оценивается с помощью F - критерия Фишера :

Выдвигаемая «нулевая» гипотеза H0 о статистической незначимости уравнения регрессии отвергается при выполнении условия F > F крит, где F крит определяется по таблицам F -критерия Фишера по двум степеням свободы k 1 = m , k 2= n- m - 1 и заданному уровню значимости α.

Значимость одного и того же фактора может быть различной в зависимости от последовательности введения его в модель.

(слайд 4) Мерой для оценки включения фактора в модель служит частный F -критерий (оценивает статистическую значимость присутствия каждого из факторов в уравнении):

,

где
- коэффициент множ. детерминации для модели с полным

набором факторов;

- тот же показатель, но без включения в модель фактора х1 ;

n – число наблюдений;

m – число параметров при переменных х.

Если фактическое значение F превышает табличное, то дополнительное включение в модель фактора xi статистически оправдано и коэффициент чистой регрессии bi при факторе xi статистически значим.

Если же фактическое значение F меньше табличного, то нецелесообразно включать в модель дополнительный фактор, поскольку он не увеличивает существенно долю объясненной вариации результата, а коэффициент регрессии при данном факторе статистически не значим.

(слайд 5) Частный F-критерий оценивает значимость коэффициентов чистой регрессии. Зная величину , можно определить и t -критерий Стьюдента :

или

где m bi – средняя квадратическая ошибка коэффициента регрессии b i , она может быть определена по формуле:

.

Величина стандартной ошибки совместно с t-распределением Стьюдента при n-m-1 степенях свободы применяется для проверки значимости коэффициента регрессии и для расчета его доверительного интервала.

Применение линейной регрессии в прогнозировании

Прогнозирование - это самостоятельная отрасль науки, которая находит широкое применение во всех сферах человеческой деятельности. Существует большое разнообразие видов и способов прогнозирования, разработанных с учетом характера рассматриваемых задач, целей исследования, состояния информации. Этим вопросам посвящено много книг и журнальных статей. Покажем на примере линейной регрессии применение эконометрических моделей в прогнозировании значений экономических показателей.

В обыденном понимании прогнозирование - это предсказание будущего состояния интересующего нас объекта или явления на основе ретроспективных данных о прошлом и настоящем состояниях при условии наличия причинно-следственной связи между прошлым и будущим. Можно сказать, что прогноз - это догадка, подкрепленная знанием. Поскольку прогностические оценки по сути своей являются приближенными, может возникнуть сомнение относительно его целесообразности вообще. Поэтому основное требование, предъявляемое к любому прогнозу, заключается в том, чтобы в пределах возможного минимизировать погрешности в соответствующих оценках. По сравнению со случайными и интуитивными прогнозами, научно обоснованные и планомерно разрабатываемые прогнозы без сомнения являются более точными и эффективными. Как раз такими являются прогнозы, основанные на использовании методов статистического анализа. Можно утверждать, что из всех способов прогнозирования именно они внушают наибольшее доверие, во-первых, потому что статистические данные служат надежной основой для принятия решений относительно будущего, во-вторых, такие прогнозы вырабатываются и подвергаются тщательной проверке с помощью фундаментальных методов математической статистики.

Оценка параметров линейной регрессии представляет собой прогноз истинных значений этих параметров, выполненный на основе статистических данных. Полученные прогнозы, оказываются достаточно эффективными, так как они являются несмещенными оценками истинных параметров.

Применим модель линейной регрессии (8.2.4) с найденными параметрами (8.2.8) и (8.2.9) для определения объясняемой переменной на некоторое множество ненаблюдаемых значений объясняющей переменной . Точнее говоря, поставим задачу прогнозирования среднего значения , соответствующего некоторому значению объясняющей переменной , которое не совпадает ни с одним значением . При этом может лежать как между выборочными наблюдениями так и вне интервала . Прогноз значения может быть точечным или интервальным. Ограничимся рассмотрением точечного прогноза, т.е. искомое значение определим в виде

где - наблюдаемые значения случайной величины , а - коэффициенты (веса), которые должны быть выбраны так, чтобы был наилучшим линейным несмещенным прогнозом, т.е. чтобы

Из (8.5.1) для наблюдаемых значений

Так как по свойству математического ожидания ((2.5.4) - (2.5.5))

,

Но так как в правой части под оператором математического ожидания стоят только постоянные числа, то

Учитывая соотношение можем сказать теперь, что будет несмещенным линейным прогнозом для тогда и только тогда, когда

Следовательно, всякий вектор удовлетворяющий условиям (8.5.2), делает выражение (8.5.1) несмещенным линейным прогнозом величины . Поэтому надо найти конкретное выражение весов через известные нам величины. Для этого решим задачу минимизации дисперсии величины :

Так как под оператором дисперсии в первом слагаемом правой части уравнения стоят постоянные числа, то

С учетом предположений b) и c) и пользуясь свойствами дисперсии (2.5.4) и (2.5.6), имеем:

где - среднеквадратическое отклонение случайной величины .

Составим оптимизационную задачу минимизации дисперсии с ограничениями (8.5.2):

при ограничениях

Так как множитель не зависит от и не влияет на минимальное значение целевой функции, то функцию Лагранжа (см. (2.3.8)) сконструируем следующим образом:

где и - множители Лагранжа. Необходимые условия оптимальности точки имеют вид (см. (2.3.9)):

(8.5.3)

Просуммировав первое уравнение по , с учетом второго уравнения получим:

Отсюда находим множитель Лагранжа

где - среднее значение случайной величины . Полученное значение вновь подставим в первое уравнение системы (8.5.3) и найдем