Политенные хромосомы. Хромосомы в мейозе Конъюгация 3 х хромосом называется

07.12.2023

Во-вторых, боковой конъюгации хроматид . Клетки, в которых есть политенные хромосомы, теряют способность к делению, они являются дифференцированными и активно секретирующими, то есть, политенизация хромосом является способом увеличения числа копий генов для синтеза какого-либо продукта. Политенные хромосомы можно наблюдать у двукрылых , у растений в клетках, связанных с развитием зародыша, у инфузорий при формировании макронуклеуса . Политенные хромосомы значительно увеличиваются в размерах, что облегчает их наблюдение и что позволяло изучать активность генов ещё в 1930-е годы. Принципиальным отличием от других типов хромосом является то, что политенные хромосомы являются интерфазными, тогда как все остальные можно наблюдать только во время митотического или мейотического деления клетки .

Классическим примером являются гигантские хромосомы в клетках слюнных желёз личинок Drosophila melanogaster . Репликация ДНК в этих клетках не сопровождается делением клетки , что приводит к накоплению вновь построенных нитей ДНК . Эти нити плотно соединены между собой по длине. Кроме того, в слюнных железах происходит соматический синапсис гомологичных хромосом, то есть, не только сестринские хроматиды конъюгируют между собой, но и гомологичные хромосомы каждой пары конъюгируют между собой. Таким образом, в клетках слюнных желёз можно наблюдать гаплоидное число хромосом .

История

Термин «политенная хромосома» предложил П. Коллер (P. Koller ) в 1935 году, а окончательно ввёл в науку С. Дарлингтон в 1937 году .

Размеры

Политенные хромосомы во много раз превышают по размеру хромосомы обычных соматических клеток . Они, как правило, в 100-200 раз длиннее и в 1000 раз толще (содержат до 1000 хромосом), чем хромосомы многих интерфазных клеток (как половых , так и соматических). Так, у личинок D. melangaster общая длина четырёх пар хромосом в слюнных железах составляет 2000 мкм, а в обычных соматических клетках эта величина равна 7,5 мкм .

Строение

Исчерченность

Характерная форма и размеры политенных хромосом достигаются вследствие их максимальной деспирализации и многократного воспроизведения хромосом без их последующего расхождения, то есть они образуются как результат эндомитоза .

Политенные хромосомы имеют характерную поперечную исчерченность, обусловленную наличием участков более плотной спирализации хромонем - хромомер . В тёмных участках (то есть хромомерах) располагается спирализованный неактивный хроматин , в то время как светлые полосы указывают на участок с повышенной транскрипционной активностью. Чёткое различение тёмных дисков и светлых междисковых участков объясняется нерасхождением дочерних хромонем. По этой причине все особенности отдельной хромонемы, в том числе хромомерный рисунок, становятся выраженными более контрастно .

По сути, политенные хромосомы представляют собой пару гигантских гомологичных хромосом , находящихся в состоянии идеально точной соматической конъюгации . При этом диски и междисковые участки гомологов расположены строго параллельно и тесно сближены. Такая конъюгация не характерна для подавляющего большинства соматических клеток .

Впервые карта политенных хромосом была составлена в 1935 году Кэлвином Бриджесом , и она широко используется и по сей день.

Уникальность строения политенных хромосом, а именно возможность чётко различать детали их строения, была использована Т. Пайтнером для изучения их перестроек и характера конъюгации . Вообще, исчерченность политенных хромосом исключительно полезна для исследований, в частности, на примере политенных хромосом была получена визуализация участков активного и неактивного хроматина. На них также можно изучать общую структуру хроматина.

Кроме того, политенные хромосомы помогают идентифицировать личинок комаров-звонцов (Chironomid ), которых другим способом отличить сложно .

Пуфы

В политенных хромосомах процесс транскрипции сопровождается формированием т. н. пуфов - характерных вздутий определённых дисков, образующихся в результате локальной декомпактизации в них ДНК . На активную транскрипцию в этих регионах указывает активное включение 3 H-уридина в районе пуфов. Крупные пуфы называются кольцами Бальбиани (в некоторых источниках термины «пуф» и «кольца Бальбиани» употребляют как синонимичные) .

Таким образом, образование пуфов является ярким примером дифференциальной транскрипции . Другим известным примером этого процесса является формирование хромосом типа ламповых щёток .

Функции

Политенные хромосомы содержат большое число копий генов, что многократно усиливает генную экспрессию . Это, в свою очередь, увеличивает производство необходимых белков. Например, в клетках слюнных желёз личинок D. melanogaster политенизация хромосом необходима для образования большого количества клейкого вещества до окукливания .

Примечания

  1. , с. 66-70.
  2. , с. 69.
  3. Balbiani E. G. Sur la structure du noyau des cellules salivaires chez les larves de Chironomus (фр.) // Zoologischer Anzeiger (англ.) русск. : magazine. - 1881. - Vol. 4 . - P. 637-641 .
  • Партеногенез.
  • Общая характеристика половых клеток, или гамет.
  • 7. Закон расщепления. Доминантность и рецессивность.
  • 8. Закон чистоты гамет. Анализирующее скрещивание.
  • 3 Части семян жёлтых морщинистых, 3 части семян – зелёных гладких и I часть семян – зелёных морщинистых.
  • Контролируемых генами х- и у-хромосом человека.
  • Линейное расположение генов в хромосомах. Генетические и цитологи­ческие карты хромосом.
  • Неаллельных генов в детерминации признаков.
  • Множественные аллели. Наследование групп крови по системе аво.
  • Комплементарность. Эффект положения.
  • Полимерия. Полигенное наследование как механизм наследования коли­чественных признаков.
  • Количественная и качественная специфика проявления генов в призна­ках: пенетрантность, экспрессивность, поле действия гена, плейотро­пия, генокопии.
  • Перенос биологической информации на белок (трансляция). Структура, виды и роль рнк.
  • Гипотеза «один ген – один фермент», ее современная трактовка..
  • 5. Регуляция экспрессии генов у прокариот и эукариот.
  • Генные мутации. Понятие о генных болезнях.
  • Антимутационные барьеры организма.
  • Репарация генетического материала. .
  • Генные болезни, механизмы их развития, наследования, частота воз­никновения.
  • 1. Структурные мутации хромосом (хромосомные аберрации).
  • Дупликации, инверсии, кольцевые хром-мы. Механизм возникновения. Фенотипическое проявление.
  • Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.
  • Радиационные мутации. Генетическая опасность загрязнения окружающей среды.
  • Анеуплоидия.
  • 4. Медико-генетическое консультирование.
  • 5. Пренатальная диагностика:
  • 2 Стадия – активации гамет, наступает после их контакта. Активация сперматозоида называется акросомная реакция. Активация яйцеклетки – кортикальная реакция.
  • Общая характеристика гаструляции. Особенности гаструляции у амфибий и птиц. Гаструляция у высших (плацентарных) млекопитающих.
  • Роль наследственности и среды в эмбриональном развитии.
  • Морфогенез (формообразование), его основные процессы:
  • 5. Интеграция в развитии, целостность онтогенеза. Роль гормонов в ко­ординации процессов развития.
  • Биологические аспекты старения и смерти.
  • Генетический контроль роста. Роль нервной и эндокринной системы в регуляции процессов роста.
  • Старение как продолжение развития. Программные теории старения.
  • Процессы, ведущие к старению на разных уровнях организации.
  • 3. Репаративная регенерация как процесс вторичного развития, ее биоло­гическая сущность.
  • 4. Характерные признаки репаративной регенерации, атипичная регенерация.
  • 5. Масштаб регенерации, его границы у разных видов животных.
  • 6. Способы репаративной регенерации: эпиморфоз и морфоллаксис.
  • 7. Регенерация органов и тканей у высокоорганизованных животных, чело­века.
  • 8. Регенерационная гипертрофия: молекулярные, клеточные и системные механизмы.
  • 9. Эволюция регенерационной способности.
  • 13. Регенерация патологически измененных органов.
  • Организм как открытая саморегулирующая система. Общие (кибернети­ческие) закономерности гомеостаза живых систем.
  • 4. Клеточные механизмы гомеостаза.
  • 5. Системные механизмы гомеостаза:
  • 1. Популяционная структура человечества. Демографические и генетичес­кие характеристики популяции людей. Демы, изоляты.
  • 2. Дрейф генов и особенности генофондов изолятов.
  • 3. Влияние мутационного процесса, миграции, изоляции, популяционных волн на генетическую конституцию людей.
  • 4. Специфика действия естественного отбора в человеческих популяциях. Отбор против гетерозигот и гомозигот.
  • 5. Отбор и контротбор..
  • 6. Генетический полиморфизм человечества.
  • И кро­веносной систем хордовых.
  • Главные эволюционные характеристики органов и функций:
  • 2. Главные принципы эволюции органов и функций:
  • Филогенез органов дыхания хордовых
  • 3. Филогенез органов кровообращения у хордовых:
  • И выделительной системы хордовых.
  • Филогенез пищеварительной системы хордовых:
  • 2. Филогенез выделительной системы хордовых:
  • Определение и структура экологии.
  • Среда как экологическое понятие. Факторы среды.. Понятие экологической валентности.
  • Понятие экосистемы, биогеоценоза, антропобиогеоценоза.
  • Изменение биоценозов во времени. Экологические сукцессии.
  • Биосфера как естественноисторическая система. Современные концеп­ции биосферы. .
  • Живое вещество: количественная и качественная характеристика. Роль в природе планеты.
  • Функции биосферы в развитии природы Земли.
  • Круговорот химических элементов как главная функция биосферы.
  • Эволюция биосферы.
  • Возрастающее влияние человека на биосферу. Экологические последс­твия.
  • Возникновение и развитие ноосферы.
  • Предмет и задачи экологии человека.
  • Общая характеристика среды обитания людей.
  • 3. Понятие адаптивного ти­па.
  • 4. Человек как творческий экологический фактор. Антропоген­ные экосистемы.
  • 12 Видов европейских бабочек, а некоторые виды других насекомых перешли к питанию лепестками ее цветков и семенами будлеи.
  • 5. Адаптация человека к среде обитания: биологические и социальные ас­пекты.
  • 6. Проблемы охраны окружающей среды и рационального природопользования.
  • 8. Цитоплазма: основное вещество, цитоскелет, органеллы.

    Основное вещество цитоплазмы представлено гиалоплазмой. Это коллоидный раствор неорганических и органических веществ, особенно много в гиалоплазме белков.

    Функции гиалоплазмы:

      соединение компонентов цитоплазмы в единое целое

      участие в транспорте веществ

      в гиалоплазме протекает гликолиз

      в гиалоплазме накапливается АТФ и включения.

    Цитоскелет клетки представлен микротрубочками и микрофиламентами.

    Каждая микротрубочка представляет собой полый цилиндр диаметром 20-30нм, образованный белком тубулином. Микротрубочи играют роль цитоскелета, т.к. пронизывают всю цитоплазму клетки. Кроме того, микротрубочки участвуют в создании клеточного центра и в транспорте веществ внутри клетки.

    Микрофиламенты – это белковые нити толщиной около 4нм. Большинство из них образовано молекулами актинов, которых выявлено около 10 видов. Они могут группироваться в пучки, образующие опорные структуры цитоскелета.

    Микротрубочки – трубчатые образования белковой природы различной длины с внешним диаметром 24 нм. Микротрубочки встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей.

    Органеллы животной клетки: ЭПС, аппарат Гольджи, лизосомы, митохондрии, пластиды, рибосомы, клеточный центр.

    Органоиды клетки делятся на органоиды общего назначения и спе­циального назначения.

    Органоиды спе­циального назначения встречаются только в специализированных клет­ках и обеспечивают выполнение этими клетками специфических функций. К ним относятся миофибриллы мышечной клетки, ресничный эпителий дыхательных путей, ворсинки тонкого кишечника, жгутик сперматозоида.

    Органоиды общего назначения присущи всем клеткам. К ним относятся эндо­плазматическая сеть, лизосомы, митохондрии, рибосомы, комплекс Гольджи, клеточный центр, микротрубочки и микрофиламенты, а также пластиды (последние только у растений).

    Эндоплазматическая сеть представлена сетью каналов и уплощённых цистерн, ограни­ченных одинарной мембраной. Она разветвляется по всему объёму ци­топлазмы, что позволяет ей выполнять следующие функции:

      механическая – обеспечение постоянной формы клетки;

      увеличение площади внутренней поверхности клетки;

      транспортная – перенос веществ между органоидами клетки, органои­дами и ядром, клеткой и внешней средой;

    ЭПС подразделяется на два типа: шероховатую и гладкую. Шерохо­ватая имеет на наружной поверхности многочисленные рибосомы, на которых синтезируется белок. Гладкая сеть состоит из каналов и цистерн меньшего сечения, чем в шероховатой ЭПС. Она выполняет следующие функции:

      синтез липидов, входящих в состав мембран;

      обезвреживание вредных продуктов метаболизма;

      синтез предшественников стероидных гормонов;

    Лизосома . Это пузырёк диаметром 0,2 - 0,5 мкм, покрытый однослойной мемб­раной. Эта мембрана предохраняет структуры и вещества клетки от разрушающих действий ферментов лизосом. При нарушений её целостнос­ти ферменты выходят в цитоплазму клетки, и происходит автолиз – са­мопереваривание клетки. Ферменты лизосом способны расщеплять бел­ки, нуклеиновые кислоты, полисахариды и липиды.

    Функции лизосом:

    1. осуществляют внутриклеточное пищеварение; лизосомы – миниа­тюрная пищеварительная система клетки;

    2. удаляют отжившие органоиды клетки или личиночные органы. Так, хвост у головастика лягушек рассасывается под действием фермента лизосом – катепсина;

    3. превращают вредные для клетки вещества в перевариваемые про­дукты;

    4. участвуют в защите клетки то бактерий и вирусов (вирусы замуровываются в лизосоме).

    Образуются лизосомы в комплексе Гольджи: сюда поступают синте­зированные на рибосомах ферменты, здесь они окружаются мембраной и вы­водятся в цитоплазму. Это первичные (неактивные) лизосомы. Вторичные (активные) лизосомы образуются из первичных. Они подразделяются на фаголизосомы и аутолизосомы . Фаголизосомы переваривают материал, поступающий в клетку извне. Аутолизосомы разрушают собственные, изношенные структуры клетки. Вторичные лизосомы, в которых процесс переваривания завершён, называются остаточными тельцами . В них отсутствуют ферменты, и содержится непереваренный материал.

    Митохондрия (1-5 мкм) – двумембранный органоид, выполняющий функцию внутриклеточной энергетической станции. Это округлые образования, ограниченные двумя мембранами – наруж­ной и внутренней. Наружная мембрана гладкая, она регулирует как пос­тупление веществ в митохондрию, так и выведение их. Внутренняя мембрана образует складки – кристы, обращённые внутрь митохондрии. Внутри митохондрии находится так называемый матрикс, содержащий различные ферменты, ионы Са 2+ и Мg 2+ , а также ДНК, т-РНК, и-РНК и рибосомы (причём ДНК и рибосомы у митохондрий похожи на таковые бактерий).

    Благодаря наличию собственной ДНК (1 молекула кольцевой формы), митохондрии могут размножаться не­зависимо от деления клетки. Происходит это путём перешнуровки исходной митохонд­рии. Предварительно у них удваивается количество ДНК. Благодаря содержанию т-РНК, и-РНК и рибосом, митохондрии они могут синтезировать собственный белок.

    Кроме того, митохондрии играют определённую роль в передаче признаков по наследству (цитоплазматическая наследственность).

    На кристах митохондрии происходят окислительно-восстановительные процессы, сопровождающиеся выделени­ем энергии. Она используется на образование фосфатных связей в АТФ. Накопление АТФ делает митохондрии своеобразными аккумуляторами энергии клетки, которая расходуется на процессы жизнедеятельности клетки по мере надобности. Из-за интенсивной работы митохондрии имеют малую продолжительность жизни, например митохондрии клеток печени живут всего 10 дней.

    Аппарат Гольджи представляет собой систему диктиосом числом от нескольких десятков до нескольких сотен и даже тысяч на клетку. Каждая диктиосома образована стопкой из 3-12 крупных цистерн, похожих на блюдца. От цистерн отходят во все стороны трубочки и пузырьки, имеющие мембранное строение. Трубочки соединяют отдельные цис­терны соседних стопок, так образуется их единая сеть. Пузырьки участвуют в образовании первичных лизосом. В разных типах клеток аппарат Гольджи занимает строго определённое положение, вблизи ядра.

    Функции аппарата Гольджи разнообразны:

    1. образование первичных лизосом, которые поступают затем в цитоплазму;

    2. упаковка белков, поступающих из ЭПС, для последующего экспорта из клетки;

    3. синтез структурных компонентов клетки, например, коллагеновых нитей;

    4. синтез жиров и полисахаридов, входящих в состав мембран клетки;

    Рибосома (0,02-0,03 мкм) – не мембранный органоид, осуществляющий биосинтез белка. Рибосома состоит из двух неравных субъединиц – большой и малой. Обе субъединицы образуются в ядрышках, но объединяются они в рибосому только в момент присоединения к и-РНК. Этот процесс происходит с помощью ионов Мg 2+ .

    В каждой клетке содержится от десятков тысяч до миллионов рибосом. Часть их находится в свободном состоянии, но большинство рибосом прикреплено к мембранам ЭПС. Первые синтезируют белки, исполь­зуемые для нужд клетки, вторые синтезируют белки "на экспорт". Они по кана­лам ЭПС поступают в комплекс Гольджи, пакуются в мембраны, а затем выводятся из клетки. Скорость работы рибосом поразительна – одна белковая молекула средних размеров синтезируется за одну минуту. Это позволяет непре­рывно обновлять белки организма, изнашивающиеся в процессе его жизнедеятельности. Так, белки печени человека обновляются за 7 су­ток.

    Клеточный центр – не мембранный органоид, в котором из белка тубулина образуются микротрубочки. Клеточный центр состоит из двух центриолей, расположенных перпендикулярно друг к другу. Каждая центриоль – это цистерна, состоящая из 9 строенных микротрубочек. Микротрубочки соединены между собой системой связок, а снаружи одеты белковым чехлом. Перед делением клетки центриоли удваивают­ся. Во время митоза центриоли определяют местоположения полюсов веретена деления. Причём положение центриолей в делящейся клетке определяет центры новых клеток. Здесь будет располагаться ядро, т.к. клеточный центр всегда располагается вблизи ядра.

    9. Включения

    Это непостоянный компонент цитоплазмы. Наличие их и количество зависит от интенсивности обмена веществ и состояния ор­ганизма. Они делятся на три группы:

    1. запасной питательный материал (гликоген, жир, крахмал);

    2. вещества, подлежащие выведению из клетки (ферменты, гормоны);

    3. балластные вещества (пигменты, соли щавелевой кислоты). Они более характерны для растительных клеток, т.к. у растений нет сис­тем, аналогичной выделительной системе животных.

    ЛЕКЦИЯ 2 Ядро клетки. Наследственный аппарат клеток человека.

    1. Строение и функции ядра.

    Ядро находится либо в центре клетки, либо смещено на периферию. Ядро эукариотической клетки имеет собственную мембрану, отграничи­вающую его от цитоплазмы. Мембрана имеет 2 слоя, между ними находится околоядерное пространство, связанное с ЭПС.

    Ядерная мембрана имеет отверстия – поры. Но они не сквозные, а заполнены специальными белками. Через поры из ядра в цитоплазму выходят молекулы РНК, а навстречу им в ядро передвигаются белки. Сама же мембрана ядерной оболочки обеспечивает прохождение низко­молекулярных соединений в обоих направлениях. Внутренняя мембрана ядерной оболочки имеет белковую подстилку, к которой крепятся хромосомы. Это обеспечивает их упорядоченное расположение.

    Функции ядерной оболочки: защитная, регуляция транспорта веществ и органелл

    Под мембраной находится ядерный сок – кариоплазма . В ней находятся одно или несколько ядрышек, значительное количество РНК и ДНК, различ­ные белки, в т.ч. большинство ферментов ядра, а также свободные нуклеотиды, аминокислоты, промежуточ­ные продукты метаболизма. Кариоплазма осуществляет взаимосвязь всех ядерных структур.

    Ядрышки – это округлые, сильно уплотнённые, не ограниченные мембраной участки клеточного ядра диамет­ром 1-2 мкм и больше. Форма, размеры и количество ядрышек зависят от функционального состояния ядра: чем крупнее ядрышко, тем выше его активность. В ядре их может содержаться от 1 до 10, а в ядрах дрожжей они отсутствуют.

    Во время деления ядра ядрышки разрушаются. В конце деления они вновь формируются вокруг определённых участков хромосомы (ядрышковых организаторов), расположенных в области вторичной перетяжки хромосомы. Функция ядрышек состоит в синтезе

    р-РНК и сборки субъединиц рибосом из белка и р-РНК.

    В два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз происходит в половых клетках и связан с образованием гамет.

    С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

    В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом , правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

    Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора). Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции , дупликации , инверсии или транслокации).

    Фазы мейоза

    Мейоз состоит из 2 последовательных делений с коротким периодом (интеркинез) между ними.

    • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
    • Лептотена , или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
    • Зиготена , или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
    • Пахитена , или пахинема - (самая длительная стадия) - в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы . В них происходит кроссинговер - обмен участками между гомологичными хромосомами.
    • Диплотена , или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток .
    • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

    К концу профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления , разрушаются ядерная мембрана и ядрышки . Генетический материал - 2n4c (n - число хромосом, c - число молекул ДНК).

    • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки. Генетический материал - 2n4c.
    • Анафаза I - микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе . У каждого полюса генетический материал n2c, во всей клетке 2n4c.
    • Телофаза I

    В результате первого редукционного деления мейоза I образуется две клетки с генетическим материалом n2c

    Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

    • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.
    • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку .
    • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
    • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

    В результате из одной диплоидной клетки образуется четыре гаплоидных клетки с генетическим материалом nc. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

    Варианты

    У некоторых простейших мейоз протекает иначе, чем описанный выше типичный мейоз многоклеточных . Например, может протекать только одно, а не два последовательных, мейотических деления, а кроссинговер - проходить во время другой фазы мейоза

    В два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом - образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

    С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

    В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

    Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет . Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

    Фазы мейоза

    Мейоз состоит из двух последовательных делений с короткой интерфазой между ними.

    • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
    • Фаза лептотены или лептонемы - конденсация ДНК с образованием хромосом в виде тонких нитей.
    • Зиготена или зигонема - коньюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.
    • Пахитена или пахинема - кроссинговер (перекрест) обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.
    • Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.
    • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.
    • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
    • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
    • Телофаза I

    Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

    • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
    • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
    • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
    • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.