Криптон химические свойства. Всё о химии Атомная масса криптона

13.04.2024

Криптон

КРИПТО́Н -а; м. [от греч. kryptos - скрытый] Химический элемент (Kr), инертный газ (применяется при производстве газоразрядных трубок, лазеров).

Крипто́нный; крипто́новый, -ая, -ое.

крипто́н

(лат. Krypton), химический элемент VIII группы периодической системы, относится к благородным газам. Название от греческого kryptós - скрытый (в связи с трудностями получения). Плотность 3,745 г/л, t кип –153,35ºC. Применяют главным образом в криптоновых лампах, в газоразрядных трубках и в лазерах. Дифторид KrF 2 - сильный окислитель, фторирующий агент.

КРИПТОН

КРИПТО́Н (лат. Krypton, от греческого «криптос» - скрытный) , Kr (читается «криптон»), химический элемент с атомным номером 36, атомной массой 83,80. Атмосферный криптон состоит из шести стабильных изотопов: 78 Кr (0,354% по объему), 80 Кr (2,27%), 82 Кr (11,56%), 83 Кr (11,55%), 84 Кr (56,90%) и 86 Кr (17,37%). Инертный газ. Расположен в группе VIIIA в 4 периоде периодической системы элементов. Радиус атома 0,198 нм. Конфигурация внешней электронной оболочки 1s 2 2s 2 p 6 3s 2 p 6 d 10 4s 2 p 6 .Энергии последовательной ионизации соответственно, 13,999, 24,4, 36,4, 52,5 и 64,7 эВ.
История открытия
Криптон открыли в 1898 английские ученые У. Рамзай (см. РАМЗАЙ Уильям) и М. Траверс (см. ТРАВЕРС Моррис Уильям) при исследовании жидкого воздуха.
Нахождение в природе
Содержание в атмосферном воздухе 1,14·10 -4 % по объему, общие запасы 5,3.10 12 м 3 . В 1 м 3 воздуха содержится около 1 см 3 криптона.
Получение
В промышленности криптон получают как побочный продукт при разделении воздуха на кислород (см. КИСЛОРОД) и азот (см. АЗОТ) .
Физические и химические свойства
Криптон - одноатомный газ без цвета и запаха.
Температура кипения –153,22°C, плавления –157,37°C. Критическая температура –63,8°C, критическое давление 5,50 МПа. Плотность при нормальных условиях 3,745 кг/м 3 .
В 100 мл воды при 20°C растворяется 5,4 мл Kr.
Криптон образует клатраты (см. КЛАТРАТЫ) с водой и многими органическими веществами: Kr·5,75Н 2 О; 2,14Kr·12С 6 Н 5 ОН и другие. В таких соединениях атомы Kr - гости - занимают полости, имеющиеся в кристаллических решетках веществ-хозяев.
При низких температурах получен дифторид криптона KrF 2 и его производные, например, KrF + SbF 6 – , Kr 2 F 3 + AuF 6 – . Синтезирован неустойчивый тетрафторид криптона KrF 4 , который, взаимодействуя с охлажденным раствором Ba(OH) 2 , образует соль BaKrO 4 .
Применение
Криптон используется в лампах накаливания, газоразрядных и рентгеновских трубках. Радиоактивный изотоп 85 Kr используют как источник b-излучения в медицине, для обнаружения течей в вакуумных установках, как изотопный индикатор при исследованиях коррозии, для контроля износа деталей.


Энциклопедический словарь . 2009 .

Синонимы :

Книги

  • Компьютерная безопасность. Криптографические методы защиты , А. А. Петров. В книге рассматриваются актуальные вопросы защиты данных при создании распределенных информационных систем масштаба предприятия, приводятся подробные описания принципов применения современных…
  • Назад в будущее. Супермен III , Джон Томпсон, Уильям Котцвинкл. "НАЗАД В БУДУЩЕЕ" (часть I, II, III) Джона Томпсона. Герой романа Марти Макфлай - студент колледжа - волею случая путешествует во времени. Перенесясь из 80-х годов в 50-е, он встречается со…

В 1898 году английский учёный У.Рамзай выделил из жидкого воздуха (предварительно удалив кислород, азот и аргон) смесь, в которой спектральным методом были открыты два газа: криптон (от греческого слова kruptoz "скрытый", "секретный") и ксенон ("чуждый", "необычный").

Нахождение в природе, получение:

Содержание криптона в атмосфере 1,14*10 -4 % по объему; запасы в атмосфере оцениваются в 5,3*10 12 м 3 . В газах урансодержащих минералов находится 2,5-3,0% по массе криптона, в облученном топливе ядерных реакторов - до 0,04%. В космосе на 6*10 7 атомов гелия приходится 1 атом криптона. Образуется при ядерном делении, в том числе и в результате естественных процессов, происходящих в рудах радиоактивных металлов.
В природе криптон представлен пятью стабильными нуклидами и одним слаборадиоактивным: 78 Kr (изотопная распространённость 0,35 %), 80 Kr (2,28 %), 82 Kr (11,58 %), 83 Kr (11,49 %), 84 Kr (57,00 %), 86 Kr (17,30 %). Для обнаружения криптона используют эмиссионную спектроскопию (характеристические линии 557,03 нм и 431,96 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.
Криптон получают как побочный продукт при разделении воздуха. Чтобы получить литр криптона, приходится переработать более миллиона литров воздуха.

Физические свойства:

Криптон - инертный одноатомный газ без цвета, вкуса и запаха. Tкип = -153,22°C, Тпл = -157,37°C. Плотность (н.у.)=3,745 кг/м3.В 100 мл воды при 20°C растворяется 5,4 мл Kr.

Химические свойства:

Криптон химически инертен. В жёстких условиях реагирует со фтором, образуя дифторид криптона. Относительно недавно было получено первое соединение со связями Kr-O (Kr(OTeF 5) 2).В 2003 году в Финляндии было получено первое соединение со связью криптон - углерод (H-Kr-C#CH - гидрокриптоацетилен) путем фотолиза криптона и ацетилена на криптонной матрице. Криптон способен образовывать клатраты Kr*6H 2 O, Kr*3C 6 H 5 OH

Важнейшие соединения:

Дифторид криптона KrF 2 - летучие бесцветные кристаллы, первое открытое соединение криптона. Неустойчив, легко разлагается на фтор и криптон, химически очень активен. Бурно реагирует с водой (выше 10 °C со взрывом):
2KrF 2 + 2H 2 O = 2Kr + 4HF + O 2 .
Очень сильный фторирующий агент: 2Au + 5KrF 2 = 2AuF 5 + 5Kr
Проявляет свойства слабого основания Льюиса: SbF 5 + KrF 2 = .
Полученное соединение достаточно устойчиво и имеет температуру плавления 50°С.
Тетрафторид криптона KrF 4 , - белые кристаллы. Химически очень активен. При повышенных температурах разлагается на фтор и криптон. Действием раствора Ba(ОН) 2 на KrF 4 получен криптонат бария ВаКrО 4:
3KrF 4 + 8Ba(ОН) 2 = 2ВаКrО 4 + 6BaF 2 + 8H 2 O + Kr
Однако существование криптоната бария нельзя считать вполне даказанным.

Применение:

Криптон используют для наполнения ламп накаливания, газоразрядных и рентгеновских трубок. Низкая теплопроводность криптона позволяет делать эти устройства более компактными. Фториды криптона предложены в качестве окислителей ракетного топлива и в качестве компоненты для накачки боевых лазеров. Используется криптон в качестве заполнения пространства между стеклами в стеклопакете для придания стеклопакету повышенных теплофизических и звукоизоляционных свойств.

Биологическая роль и токсичность:

Воздействие криптона на живые организмы изучено плохо. Исследуются возможности его использования в водолазном деле в составе дыхательных смесей и при повышенном давлении как средство для анестезии. Отмечено, что при вдыхании газовых смесей, содержащих криптон, наблюдается наркотический эффект.

Сагидулина Ильмира
ХФ ТюмГУ, 581 группа. 2011 г.

Источники: Википедия: http://ru.wikipedia.org/wiki/Криптон
Сайт "XuMuk.ru", Химическая энциклопедия:

Превращается в жидкость при - 153,9° С, а уже при-156,6°С он отвердевает. Заметим попутно, что малые температурные интервалы между жидким и твердым состояниями характерны для всех благородных газов. Это свидетельствует о слабости сил межмолекулярного взаимодействия, что вполне естественно: у этих атомов «замкнутые», целиком заполненные электронные оболочки. Молекула криптона одноатомна.

Первый из тяжелых благородных газов. Такое деление не искусственно. Обратите внимание на большой разрыв между значениями критических величин легких и тяжелых благородных газов. У первых они крайне низки, у вторых значительно выше. Так, точки кипения криптона и гелия разнятся, на 116,1° С. Сильно разнятся и другие важнейшие характеристики. Объяснить это логичнее всего характером сил межмолекулярного взаимодействия: с увеличением молекулярного веса благородного газа резко вырастает сила взаимопритяжения молекул.

Криптон - достаточно редкий и рассеянный газ. На Земле его больше всего в атмосфере - 3-10-4% (по весу). Содержание криптона в атмосфере очень медленно (даже в масштабах геологических эпох) нарастает: криптон «выдыхают» некоторые .

Природный криптон состоит из шести стабильных изотопов: 78Кr, 80Кr, 82Кr, 83Кr, 84Кr и 86Кr. И все они есть в горных породах, природных водах и атмосфере. Обильнее прочих представлен 84Кr, на его долю приходится 56,9% атмосферного криптона. ,

В ядерных реакциях искусственно получены 18 радиоактивных изотопов криптона с массовыми числами от 72 до 95. Некоторые из этих изотопов нашли применение как радиоактивные индикаторы и генераторы излучения.

Особо важным оказался криптон-85 - почти чистый бета-излучатель с периодом полураспада 10,3 года.

Спектр криптона изобилует линиями во всем видимом диапазоне, особенно в коротковолновой области. Самые яркие линии расположены между 4807 и 5870 А, оттого в обычных условиях криптон дает зеленовато-голубое свечение.

Благодаря хорошей растворимости в жидкостях организма криптон при парциальном давлении 3,5 атм уже оказывает наркотическое действие на человека.

А теперь о химии криптона.

В атоме криптона 36 электронов, распределенных па четырех энергетических уровнях (оболочках). Это обстоятельство в физическом и отчасти химическом смысле приближает криптон к обычным, «нормальным» газам. Почему?

В атомах тяжелых благородных газов внешние электронные оболочки замкнутые. Но будучи сравнительно отдаленными от ядра, оболочки получают некоторую автономность. Чем тяжелее атомы инертного газа, тем больше их способность объединяться с некоторыми другими атомами.

Химия «инертных» газов (теперь без кавычек не обойтись) - новая область науки. Но возникла она не на голом месте. Еще в первой четверти XX в. ученые наблюдали образование в электрическом разряде ионизированных молекул инертных газов и как будто бы соединений этих газов с другими элементами. Вне разряда эти образования быстро распадались, и первые сообщения о соединениях инертных газов казались малообоснованными.

Позже стали известны кристаллические клатратные соединения криптона с Н2O, H2S, SO2, галогеноводородами, фенолами, толуолом и другими органическими веществами. Они устойчивы даже при комнатной температуре под давлением 2-4 атм. Но еще в 40-х годах советский ученый Б. А. Никитин показал, что в клатратных соединениях связь молекулярная, в них валентные электроны не взаимодействуют.

В 1933 г. Лайнус Полинг, позже дважды лауреат Нобелевской премии, развивая представление о валентных связях, предсказал возможность существования фторидов криптона в ксенона. Но лишь в 1962 г. было получено первое такое соединение - гексафтороплатинат ксенона. Вслед за тем были синтезированы фториды криптона, ксенона, радона и многочисленные их производные.

Разумеется, соединения криптона и других благородных газов получить не легко. Так, кристаллический KrF2 был получен в результате воздействия тихого электрического разряда на смесь из фтора, криптона и аргона в молярном отношении 1:70: 200. Условия реакции: давление - 20 мм ртутного столба, температура-минус 183° С.

Свойства дифторида криптона достаточно обычны: при комнатной температуре он неустойчив, но при температуре сухого льда (-78° С) его можно хранить очень долго. И не только хранить, а и исследовать взаимодействие этих бесцветных кристаллов с другими веществами. Дифторид криптона - весьма активный . Он вытесняет из соляной кислоты и из воды. Реагируя с органическими соединениями, он не только окисляет их - иногда при этом происходит замена хлора на в органической молекуле. Впрочем, многие органические , например этиловый спирт, от соприкосновения с дифторидом криптона воспламеняются. Через фторид криптона получены соединения этого элемента с переходными металлами; во всех этих соединениях есть и . Общая формула таких соединений KrF+MeFe6-. Исключения составляют соединения мышьяка и сурьмы: Kr2F3+ , AsFe6-, Kr2F3+ ,SbF6- и KrF+ , Sb2F11-. В реакциях с дифторидом криптона как очень сильным окислителем были получены некоторые уникальные неорганические соединения - пентафторид золота AuF5, гептафторид брома BrF7, перброматы.

Обратите внимание: наша статья рассказывает не о планете Криптон, родине Супермена, а об одноименном газе.

Активно применяемые в промышленности гелий, неон и аргон относятся к «благородным» газам, поскольку не вступают в реакцию с другими элементами периодической системы Менделеева. К этому семейству можно добавить газ криптон (химическое обозначение — Kr), который так же инертен, как и вышеперечисленные элементы, при этом обладает полезными характеристиками, нашедшими применение в светотехнике, медицине и лазерной технологии.

О принципе работы и эксплуатации промышленных газовых лазеров вы можете прочитать в статье лазерная резка металлов , а мы продолжим рассказывать про Kr.

История открытия газа

Открытие Kr для широкой общественности датируется концом 19 века. Это достижение принадлежит британскому химику Уильяму Рамзаю. Уникальную «находку» удалось зафиксировать только со второй попытки, так как изначально название «криптон» было ошибочно применено к другому химическому элементу, который после проведения дополнительных экспериментов оказался гелием.

Что касается газа криптона, то его обнаружение можно отнести к случайностям, поскольку целенаправленно поиск нового химического элемента никто не проводил. Выполняя один из опытов по добыче гелия из жидкого воздуха, Рамзай обнаружил неизвестный компонент с характерным свечением. Учитывая, насколько хорошо он был «спрятан», ученый выбрал соответствующее название, которое в переводе с греческого означает «скрытый» или «секретный».

Одним их способов происхождения Kr является радиоактивный распад. Однако среди ученых существуют и другие гипотезы возникновения данного компонента на Земле. По одной из версий, он образовался в недрах планеты благодаря распаду трансурановых элементов (плутоний, нептуний), ныне не существующих в естественной форме, однако способных воспроизводиться искусственным путем. Приверженцы альтернативной теории отмечают происхождение газа во Вселенной, тогда как в атмосферу Земли он попал исключительно из-за своей массы.

Он чрезвычайно редок и добывается только из атмосферы. В кубометре воздуха Kr занимает объем около 1 см3, точнее — 0.000114% — то есть для получения 1 литра необходимо переработать примерно 900 000 л воздуха. Иных источников Kr нет.

установки по добыче

Стоимость Kr марки 5.0 — около 80-90р\л, но есть один нюанс — в 40л баллоне содержится 6 000 литров Kr (при давлении 150 атм). Таким образом, цена одного баллона приближается к отметке 600 000 рублей. Цифра 5.0 означает чистоту 99.999, подробнее о порядках марок читайте . Также отметим, что каждая девятка после запятой в цифре, обозначающей марку чистоты, усложняет технический процесс добычи и детектирования, чем значительно увеличивает сумму счета.

Какими свойствами обладает газ криптон

Как уже отмечалось, это инертный газ. Его способность взаимодействовать с другими химическими компонентами крайне мала (в жестких условиях Kr может взаимодействовать со фтором и ацетиленом). К остальным полезным характеристикам можно отнести следующее:

  • отсутствие вкуса, цвета и запаха;
  • отсутствие способности воспламеняться;
  • большая масса, троекратно превышающая массу воздуха и двукратно массу воды;
  • температура жидкой фракции: -153 °C;
  • температура твердой фракции: -157 °C;
  • в стандартных условиях возможно возникновение свечения с зелено-голубым оттенком.

Поскольку Kr быстро растворяется в жидкости, он способен оказывать наркотическое воздействие на человека. Тем не менее, опасности для организма это вещество не представляет.

Применение в промышленности

Наиболее известное использование Kr - производство электроламп. Он тяжелее аргона, поэтому повышает стабильность светового потока. Кроме того, он плохо пропускает тепло, тем самым увеличивая полезную мощность ламповых светильников. Именно низкая теплопроводность способствовала активному применению этого вещества при производстве стеклопакетов. Заполняя внутреннее пространство инертным компонентом, удается существенно повысить теплоизоляционные свойства окон.

разряд в Kr

Наряду с гелием и аргоном, он также применяется для производства лазерного луча, мощность которого позволяет раскраивать любой материал, в том числе тугоплавкие виды металла. Для таких целей используются газовые смеси особой чистоты , о чем более подробно можно прочитать по ссылке.

инертные газы

Еще одной важной сферой применения Kr является медицина. С его помощью создается безопасная газовая среда для проведения анестезии. При этом относительно небольшая анестетическая сила позволяет использовать такой наркоз при повышенном давлении. Также с его помощью изучают работу легких, т.к. он является источником бета-излучения. Пациент вдыхает порцию газа, а его распространение по дыхательным органам фиксируется с помощью гамма-камер.

К сожалению, криптон не даст вам силу Супермена, но тем не менее он очень востребован во многих отраслях деятельности, как и другие инертные технические моногазы.

Кстати, аргон и гелий можно приобрести в компании «Промтехгаз» . Высокое качество данной продукции позволяет с успехом применять ее для разных производственных целей, в том числе для эксплуатации лазерного оборудования.

Крипто́н - элемент главной подгруппы восьмой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 36. Обозначается символом Kr (лат. Krypton). Простое вещество криптон (CAS-номер: 7439-90-9) - инертный одноатомный газ без цвета, вкуса и запаха.

История

Входит в группу инертных газов в периодической таблице. В 1898 году английский учёный У.Рамзай выделил из жидкого воздуха (предварительно удалив кислород, азот и аргон) смесь, в которой спектральным методом были открыты два газа: криптон («скрытый», «секретный») и ксенон («чуждый», «необычный»). Название происходит от греч. κρυπτός - скрытый.

Определение

Качественно криптон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии 557,03 нм и 431,96 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.

Химические свойства

Криптон химически инертен. В жёстких условиях реагирует со фтором, образуя дифторид криптона. Относительно недавно было получено первое соединение со связями Kr-O (Kr(OTeF 5) 2).
В 1965 году было заявлено о получении соединений состава KrF 4 , KrO 3 ·H 2 O и BaKrO 4 . Позже их существование было опровергнуто.
В 2003 году в Финляндии было получено первое соединение со связью C-Kr (HKrC≡CH - гидрокриптоацетилен) путем фотолиза криптона и ацетилена на криптонной матрице.

Получение

Получается как побочный продукт в виде криптоно-ксеноновой смеси в процессе разделения воздуха на промышленных установках.
В процессе разделения воздуха методом низкотемпературной ректификации производится постоянный отбор фракции жидкого кислорода содержащей жидкие углеводороды, криптон и ксенон (отбор фракции кислорода с углеводородами необходим для обеспечения взрывобезопасности).
Для извлечения Kr и Xe из отбираемой фракции удаляют углеводороды в каталитических печах при t=500-600 С и направляют в дополнительный ректификационную колонну для удаления кислорода, после обогащения Kr+Xe смеси до 98-99 % её повторно очищают в каталитических печах от углеводородов, а затем в блоке адсорберов заполненных силикагелем (или другим адсобентом).
После очистки смеси газов от остатков углеводородов и влаги её закачивают в баллоны для транспортировки на установку разделения Kr и Xe (это связано с тем, что не на каждом предприятии, эксплуатирующем воздухоразделительные установки, существует установка разделения Kr и Xe).
Дальнейший процесс разделения Kr и Xe на чистые компоненты происходит по следующей цепочке: удаление остатков углеводородов на контактной каталитической печи, заполненной окисью меди при температуре 300-400 С, очистка от влаги в адсорбере, заполненном цеолитом, охлаждение в теплообменнике, подача на разделение в ректификационной колонне № 1 где из кубового пространства (нижняя часть ректификационной колонны) колонны отбирается жидкий Xе и направляется в колонну № 3, где он доочищается от примеси Kr, а затем выкачивается при помощи мембранного компрессора в баллоны. Газообразный Kr отбирается из под крышки конденсатора колонны № 1 и направляется в колонну № 2, где он очищается от остатков азота, кислорода, аргона (температура их кипения значительно ниже температуры кипения криптона). Из кубового пространства колонны № 2 отбирается чистый криптон и закачивается мембранным компрессором в баллоны.
Процесс разделения смеси криптона и ксенона может вестись как непрерывно, так и циклично, по мере накопления сырья (смеси) для переработки.