II.1. Расчёт потребления тепла на отопление. Расход теплоты на отопление и вентиляцию промышленных предприятий Формула расчета расхода тепла на отопление здания

26.06.2019

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где – удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м² . В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м . Исходя из этого рассчитываем сопротивление телепередачи – R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм . Для него λ=0,036 . Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон – 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

1.1.1.Расчетные максимального расхода теплоты (Вт) на отопление жилых, общественных и административных зданий определяют по укрупненным показателям

= q o ∙ V (t в t н.р.),

=1.07∙0.38∙19008(16-(-25))=239588.2

Где q о  удельная отопительная характеристика здания при t н.р. = 25С (Вт/м  С);

  поправочный коэффициент, учитывающий климатические условия района и применяемый в тех случаях, когда расчетная температура наружного воздуха, отличается от  25С, V объем здания по наружному обмеру, м 3 ; t в расчетная температура воздуха внутри отапливаемого здания, t н.р.  расчетная температура наружного воздуха для проектирования отопления, С, см. Прилож.2.

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

      1.1.2.Средний тепловой поток (Вт) на отопление



Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

Где t н.р.ср.  расчетная средняя температура наружного воздуха для проектирования отопления, С (приложение 2).

1.2.Определение расхода теплоты на вентиляцию.

1.2.1Максимальный расход теплоты на вентиляцию, Q в max , Вт

Q в max = q в  V   (t в  t н.в.)

Q в max =1,07190080,29(16-(-14))

Где q в  удельная характеристика здания для проектирования системы вентиляции.

1.2.2.Средний расход теплоты на вентиляцию, Q в ср, Вт

Q в ср = Q в max 

Q в ср =176945,5 

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

1.3. Определение расхода теплоты на горячее водоснабжение.

1.3.1 Средний расход тепла на горячее водоснабжение промышленных зданий, Q ср г.в.с., Вт

Q г.в.с. ср =

где   норма расхода горячей воды (л/сут) на единицу измерения (СниП 2.04.01.85),

m  количество единиц измерений;

c  теплоемкость воды С = 4187 Дж/кг  С;

t г, t х  температура горячей воды, соответственно подаваемой в систему горячего водоснабжения и холодной воды, С;

h  расчетная длительность подачи тепла на горячее водоснабжение, С/сутки, ч/сутки.

1.3.2 Средний расход теплоты на горячее водоснабжение жилых и общественных зданий, Q г.в.с., Вт

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

где m  число человек,

  норма расхода воды на г.в.с. при температуре 55 С на одного человека в сутки (СНиП 2.04.0185, приложение3)

в  норма расхода воды на горячее водоснабжение принимаемая 25 л/сутки на 1 человека;

t х  температура холодной воды (водопроводной) в отопительный период (при отсутствии данных принимается равной 5С)

с  теплоемкость воды, С = 4,187 кДж/(кгС)

1.3.3.Максимальный расход теплоты на горячее водоснабжение,
,Вт

134332,9

Расчет производился для абонента-№1школы. Для всех остальных расчет производился по выше предложенной формуле, результаты занесены в таблицу 2.2.

Таблица 2.1

Наименование потребителей

Объем, V, тыс.м 3

Колво проживающих m, человек

Удельная характеристика здания, Вт/м С

Норма расхода горячей воды, а, л/сут.

3. Котельная

4. Общага

5. 9 этажный дом 1

6. 9 этажный дом 2

7. Аптека

8. Поликлиника

Температура внутри помещения, t в

Расчетная температура

Расход теплоты

Суммарный расход теплоты, Q, Вт.

для отоп ления

для вентиляции

на отопление

на вентиляцию

1. Школа +16

2.Дет. сад +20

3. Котельная +16

4. Общага +18

5. 9 этажный дом 1 +18

6. 9 этажный дом 2 +18

7. Аптека +15

8. Поликлиника +20

1.3.4. Годовые расходы тепла жилыми и общественными зданиями

а) На отопление

;

б) На вентиляцию

;

в) На горячее водоснабжение

где n о, n r – соответственно продолжительность отопительного периода и длительность работы системы горячего водоснабжения в сек/год, (час/год).

Обычно n r = 30,2·10 5 с-год (8400ч/год);

t r – температура горячей воды.

г) Суммарный годовой расход тепла на отопление, вентиляцию и горячее водоснабжение

Частный дом можно рассматривать как термодинамическую систему, обладающую внутренней энергией и ведущую теплообмен с окружающей средой. Энергия, которую дом получает или теряет в ходе теплообмена, называют теплотой. Источником теплоты в частном доме является теплогенератор: котел, конвектор, печь, нагревательный элемент и т.д.

Чем интенсивнее идет теплообмен между домом и окружающей средой, тем быстрее «уходит» тепло дома и тем интенсивнее должен работать источник тепловой энергии, компенсирующий потери. Понятно, что интенсивная работа котла сопряжена с большим расходом топлива, что ведет к росту расходов на отопление.

Но не это главное: понятие комфорта в жилище в холодное время года неразрывно связано с теплом в доме, что возможно только при равновесии между потерями тепловой энергии и ее производством.

Однако возможности любого теплогенератора ограничены его конструктивными особенностями. Это значит, что для обеспечения тепла и комфорта в доме котел или иной источник тепловой энергии нужно подбирать в соответствии с тепловыми потерями строения, делая при этом некоторый запас (обычно 20%) на случай ветреной погоды или сильных морозов.

Итак, мы определились: прежде чем выбрать котел для обогрева дома нужно определить его (дома) тепловые потери.

Определяем тепловые потери

Теплопотери здания можно рассчитывать отдельно для каждой комнаты, имеющей внешнюю часть, контактирующую с окружающей средой. Затем полученные данные суммируются. Для частного дома удобнее определять тепловые потери всего строения в целом, считая потери тепла отдельно через стены, кровлю, и поверхность пола.

Следует отметить, что расчет тепловых потерь дома достаточно сложный процесс, требующий специальных знаний. Менее точный, но при этом вполне достоверный результат можно получить на основе онлайн калькулятора расчета тепловых потерь.

При выборе онлайн калькулятора предпочтение лучше отдавать моделям, учитывающим все возможные варианты потери тепла. Вот их перечень:

    поверхность наружных стен

    поверхность кровли

    поверхность пола

    вентиляционная система

Решив воспользоваться калькулятором, необходимо знать геометрические размеры строения, характеристики материалов, из которых сделан дом, а также их толщину. Наличие теплоизоляционного слоя и его толщина учитываются отдельно.

На основании перечисленных исходных данных онлайн калькулятор выдает общее значение тепловых потерь дома. Определить, насколько точные получены результаты можно разделив полученный результат на общий объем здания и получив при этом удельные потери тепла, величина которых должна находиться в интервале от 30 до 100 Вт.

Если цифры, полученные с помощью онлайн калькулятора, выходят далеко за пределы указанных значений, можно предположить, что в расчет закралась ошибка. Чаще всего причиной ошибок в расчетах является несоответствие размерности используемых в расчете величин.

Немаловажный факт: данные онлайн калькулятора актуальны только для домов и строений с качественными окнами и хорошо работающей системой вентиляции, в которых нет места сквознякам и иным потерям тепла.

Для уменьшения потерь тепла можно выполнить дополнительную тепловую изоляцию строения, а также использовать подогрев воздуха, поступающего в помещение.

Тепловые потери знаем, что дальше?

На следующем этапе производится выбор отопительного агрегата (котла). Его тепловая мощность должна превосходить значение тепловых потерь не менее чем на 20%. Если котел используется еще и для горячего водоснабжения, выбирается тепловой агрегат с дополнительным запасом мощности. Для этого необходимо произвести дополнительный расчет, учитывающий потребности в горячем водоснабжении.

Затем подбираются отопительные приборы, суммарная мощность которых должна соответствовать мощности котла отопления без учета горячего водоснабжения.

Гидравлический расчет системы отопления

Подобрав оборудование, необходимо обеспечить его работу. Для этого нужны трубы, циркуляционный насос и расширительный бак отопления.

Если собственник дома решит произвести подбор труб отопления самостоятельно, можно воспользоваться справочной литературой и подобрать требуемый диаметр по таблицам. Протяженность труб рассчитывается по проектной документации. Для этого на схеме строения просто прокладывается дополнительно схема разводки системы отопления и производится подсчет длины трубопровода.

Если схемы дома по какой-либо причине нет, ее придется нарисовать самостоятельно, а затем, с ее помощью, рассчитать протяженность трубопровода.

Зная протяженность трубопровода, диаметр труб и имея технические данные приборов отопления, рассчитывается внутренний объем системы отопления, по которому подбирается расширительный бак и циркуляционный насос.

Правильный гидравлический расчет необходим также для того, чтобы все тепло, вырабатываемое котлом, равномерно распределялось по дому и доходило в полном объеме до потребителя.

Подведем итоги

Количество тепла, необходимое для отопления дома, напрямую зависит от его тепловых потерь. Уменьшить тепловые потери можно с помощью дополнительной тепловой изоляции, установке качественных окон и утепленных дверей, а также при использовании рекуперации в системе вентиляции.

Величина тепловых потерь определяет мощность котла отопления. Суммарная мощность приборов отопления должна быть равна мощности котла. Для обеспечения качественной работы котла и радиаторов производится гидравлический расчет отопления, в ходе которого определяется диаметр труб, их протяженность, внутренний объем отопления. По этим данным подбирается циркуляционный насос и расширительный бак отопления.

На случай сильный морозов котел покупают с запасом мощности не менее 20%.

Потеря тепла происходит из-за:

  • проникновения холодной температуры с наружных стен помещения, через оконные щели,
  • плохой герметизации оконных рам.

Устанавливая отопительные системы, нужно учесть региональную особенность температуры за окном и исходя из полученных параметров, выбирать тот или иной вид нагревательного оборудования. Но даже самая эффективная нагревательная техника не даст желаемого результата, если не избавиться от так называемых «точек утечки тепла». При установке оконных рам следует один раз потратиться на качественные, и обладающие высоким коэффициентом сохранения тепла. Чтобы эффективно провести утеплительные работы стен, рынок теплоизоляционных материалов представляет большой выбор.

Расход тепла на отопление будет в разы уменьшаться, если работы по герметизации помещения проведены качественно. Любое современное отопительное оборудование можно регулировать, контролируя поступление теплых масс воздуха в помещение. Мощность нагревательных приборов возрастает по мере уменьшения поступлений холодного воздуха.

Для полного комфорта необходимо выполнить два условия:

  • обеспечить оптимальную температуру в помещении в 20-22 градуса;
  • разница температуры воздуха внутри помещения и наружной стены должна быть не более 4 градусов, при этом температура стены должна быть выше температуры точки росы.

Точка росы – это охлаждение наружного воздуха до начала конденсации и превращения его паров в росу. Такого легко достигнуть при наличии мощного котла. Но немаловажно при этом уменьшить расходы на отопление.

Расход тепла на отопление имеет два варианта нормы потребления:

  1. Первый – установленная норма на сопротивление теплоподачи наружных стен, оконных рам и т.д.
  2. Второй – определяется норматив расхода энергии на отопление дома. Второй способ позволяет уменьшать сопротивление теплоподаче ограждающих конструкций. Таким образом, можно выбрать оптимальную толщину стен помещения.

Профессиональные строители зачастую используют первый вариант. Воздвигая бетонные стены, им они выполняют работы по дополнительному утеплению различными теплоизоляционными материалами. Такой способ существенно усложняет процесс и повышает стоимость работ.

При построении частных домов не обязательно утеплять наружные стены, достаточно создать более утепленный слой на чердаке и в подполье. Также следует придать дому форму, которая является энергосберегающей, учитывая компактность строения. Для большего утепления к дому пристраивают веранды, лоджии, оконные рамы делают меньше по размерам и т.д. Таким образом, расход тепла на отопление во много раз уменьшается.

Ликвидировав все недостатки, можно приступать к выбору отопительного оборудования. Стоит обратить внимание на параметры отопительной системы, которая будет установлена в помещении. От качества материалов, из которых будут изготовлены теплоносители, радиаторы и котлы отопительного оборудования, зависит и состояние температуры в доме. Современные системы отопления имеют в резерве большой список новых технологически оснащенных приборов для сбережения тепла. Автоматические контроллеры для поддержания оптимальной температуры в комнате будут главными помощниками в плане расхода теплоэнергии на отопление.

При построении энергосберегающего дома или заказа уже готового проекта внимательно стоит рассмотреть вопросы по утеплению здания с привлечением опытных специалистов. Работа требует комплексного подхода и только в таком случае можно построить комфортный, теплый и уютный дом.

Радиаторы отопления и терморегуляторы

В радиаторах температура теплоносителя не должна превышать 90 градусов. При выборе мощных и стойких радиаторов такая температура вполне подходит для холодных зим. Чтобы атмосфера в комнате была приемлемой для всех, нужно установить терморегуляторы. Их существует два вида – механический и автоматический . Механический нужно постоянно регулировать вручную, не упуская момента смены тепловых величин. Открытое положение регулятора обеспечивает максимальный режим, закрытое – минимальный. При потере подачи горячей воды батарея быстро остывает.

Автоматический терморегулятор, в свою очередь, требует меньшего внимания. Достаточно зафиксировать на шкале необходимую отметку, и автомат сам подгоняет температурный уровень. Использование терморегулятора возможно только при параллельном положении труб, использование установленных друг за другом регуляторов блокирует циркуляцию теплоносителя в трубах.

Расход тепловой энергии на отопление несет в себе немалые затраты, если система отопления установлена без учета других затрат, например бойлер, кухня, ванная.

Найти «течь»

Чтобы больше сэкономить, при подведении отопительной системы нужно учесть все «больные» места утечки тепла. Не лишним будет сказать, что окна должны быть герметизированы. Толщина стен позволяет удержать теплоту, теплые полы сохраняют температурный фон на положительной отметке. Расход тепловой энергии на отопление в помещении зависит от высоты потолков, типа вентиляционной системы, строительных материалов при постройке здания.

После вычета всех теплопотерь, нужно серьезно подойти к выбору отопительного котла. Здесь главное – бюджетная часть вопроса. В зависимости от мощности и универсальности варьируется и цена прибора. Если в доме уже проведен газ, то идет экономия на электричестве (стоимость которого немалая), и вместе с приготовлением, например, ужина, заодно и прогревается система.

Еще одним моментом в сохранении тепла является тип обогревателя – конвектор, радиатор, батарея и т.д. Самое подходящее решение вопроса – радиатор , количество секций которого высчитывается при помощи несложной формулы. Одна секция (ребро) радиатора имеет мощность в 150 Вт, для комнаты в 10 метров достаточно 1700 Вт. Путем разделения получаем 13 секций, необходимых для комфортного обогрева помещения.

Установка теплых полов решит наполовину вопрос экономии энергии. По подсчетам специалистов, количество потребленной теплоэнергии сокращается в 2-3 раза. Экономный расход тепловой энергии на отопление налицо.

При установке отопительной системы путем размещения радиаторов можно сразу же подключить систему теплых полов. Постоянная циркуляция теплоносителя создает равномерную температуру во всем помещении.

Расчет расхода теплоты на отопление . Показатель зависит от времени суток, назначения помещения и типа здания, температуры наружного воздуха, продолжительности отопительного периода, наличия в помещении нагретых поверхностей и пр.

Расход теплоты в рабочее время (МДж/ч) рассчитывают по удельным тепловым характеристикам:

В зависимости от времени суток расход теплоты на отопление (МДж/ч) промышленных предприятий определяют по формуле

Температура воздуха в помещении в рабочее время должна соответствовать рекомендациям по эксплуатации вентиляционных установок.

Часовой расход теплоты в нерабочее время определяют по формуле, используемой при расчете расхода теплоты в рабочее время, с учетом снижения температуры воздуха в помещении в нерабочее время до 5 °С.

Удельная тепловая характеристика зависит от назначения помещения и типа здания. Например, для производственных помещений, расположенных в одноэтажном корпусе, q 0 составляет 0,75—2,1 МДж/(м 3 . ч. К); для производственных помещений, расположенных в многоэтажном здании, — 0,20 — 1,05 кДжДм 3 . ч. К); для бытовых и вспомогательных помещений — 1,4 —2,5 кДжДм 3 -ч-К); для складов — 2,50 — 3,35 кДжДм 3 -ч. К); для административных зданий — 1,7 — 2,6 кДжДм 3 . ч. К).

Поправочный коэффициент а зависит от температуры наружного воздуха. Так, для общественных зданий при t H 0 = -10° С а = = 1,45; при t H 0 = -20 °С а = 1,17 и т.д.

в нерабочее время

В зависимости от наличия в помещении нагретых поверхностей поступление теплоты (МДж) рассчитывают по следующим формулам:

от нагретых поверхностей оборудования

от нагретого материала

от электропривода

В зависимости от отопительного периода расход теплоты (МДж) рассчитывают по следующим формулам: в рабочее время

Система отопления промышленных предприятий должна обеспечивать тепловой баланс между количеством теплоты, покупаемой от нагретых поверхностей технологического оборудования, нагретого материала, людей и т.д., и количеством тепловых потерь через наружные ограждения зданий.

от работающих людей

Тепловые потери через строительные ограждения помещений складываются из тепловых потерь через стены здания, покрытие, дверные и оконные проемы.

Перенос теплоты Q через стены здания и оконные проемы протекает в три стадии: от воздуха в помещении к внутренней поверхности стен зданий Q h через стены здания Q 2 и от наружной поверхности стен в окружающую среду Q 3 .

Количество теплоты, теряемой через стены здания, рассчитывают по формуле

Приближенно тепловые потери (кДж/ч) помещений определяют по формуле

Если производственный корпус имеет много окон, то целесообразно учитывать дополнительный расход теплоты на отопление исходя из тепловых потерь оконных проемов в отопительный период.

Расчет проводят по формуле

В случае если стена не аккумулирует теплоту, можно считать, что

где К — коэффициент теплопередачи, зависящий от типа остекления; F 0 K — площадь окон, м 2 ; п 0 — число дней отопительного периода; т — время работы, ч; / вн р — температура внутри здания в рабочее время, °С; *н.ср — средняя температура отопительного периода, °С.

В зависимости от типа остекления зданий коэффициент теплопередачи может иметь следующие значения, кДж/(м 2 - К): однослойное остекление — 4,5; двухслойное остекление с деревянными спаренными оконными переплетами — 2,9; двухслойное остекление с металлическими спаренными переплетами — 3,25; двухслойное остекление с деревянными раздельными переплетами — 2,67; двухслойное остекление с металлическими раздельными переплетами — 3,02.