Формула байеса применение в экономике. Формула полной вероятности. Формула Байеса

24.09.2019

Начнем с примера. В урне, стоящей перед вами, с равной вероятностью могут быть (1) два белых шара, (2) один белый и один черный, (3) два черных. Вы тащите шар, и он оказывается белым. Как теперь вы оцените вероятность этих трех вариантов (гипотез)? Очевидно, что вероятность гипотезы (3) с двумя черными шарами = 0. А вот как подсчитать вероятности двух оставшихся гипотез!? Это позволяет сделать формула Байеса, которая в нашем случае имеет вид (номер формулы соответствует номеру проверяемой гипотезы):

Скачать заметку в формате или

х – случайная величина (гипотеза), принимающая значения: х 1 – два белых, х 2 – один белый, один черный; х 3 – два черных; у – случайная величина (событие), принимающая значения: у 1 – вытащен белый шар и у 2 – вытащен чёрный шар; Р(х 1) – вероятность первой гипотезы до вытаскивания шара (априорная вероятность или вероятность до опыта) = 1/3; Р(х 2) – вероятность второй гипотезы до вытаскивания шара = 1/3; Р(х 3) – вероятность третьей гипотезы до вытаскивания шара = 1/3; Р(у 1 |х 1) – условная вероятность вытащить белый шар, в случае, если верна первая гипотеза (шары белые) = 1; Р(у 1 |х 2) вероятность вытащить белый шар, в случае, если верна вторая гипотеза (один шар белый, второй – черный) = ½; Р(у 1 |х 3) вероятность вытащить белый шар, в случае, если верна третья гипотеза (оба черных) = 0; Р(у 1) – вероятность вытащить белый шар = ½; Р(у 2) – вероятность вытащить черный шар = ½; и, наконец, то, что мы ищем – Р(х 1 |у 1) вероятность того, что верна первая гипотеза (оба шара белых), при условии, что мы вытащили белый шар (апостериорная вероятность или вероятность после опыта); Р(х 2 |у 1) вероятность того, что верна вторая гипотеза (один шар белый, второй – черный), при условии, что мы вытащили белый шар.

Вероятность того, что верна первая гипотеза (два белых), при условии, что мы вытащили белый шар :

Вероятность того, что верна вторая гипотеза (один белый, второй – черный), при условии, что мы вытащили белый шар :

Вероятность того, что верна третья гипотеза (два черных), при условии, что мы вытащили белый шар :

Что делает формула Байеса? Она дает возможность на основании априорных вероятностей гипотез – Р(х 1), Р(х 2) , Р(х 3) – и вероятностей наступления событий – Р(у 1), Р(у 2) – подсчитать апостериорные вероятности гипотез, например, вероятность первой гипотезы, при условии, что вытащили белый шар – Р(х 1 |у 1) .

Вернемся еще раз к формуле (1). Первоначальная вероятность первой гипотезы была Р(х 1) = 1/3. С вероятностью Р(у 1) = 1/2 мы могли вытащить белый шар, и с вероятностью Р(у 2) = 1/2 – черный. Мы вытащили белый. Вероятность вытащить белый при условии, что верна первая гипотеза Р(у 1 |х 1) = 1. Формула Байеса говорит, что так как вытащили белый, то вероятность первой гипотезы возросла до 2/3, вероятность второй гипотезы по-прежнему равна 1/3, а вероятность третьей гипотезы обратилась в ноль.

Легко проверить, что вытащи мы черный шар, апостериорные вероятности изменились бы симметрично: Р(х 1 |у 2) = 0, Р(х 2 |у 2) = 1/3, Р(х 3 |у 2) = 2/3.

Вот что писал Пьер Симон Лаплас о формуле Байеса в работе , вышедшей в 1814 г.:

Это основной принцип той отрасли анализа случайностей, которая занимается переходами от событий к причинам.

Почему формула Байеса так сложна для понимания!? На мой взгляд, потому, что наш обычный подход – это рассуждения от причин к следствиям. Например, если в урне 36 шаров из которых 6 черных, а остальные белые. Какова вероятность вытащить белый шар? Формула Байеса позволяет идти от событий к причинам (гипотезам). Если у нас было три гипотезы, и произошло событие, то как именно это событие (а не альтернативное) повлияло на первоначальные вероятности гипотез? Как изменились эти вероятности?

Я считаю, что формула Байеса не просто о вероятностях. Она изменяет парадигму восприятия. Каков ход мыслей при использовании детерминистской парадигмы? Если произошло событие, какова его причина? Если произошло ДТП, чрезвычайное происшествие, военный конфликт. Кто или что явилось их виной? Как думает байесовский наблюдатель? Какова структура реальности, приведшая в данном случае к такому-то проявлению… Байесовец понимает, что в ином случае результат мог быть иным…

Немного иначе разместим символы в формулах (1) и (2):

Давайте еще раз проговорим, что же мы видим. С равной исходной (априорной) вероятностью могла быть истинной одна из трех гипотез. С равной вероятностью мы могли вытащить белый или черный шар. Мы вытащили белый. В свете этой новой дополнительной информации следует пересмотреть нашу оценку гипотез. Формула Байеса позволяет это сделать численно. Априорная вероятность первой гипотезы (формула 7) была Р(х 1) , вытащили белый шар, апостериорная вероятность первой гипотезы стала Р(х 1 |у 1). Эти вероятности отличаются на коэффициент .

Событие у 1 называется свидетельством, в большей или меньшей степени подтверждающим или опровергающим гипотезу х 1 . Указанный коэффициент иногда называют мощностью свидетельства. Чем мощнее свидетельство (чем больше коэффициент отличается от единицы), тем больше факт наблюдения у 1 изменяет априорную вероятность, тем больше апостериорная вероятность отличается от априорной. Если свидетельство слабое (коэффициент ~ 1), апостериорная вероятность почти равна априорной.

Свидетельство у 1 в = 2 раза изменило априорную вероятность гипотезы х 1 (формула 4). В то же время свидетельство у 1 не изменило вероятность гипотезы х 2 , так как его мощность = 1 (формула 5).

В общем случае формула Байеса имеет следующий вид:

х – случайная величина (набор взаимоисключающих гипотез), принимающая значения: х 1 , х 2 , … , х n . у – случайная величина (набор взаимоисключающих событий), принимающая значения: у 1 , у 2 , … , у n . Формула Байеса позволяет найти апостериорную вероятность гипотезы х i при наступлении события y j . В числителе – произведение априорной вероятности гипотезы х i Р(х i ) на вероятность наступления события y j , если верна гипотеза х i Р(y j i ). В знаменателе – сумма произведений того же, что и в числителе, но для всех гипотез. Если вычислить знаменатель, то получим суммарную вероятность наступления события у j (если верна любая из гипотез) – Р(y j ) (как в формулах 1–3).

Еще раз о свидетельстве. Событие y j дает дополнительную информацию, что позволяет пересмотреть априорную вероятность гипотезы х i . Мощность свидетельства – – содержит в числителе вероятность наступления события y j , если верна гипотеза х i . В знаменателе – суммарная вероятность наступления события у j (или вероятность наступления события у j усредненная по всем гипотезам). у j выше для гипотезы x i , чем в среднем для всех гипотез, то свидетельство играет на руку гипотезе x i , увеличивая ее апостериорную вероятность Р(y j i ). Если вероятность наступления события у j ниже для гипотезы x i , чем в среднем для всех гипотез, то свидетельство понижает, апостериорную вероятность Р(y j i ) для гипотезы x i . Если вероятность наступления события у j для гипотезы x i такая же, как в среднем для всех гипотез, то свидетельство не изменяет апостериорную вероятность Р(y j i ) для гипотезы x i .

Предлагаю вашему вниманию несколько примеров, которые, надеюсь, закрепят ваше понимание формулы Байеса.

Задача 2. Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8, для второго - 0,4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку. .

Задача 3. Объект, за которым ведется наблюдение, может быть в одном из двух состояний: Н 1 = {функционирует} и Н 2 = {не функционирует}. Априорные вероятности этих состояний Р(Н 1) = 0,7, Р(Н 2) = 0,3. Имеется два источника информации, которые приносят разноречивые сведения о состоянии объекта; первый источник сообщает, что объект не функционирует, второй - что функционирует. Известно, что первый источник дает правильные сведения с вероятностью 0,9, а с вероятностью 0,1 - ошибочные. Второй источник менее надежен: он дает правильные сведения с вероятностью 0,7, а с вероятностью 0,3 - ошибочные. Найдите апостериорные вероятности гипотез. .

Задачи 1–3 взяты из учебника Е.С.Вентцель, Л.А.Овчаров. Теория вероятностей и ее инженерные приложения, раздел 2.6 Теорема гипотез (формула Байеса).

Задача 4 взята из книги , раздел 4.3 Теорема Байеса.

При выводе формулы полной вероятности предполагалось, что событие А , вероятность которого следовало определить, могло произойти с одним из событий Н 1 , Н 2 , ... , Н n , образующих полную группу попарно несовместных событий. При этом вероятности указанных событий (гипотез) были известны заранее. Предположим, что произведен эксперимент, в результате которого событие А наступило. Эта дополнительная информация позволяет произвести переоценку вероятностей гипотез Н i , вычислив Р(Н i /А).

или, воспользовавшись формулой полной вероятности, получим

Эту формулу называют формулой Байеса или теоремой гипотез. Формула Байеса позволяет «пересмотреть» вероятности гипотез после того, как становится известным результат опыта, в результате которого появилось событие А .

Вероятности Р(Н i) − это априорные вероятности гипотез (они вычислены до опыта). Вероятности же Р(Н i /А) − это апостериорные вероятности гипотез (они вычислены после опыта). Формула Байеса позволяет вычислить апостериорные вероятности по их априорным вероятностям и по условным вероятностям события А .

Пример . Известно, что 5 % всех мужчин и 0.25 % всех женщин дальтоники. Наугад выбранное лицо по номеру медицинской карточки страдает дальтонизмом. Какова вероятность того, что это мужчина?

Решение . Событие А – человек страдает дальтонизмом. Пространство элементарных событий для опыта – выбран человек по номеру медицинской карточки – Ω = {Н 1 , Н 2 } состоит из 2 событий:

Н 1 −выбран мужчина,

Н 2 −выбрана женщина.

Эти события могут быть выбраны в качестве гипотез.

По условию задачи (случайный выбор) вероятности этих событий одинаковые и равны Р(Н 1 ) = 0.5; Р(Н 2 ) = 0.5.

При этом условные вероятности того, что человек страдает дальтонизмом, равны соответственно:

Р(А/Н 1 ) = 0.05 = 1/20; Р(А/Н 2 ) = 0.0025 = 1/400.

Так как известно, что выбранный человек дальтоник, т. е. событие произошло, то используем формулу Байеса для переоценки первой гипотезы:

Пример. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором – 10 белых и 10 черных, в третьем – 20 черных шаров. Из выбранного наугад ящика вынули белый шар. Вычислить вероятность того, что шар вынут из первого ящика.

Решение . Обозначим через А событие – появление белого шара. Можно сделать три предположения (гипотезы) о выборе ящика: Н 1 , Н 2 , Н 3 − выбор соответственно первого, второго и третьего ящика.

Так как выбор любого из ящиков равновозможен, то вероятности гипотез одинаковы:

Р(Н 1 )=Р(Н 2 )=Р(Н 3 )= 1/3.

По условию задачи вероятность извлечения белого шара из первого ящика

Вероятность извлечения белого шара из второго ящика



Вероятность извлечения белого шара из третьего ящика

Искомую вероятность находим по формуле Байеса:

Повторение испытаний. Формула Бернулли .

Проводится n испытаний, в каждом из которых событие А может произойти или не произойти, причем вероятность события А в каждом отдельном испытании постоянна, т.е. не меняется от опыта к опыту. Как найти вероятность события А в одном опыте мы уже знаем.

Представляет особый интерес вероятность появления определенного числа раз (m раз) события А в n опытах. подобные задачи решаются легко, если испытания являются независимыми.

Опр. Несколько испытаний называюся независимыми относительно события А , если вероятность события А в каждом из них не зависит от исходов других опытов.

Вероятность Р n (m) наступления события А ровно m раз (ненаступление n-m раз, событие ) в этих n испытаниях. Событие А появляется в самых разных последовательностях m раз).

- формулу Бернулли.

Очевидны следующие формулы:

Р n (mменее k раз в n испытаниях.

P n (m>k) = P n (k+1) + P n (k+2) +…+ P n (n) - вероятность наступления события А более k раз в n испытаниях.

Если событие А может произойти только при выполнении одного из событий , которые образуютполную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых. СобытиеА может произойти только вместе с каким-либо из событий , которые будем называтьгипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называютсяапостериорными вероятностями , тогда как -априорными вероятностями .

Пример. В магазин поступила новая продукция с трех предприятий. Процентный состав этой продукции следующий: 20% - продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

На линию огня вызван первый стрелок,

На линию огня вызван второй стрелок,

На линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на-ом станке,.

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго – 39%, третьего – 28%.

Практические задания

Задание 1

Решение задач по основным разделам теории вероятности

Цель - получение практических навыков в решении задач по

разделам теории вероятностей

Подготовка к выполнению практического задания

Ознакомиться с теоретическим материалом по данной тематике, изучить содержание теоретического, а также соответствующие разделы в литературных источниках

Порядок выполнения задания

Решить 5 задач согласно номеру варианта задания, приведенного в таблице 1.

Варианты исходных данных

Таблица 1

номер задачи

Состав отчета по заданию 1

5 решенных задач согласно номеру варианта.

Задачи для самостоятельного решения

1.. Являются ли случаями следующие группы событий: а) опыт - бросание монеты; события: А1 - появление герба; А2 - появление цифры; б) опыт - бросание двух монет; события: В1 - появление двух гербов; В2 - появление двух цифр; В3 - появление одного герба и одной цифры; в) опыт - бросание игральной кости; события: С1 - появление не более двух очков; С2 - появление трех или четырех очков; С3 - появление не менее пяти очков; г) опыт - выстрел по мишени; события: D1 - попадание; D2 - промах; д) опыт - два выстрела по мишени; события: Е0 - ни одного попадания; Е1 - одно попадание; Е2 - два попадания; е) опыт - вынимание двух карт из колоды; события: F1 - появление двух красных карт; F2 - появление двух черных карт?

2. В урне A белых и B черных шаров. Из урны вынимают наугад один шар. Найти вероятность того, что этот шар - белый.

3. В урне A белых и B черных шаров. Из урны вынимают один шар и откладывают в сторону. Этот шар оказался белым. После этого из урны берут еще один шар. Найти вероятность того, что этот шар тоже будет белым.

4. В урне A белых и B черных шаров. Из урны вынули один шар и, не глядя, отложили в сторону. После этого из урны взяли еще один шар. Он оказался белым. Найти вероятность того, что первый шар, отложенный в сторону, - тоже белый.

5. Из урны, содержащей A белых и B черных шаров, вынимают один за другим все шары, кроме одного. Найти вероятность того, что последний оставшийся в урне шар будет белым.

6. Из урны, в которой A белых шаров и B черных, вынимают подряд все находящиеся в ней шары. Найти вероятность того, что вторым по порядку будет вынут белый шар.

7. В урне A белых и B черных шаров (A > 2). Из урны вынимают сразу два шара. Найти вероятность того, что оба шара будут белыми.

8. В урне A белых и B черных шаров (A > 2, B > 3). Из урны вынимают сразу пять шаров. Найти вероятность р того, что два из них будут белыми, а три черными.

9. В партии, состоящей из X изделий, имеется I дефектных. Из партии выбирается для контроля I изделий. Найти вероятность р того, что из них ровно J изделий будут дефектными.

10. Игральная кость бросается один раз. Найти вероятность следующих событий: А - появление четного числа очков; В - появление не менее 5 очков; С- появление не более 5 очков.

11. Игральная кость бросается два раза. Найти вероятность р того, что оба раза появится одинаковое число очков.

12. Бросаются одновременно две игральные кости. Найти вероятности следующих событий: А - сумма выпавших очков равна 8; В - произведение выпавших очков равно 8;С- сумма выпавших очков больше, чем их произведение.

13. Бросаются две монеты. Какое из событий является более вероятным: А - монеты лягут одинаковыми сторонами; В - монеты лягут разными сторонами?

14. В урне A белых и B черных шаров (A > 2; B > 2). Из урны вынимают одновременно два шара. Какое событие более вероятно: А - шары одного цвета; В - шары разных цветов?

15. Трое игроков играют в карты. Каждому из них сдано по 10 карт и две карты оставлены в прикупе. Один из игроков видит, что у него на руках 6 карт бубновой масти и 4 - не бубновой. Он сбрасывает две карты из этих четырех и берет себе прикуп. Найти вероятность того, что он прикупит две бубновые карты.

16. Из урны, содержащей п перенумерованных шаров, наугад вынимают один за другим все находящиеся в ней шары. Найти вероятность того, что номера вынутых шаров будут идти по порядку: 1, 2,..., п.

17. Та же урна, что и в предыдущей задаче, но каждый шар после вынимания вкладывается обратно и перемешивается с другими, а его номер записывается. Найти вероятность того, что будет записана естественная последовательность номеров: 1, 2,..., п.

18. Полная колода карт (52 листа) делится наугад на две равные пачки по 26 листов. Найти вероятности следующих событий: А - в каждой из пачек окажется по два туза; В - в одной из пачек не будет ни одного туза, а в другой - все четыре; С-в одной из пачек будет один туз, а в другой - три.

19. В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд

экстра-класса. Найти вероятности следующих событий: А - все команды экстра-класса попадут в одну и ту же группу; В - две команды экстра-класса попадут в одну из групп, а три - в другую.

20. На девяти карточках написаны цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8. Две из них вынимаются наугад и укладываются на стол в порядке появления, затем читается полученное число, например 07(семь), 14 (четырнадцать) и т. п. Найти вероятность того, что число будет четным.

21. На пяти карточках написаны цифры: 1, 2, 3, 4, 5. Две из них, одна за другой, вынимаются. Найти вероятность того, что число на второй карточке будет больше, чем на первой.

22. Тот же вопрос, что в задаче 21, но первая карточка после вынимания кладется обратно и перемешивается с остальными, а стоящее на ней число записывается.

23. В урне A белых, B черных и C красных шаров. Из урны вынимают один за другим все находящиеся в ней шары и записывают их цвета. Найти вероятность того, что в этом списке белый цвет появится раньше черного.

24. Имеется две урны: в первой A белых и B черных шаров; во второй C белых и D черных. Из каждой урны вынимается по шару. Найти вероятность того, что оба шара будут белыми.

25. В условиях задачи 24 найти вероятность того, что вынутые шары будут разных цветов.

26. В барабане револьвера семь гнезд, из них в пяти заложены патроны, а два оставлены пустыми. Барабан приводится во вращение, в результате чего против ствола случайным образом оказывается одно из гнезд. После этого нажимается спусковой крючок; если ячейка была пустая, выстрела не происходит. Найти вероятность р того, что, повторив такой опыт два раза подряд, мы оба раза не выстрелим.

27. В тех же условиях (см. задачу 26)найти вероятность того, что оба раза выстрел произойдет.

28. В урне имеется А; шаров, помеченных номерами 1, 2, ..., к Из урны I раз вынимается по одному шару (I <к), номер шара записывается и шар кладется обратно в урну. Найти вероятность р того, что все записанные номера будут различны.

29. Из пяти букв разрезной азбуки составлено слово «книга». Ребенок, не умеющий читать, рассыпал эти буквы и затем собрал в произвольном порядке. Найти вероятность р того, что у него снова получилось слово «книга».

30. Из букв разрезной азбуки составлено слово «ананас». Ребенок, не умеющий читать, рассыпал эти буквы и затем собрал в произвольном порядке. Найти вероятность р того, что у него снова слово «ананас

31. Из полной колоды карт (52 листа, 4 масти) вынимается сразу несколько карт. Сколько карт нужно вынуть для того, чтобы с вероятностью, большей чем 0,50, утверждать, что среди них будут карты одной и той же масти?

32. N человек случайным образом рассаживаются за круглым столом (N > 2). Найти вероятность р того, что два фиксированных лица А и В окажутся рядом.

33. Та же задача (см 32), но стол прямоугольный, и N человек рассаживаются случайно вдоль одной из его сторон.

34. На бочонках лото написаны числа от 1 до N. Из этих N бочонков случайно выбираются два. Найти вероятность того что на обоих бочонках написаны числа, меньшие чем k (2

35. На бочонках лото написаны числа от 1 до N. Из этих N бочонков случайно выбираются два. Найти вероятность того что на одном из бочонков написано число, большее чем k, а на другом - меньшее чем k. (2

36. Батарея из М орудий ведет огонь по группе, состоящей из N целей (М < N). Орудия выбирают себе цели последовательно, случайным образом, при условии, что никакие два орудия стрелять по одной цели не могут. Найти вероятность р того, что будут обстреляны цели с номерами 1, 2,..., М.

37.. Батарея, состоящая из к орудий, ведет огонь по группе, состоящей из I самолетов (к < 2). Каждое орудие выбирает себе цель случайно и независимо от других. Найти вероятность того, что все к орудий будут стрелять по одной и той же цели.

38. В условиях предыдущей задачи найти вероятность того, что все орудия будут стрелять по разным целям.

39. Четыре шарика случайным образом разбрасываются по четырем лункам; каждый шарик попадает в ту или другую лунку с одинаковой вероятностью и независимо от других (препятствий к попаданию в одну и ту же лунку нескольких шариков нет). Найти вероятность того, что в одной из лунок окажется три шарика, в другой - один, а в двух остальных лунках шариков не будет.

40. Маша поссорилась с Петей и не хочет ехать с ним в одном автобусе. От общежития до института с 7 до 8 отправляется 5 автобусов. Не успевший на эти автобусы опаздывает на лекцию. Сколькими способами Маша и Петя могут доехать до института на разных автобусах и не опоздать на лекцию?

41. В информационно-технологическом управлении банка работает 3 аналитика, 10 программистов и 20 инженеров. Для сверхурочной в праздничный день начальник управления должен выделить одного сотрудника. Сколькими способами это можно сделать?

42. Начальник службы безопасности банка должен ежедневно расставлять 10 охранников по 10 постам. Сколькими способами это можно сделать?

43. Новый президент банка должен назначить 2 новых вице президентов из числа 10 директоров. Сколькими способами это можно сделать?

44. Одна из воюющих сторон захватил 12, а другая – 15 пленных. Сколькими способами можно обменять 7 военнопленных?

45. Петя и Маша коллекционируют видеодиски. У Пети есть 30 комедий, 80 боевиков и 7 мелодрам, у Маши – 20 комедий, 5 боевиков и 90 мелодрам. Сколькими способами Петя и Маша могут обменяться 3 комедиями, 2 боевиками и 1 мелодрамой?

46. В условиях задачи 45 сколькими способами Петя и Маша могут обменяться 3 мелодрамами и 5 комедиями?

47. В условиях задачи 45 сколькими способами Петя и Маша могут обменяться 2 боевиками и 7 комедиями.

48. Одна из воюющих сторон захватил 15, а другая – 16 пленных. Сколькими способами можно обменять 5 военнопленных?

49. Сколько автомобилей можно зарегистрировать в 1 городе, если номер имеет 3 цифры и 3 буквы (только те чьё написание совпадает с латинскими – А,В,Е,К,М,Н,О,Р,С,Т,У,Х)?

50. Одна из воюющих сторон захватил 14, а другая – 17 пленных. Сколькими способами можно обменять 6 военнопленных?

51. Сколько различных слов можно составить переставляя буквы в слове «мама»?

52. В корзине 3 красных и 7 зеленых яблок. Из нее вынимают одно яблоко. Найти вероятность того, что оно будет красным.

53. В корзине 3 красных и 7 зеленых яблок. Из нее вынули и отложили в сторону одно зеленое яблоко. После чего из корзины вынимают еще 1 яблоко. Какова вероятность того, что это яблоко будет зеленым?

54. В партии, состоящей из 1000 изделий, 4 имеют дефекты. Для контроля выбирают партию из 100 изделий. Какова вероятность ТОО, что в контрольной партии не окажется бракованных?

56.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал ни одного числа.

57.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал одно число.

58.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал 3 числа.

59.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал все 5 чисел.

60.В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал 2 числа.

61. В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал ни одного числа.

62.В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал все 6 чисел.

63. В партии, состоящей из 1000 изделий, 4 имеют дефекты. Для контроля выбирают партию из 100 изделий. Какова вероятность ТОО, что в контрольной партии окажется только 1 бракованная?

64. Сколько различных слов можно составить переставляя буквы в слове «книга»?

65. Сколько различных слов можно составить переставляя буквы в слове «ананас»?

66. В лифт вошло 6 человек, а общежитие имеет 7 этажей. Какова вероятность того что все 6 человек выйдут на одном этаже?

67. В лифт вошло 6 человек, здание имеет 7 этажей. Какова вероятность того что все 6 человек выйдут на разных этажах?

68. Во время грозы на участке между 40 и 79 км линии электропередачи произошел обрыв провода. Считая что обрыв одинаково возможен в любой точке, найти вероятность того что обрыв произошел между 40-м и 45-м километрами.

69. На 200 километровом участке газопровода происходит утечка газа между компрессорными станциями А и В, которая одинаково возможна в любой точке трубопровода. какова вероятность того что утечка происходит не далее 20 км от А

70. На 200 километровом участке газопровода происходит утечка газа между компрессорными станциями А и В, которая одинаково возможна в любой точке трубопровода. какова вероятность того что утечка происходит ближе к А, чем к В

71. Радар инспектора ДПС имеет точность 10 км\час и округляет в ближайшую сторону. Что происходит чаще – округление в пользу водителя или инспектора?

72. Маша тратит на дорогу в институт от 40 до 50 минут, причем любое время в этом промежутке является равновероятным. Какова вероятность того что она потратит на дорогу от 45 до 50 минут.

73. Петя и Маша договорились встретиться у памятника Пушкину с 12 до 13 часов, однако никто не смог указать точно время прихода. Они договорились ждать друг друга 15 минут. Какова вероятность их встречи?

74. Рыбаки поймали в пруду 120 рыб, из них 10 оказались окольцованными. Какова вероятность поймать окольцованную рыбу?

75. Из корзины содержащей 3 красных и 7 зеленых яблок вынимают все яблоки по очереди. какова вероятность того что 2-е яблоко окажется красным?

76. Из корзины содержащей 3 красных и 7 зеленых яблок вынимают все яблоки по очереди. какова вероятность того что последнее яблоко окажется зеленым?

77. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что Маше достался «хороший» билет?

78. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что им обоим достался «хороший» билет?

79. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 3 вопроса?

80. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша не ответит ни на один вопрос?

81. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 1 вопрос?

82. Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

83. вероятность того что недельный оборот торговца мороженым превысит 2000 руб. составляет 80% при ясной погоде, 50 % при переменной облачности и 10% при дождливой погоде. Какова вероятность что оборот превысит 2000 руб. если вероятность ясной погоды – 20%, а переменной облачности и дождей – по 40%.

84. В урне А белых (б) и В черных (ч) шаров. Из урны вынимают (одновременно или последовательно) два шара. Найти вероятность того, что оба шара будут белыми.

85. В урне А белых и В

86. В урне А белых и В

87. В урне А белых и В черных шаров. Из урны вынимается один шар, отмечается его цвет и шар возвращается в урну. После этого из урны берется еще один шар. Найти вероятность того, что эти шары будут разных цветов.

88. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча; после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трех игр в коробке не останется неигранных мячей?

89. Уходя из квартиры, N каждый гость наденет свои калоши;

90. Уходя из квартиры, N гостей, имеющих одинаковые размеры обуви, надевают калоши в темноте. Каждый из них может отличить правую калошу от левой, но не может отличить свою от чужой. Найти вероятность того что каждый гость, наденет калоши, относящиеся к одной паре (может быть и не свои).

91. В условиях задачи 90найти вероятность того что каждый уйдет в своих калошах если гости не могут отличить правой калоши от левой и просто берут первые попавшиеся две калоши.

92. Ведется стрельба по самолету, уязвимыми частями которого являются два двигателя и кабина пилота. Для того чтобы поразить (вывести из строя) самолет, достаточно поразить оба двигателя вместе или кабину пилота. При данных условиях стрельбы вероятность поражения первого двигателя равна p1 второго двигателя р2, кабины пилота р3. Части самолета поражаются независимо друг от друга. Найти вероятность того, что самолет будет поражен.

93. Два стрелка, независимо один от другого, делают по два выстрела (каждый по своей мишени). Вероятность попадания в мишень при одном выстреле для первого стрелка p1 для второго р2. Выигравшим соревнование считается тот стрелок, в мишени которого будет больше пробоин. Найти вероятность Рх того, что выиграет первый стрелок.

94. за космическим объектом, объект обнаруживается с вероятностью р. Обнаружение объекта в каждом цикле происходит независимо от других. Найти вероятность того, что при п циклах объект будет обнаружен.

95. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «конец».

96. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что шарики попадут в соседние ячейки.

97. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами либо в один и тот же бак, либо в соседние баки. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится.

98. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

99. Из полной колоды карт (52 листа) вынимаются сразу четыре карты, но каждая карта после вынимания возвращается в колоду. Найти вероятность того, что все эти четыре карты будут разных мастей..

100. При включении зажигания двигатель начинает работать с вероятностью р.

101. Прибор может работать в двух режимах: 1) нормальном и 2) ненормальном. Нормальный режим наблюдается в 80 % всех случаев работы прибора; ненормальный - в 20 %. Вероятность выхода прибора из строя за время t в нормальном режиме равна 0,1; в ненормальном - 0,7. Найти полную вероятность р выхода прибора из строя.

102. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от второго поставщика.

103.Поток автомобилей мимо АЗС состоит на 60% из грузовых и на 40% из легковых автомобилей. Какова вероятность нахождения на АЗС грузового автомобиля, если вероятность его заправки 0.1, а легкового – 0.3

104. Поток автомобилей мимо АЗС состоит на 60% из грузовых и на 40% из легковых автомобилей. Какова вероятность нахождения на АЗС грузового автомобиля, если вероятность его заправки 0.1, а легкового – 0.3

105. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от 1-го поставщика.

106. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «книга».

107. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от 1-го поставщика.

108. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что 2 шарика попадут в одну ячейку

109. При включении зажигания двигатель начинает работать с вероятностью р. Найти вероятность того, что двигатель начнет работать при втором включении зажигания;

110. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами в один и тот же бак. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится

111. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами в соседние баки. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится

112.В урне А белых и В черных шаров. Из урны вынимается один шар, отмечается его цвет и шар возвращается в урну. После этого из урны берется еще один шар. Найти вероятность того, что оба вынутые шара будут белыми.

113. В урне А белых и В черных шаров. Из урны вынимаются сразу два шара. Найти вероятность того, что эти шары будут разных цветов.

114. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что шарики попадут в соседние ячейки.

115. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 2 вопроса?

116. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что им обоим достался «хороший» билет?

117. Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

118. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «конец».

119 Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

120. вероятность того что недельный оборот торговца мороженым превысит 2000 руб. составляет 80% при ясной погоде, 50 % при переменной облачности и 10% при дождливой погоде. Какова вероятность что оборот превысит 2000 руб. если вероятность ясной погоды – 20%, а переменной облачности и дождей – по 40%.

ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND MANAGEMENT

О применимости формулы Байеса

DOI 10.12737/16076

А. И. Долгов **

1Акционерное общество «Конструкторское бюро по радиоконтролю систем управления, навигации и связи», г. Ростов-на-Дону, Российская Федерация

On applicability of Bayes" formula*** A. I. Dolgov1**

1«Design bureau on monitoring of control, navigation and communication systems» JSC, Rostov-on-Don, Russian Federation

Предметом данного исследования является формула Байеса. Цель настоящей работы - анализ и расширение области применения формулы. Первоочередной задачей представляется изучение публикаций, посвященных указанной проблеме, позволившее выявить недостатки применения формулы Байе-са, приводящие к некорректным результатам. Следующая задача - построение модификаций формулы Байеса, обеспечивающих учет различных одиночных свидетельств с получением корректных результатов. И, наконец, на примере конкретных исходных данных сравниваются некорректные результаты, получаемые с применением формулы Байеса, и корректные результаты, вычисляемые с помощью предлагаемых модификаций. При проведении исследования использованы два метода. Во-первых, проведен анализ принципов построения известных выражений, применяемых для записи формулы Байеса и ее модификаций. Во-вторых, выполнена сравнительная оценка результатов (в том числе количественная). Предлагаемые модификации обеспечивают более широкое применение формулы Байеса в теории и на практике, в том числе при решении прикладных задач.

Ключевые слова: условные вероятности, несовместные гипотезы, совместимые и несовместимые свидетельства, нормирование.

Bayes" formula is the research subject. The work objective is to analyze the formula application and widen the scope of its applicability. The first-priority problem includes the identification of the Bayes" formula disadvantages based on the study of the relevant publications leading to incorrect results. The next task is to construct the Bayes" formula modifications to provide an accounting of various single indications to obtain correct results. And finally, the incorrect results obtained with the application of Bayes" formula are compared to the correct results calculated with the use of the proposed formula modifications by the example of the specific initial data. Two methods are used in studies. First, the analysis of the principles of constructing the known expressions used to record the Bayesian formula and its modifications is conducted. Secondly, a comparative evaluation of the results (including the quantitative one) is performed. The proposed modifications provide a wider application of Bayes" formula both in theory and practice including the solution of the applied problems.

Keywords: conditional probabilities, inconsistent hypotheses, compatible and incompatible indications, normalizing.

Введение. Формула Байеса находит все более широкое применение в теории и практике , в том числе при решении прикладных задач с помощью вычислительной техники . Использование взаимно независимых вычислительных процедур позволяет особенно эффективно применять данную формулу при решении задач на многопроцессорных вычислительных системах , так как в этом случае параллельная реализация выполняется на уровне общей схемы, и при добавлении очередного алгоритма или класса задач нет необходимости повторно проводить работу по распараллеливанию.

Предметом данного исследования является применимость формулы Байеса для сравнительной оценки апостериорных условных вероятностей несовместных гипотез при различных одиночных свидетельствах. Как показывает анализ, в таких случаях сравниваются нормированные вероятности несовместных комбинированных событий, принадле-

S X <и ч и

IS eö И IS X X <и H

"Работа выполнена в рамках инициативной НИР.

**E-mail: [email protected]

""The research is done within the frame of the independent R&D.

жащих разным полным группам событий . При этом сравниваемые результаты оказываются неадекватными реальным статистическим данным. Это обусловлено следующими факторами:

Используется некорректное нормирование ;

Не принимается во внимание наличие или отсутствие пересечений учитываемых свидетельств.

С целью устранения обнаруженных недостатков выявляются случаи применимости формулы Байеса. Если же указанная формула неприменима, решается задача построения ее модификации, обеспечивающей учет различных одиночных свидетельств с получением корректных результатов. На примере конкретных исходных данных выполнена сравнительная оценка результатов:

Некорректных - получаемых с использованием формулы Байеса;

Корректных - вычисляемых с помощью предлагаемой модификации.

Исходные положения. В основу излагаемых далее утверждений положим принцип сохранения отношений вероятностей: «Корректная обработка вероятностей событий осуществима лишь при нормировании с применением одного общего нормирующего делителя, обеспечивающего равенство отношений нормированных вероятностей отношениям соответствующих им нормируемых вероятностей» . Данный принцип представляет субъективную основу теории вероятностей, однако не отражается должным образом в современной учебной и научно-технической литературе.

При нарушении указанного принципа искажаются сведения о степени возможности рассматриваемых событий. Получаемые на основе искаженных сведений результаты и принимаемые решения оказываются неадекватными реальным статистическим данным.

В предлагаемой статье будут использованы следующие понятия:

Элементарное событие - событие, не делимое на элементы;

Комбинированное событие - событие, представляющее то или иное сочетание элементарных событий;

Совместимые события - события, которые в одних случаях сравнительной оценки их вероятностей могут быть несовместными, а других случаях совместными;

Несовместимые события - события, которые во всех случаях являются несовместными.

Согласно теореме умножения вероятностей, вероятность Р (И ^Е) произведения элементарных событий И ^ и

Е вычисляется в виде произведения вероятностей Р(Ик Е) = Р(Е)Р(И^Е) . В связи с этим формула Байеса часто

записывается в виде Р(Ик\Е) =--- , описывающем определение апостериорных условных вероятностей

Р(И^Е) гипотез Ик (к = 1,...п) на основе нормирования априорных вероятностей Р(И^Е) учитываемых комбинированных несовместимых событий И к Е. Каждое из таких событий представляет произведение, сомножителями которого являются одна из рассматриваемых гипотез и одно учитываемое свидетельство. При этом все рассматривае-

мые события ИкЕ (к = 1,...п) образуют полную группу иИкЕ несовместимых комбинированных событий, в связи

с чем их вероятности Р(Ик Е) должны быть нормированы с учетом формулы полной вероятности , согласно кото-

рой Р(Е) = 2 Р(Ик)Р(Е\Ик). Поэтому формула Байеса чаще всего записывается в наиболее употребляемом виде:

Р(Ик) Р(ЕИк)

Р(Ик\Е) = -. (1)

^ кацией формулы Байеса.

й Анализ особенностей построения формулы Байеса, нацеленного на решение прикладных задач, а также примеры

«и ее практического применения позволяют сделать важный вывод относительно выбора полной группы сравниваемых по степени возможности комбинированных событий (каждое из которых является произведением двух элементарных событий - одной из гипотез и учитываемого свидетельства). Такой выбор осуществляется субъективно лицом, принимающим решение, на основе объективных исходных данных, присущих типовым условиям обстановки: виды и количество оцениваемых гипотез и конкретно учитываемое свидетельство.

Несравниваемые вероятности гипотез при одиночных несовместимых свидетельствах. Формула Байеса традиционно применяется в случае определения не сравниваемых по степени возможности апостериорных условных веро-

ятностей гипотез Н^ при одиночных несовместимых свидетельствах, каждое из которых может «появиться

только в комбинации с какой-либо из этих гипотез» . При этом выбираются полные группы и НкЕ, комбиниро-

ванных событий в виде произведений, сомножителями которых являются одно из свидетельств ц. (1=1,...,т) и одна

из п рассматриваемых гипотез.

Формула Байеса применяется для сравнительной оценки вероятностей комбинированных событий каждой такой полной группы, отличающейся от других полных групп не только учитываемым свидетельством е, но и в общем случае видами гипотез Н ^ и (или) их количеством п (см., например, )

РНкЫ = Р(Нк) Р(еН)

% Р(Нк) Р(Ег\Нк) к = 1

В частном случае при п = 2

РНк\Е,~ Р(Нк) Р(ЕН)

% Р(Нк) Р(Е,\Н к) к = 1

и получаемые результаты являются правильными, ввиду соблюдения принципа сохранения отношений вероятностей:

Р(Н1Е,) _ Р(Н 1)Р(Е,\Н1) / Р(Н2) Р(Е,\Н2) = Р(Н 1) Р(Е,\Н1)

Р(Н 2= % РШ1!) РЕ,\Н0 % ^) РЕ,\Н) " Р(Н 2> 2>"

Субъективность выбора полной группы сравниваемых по степени возможности комбинированных событий (с

теми или иными изменяемыми элементарными событиями) позволяет выбрать полную группу событий и Нк Е ■ с

отрицанием элементарного события Е ■ () и записать формулу Байеса (1 = 1,.. .,т) так:

Р(Нк\Е) -=-РНШ±.

% Р(Нк)Р(Е,Нк)

Такая формула также применима и дает возможность получить правильные результаты, если вычисляемые к

нормированные вероятности сравниваются при различных рассматриваемых гипотезах, но не при различных свиде- ^

тельствах. ¡^

Сравниваемые вероятности гипотез при одиночных несовместимых свидетельствах. Судя по известным публи- ^

няется для сравнительной оценки апостериорных условных вероятностей гипотез при различных одиночных свиде- ^

тельствах. При этом не уделяется внимание следующему факту. В указанных случаях сравниваются нормируемые ^ вероятности несовместных (несовместимых) комбинированных событий, принадлежащих разным полным группам н событий. Однако в данном случае формула Байеса неприменима, так как сравниваются не входящие в одну полную § группу комбинированные события, нормирование вероятностей которых осуществляется с использованием разных л нормирующих делителей. Нормированные вероятности несовместных (несовместимых) комбинированных событий можно сравнивать только в том случае, если они принадлежат одной и той же полной группе событий и нормированы ¡3 с использованием общего делителя, равного сумме вероятностей всех нормируемых событий, входящих в полную §

В общем случае в качестве несовместимых свидетельств могут рассматриваться:

Два свидетельства (например, свидетельство и его отрицание); ^

Три свидетельства (к примеру, в игровой ситуации выигрыш, проигрыш и ничья); ^

Четыре свидетельства (в частности, в спорте выигрыш, проигрыш, ничья и переигровка) и т. д. ^

Рассмотрим довольно простой пример (соответствующий примеру, приведенному в ) применения формулы ^ Байеса для определения апостериорных условных вероятностей гипотезы Н ^ при двух несовместимых событиях в

виде свидетельства Л]- и его отрицания Л]

Р(Н,к) - ^ . ^ Р(А^к» , (2)

] Е Р(Нк> Р(А]\вк> к - 1

■ _ Р(НкА ]) Р(Нк> Р(А ]\нк>

Р(Н,\А,) ----к-]-. (3)

V к\Л]> Р(А > п

] Е Р(Нк) Р(А]\Нк) к -1

В случаях (2) и (3) субъективно выбранными полными группами сравниваемых по степени возможности ком-

бинированных событий являются соответственно множества и Н к А и и Н к А. Это тот случай, когда формула

к-1 к ] к-1 к ]

Байеса неприменима, т. к. нарушен принцип сохранения отношений вероятностей - не соблюдается равенство отношений нормированных вероятностей отношениям соответствующих им нормируемых вероятностей:

Р(Н к А]] Р(Нк) Р(А]\Нк) / Р(Нк) Р(А]\Нк) Р(Нк) Р(А] Нк)

Р(Нк Е Р(Нк) Р(А]\Нк)/ Е Р(Нк) Р(А]\Нк) Р(Нк) Р(А] Нк)

к - 1 /к - 1 Согласно принципу сохранения отношений вероятностей, корректная обработка вероятностей событий осуществима лишь при нормировании с применением одного общего нормирующего делителя, равного сумме всех сравниваемых нормируемых выражений. Поэтому

Е Р(Нк)Р(А]\Нк) + Е Р(Нк)Р(А]\Нк) - Е Р(Нк)[Р(А]\Нк) + Р(Нк) Р(А]\Нк)] - ЕР(Нк) - 1. к -1 к -1 к -1 к -1

Таким образом, обнаруживается тот факт, что существуют разновидности формулы Байеса, отличающиеся от

известных отсутствием нормирующего делителя:

А,) - Р(Н) Р(А]\Нк), Р(Нк А,) - Р(Н) Р(А, Н к). (4)

J к I ■> к

При этом соблюдается равенство отношений нормированных вероятностей отношениям соответствующих им нормируемых вероятностей:

т^А^ Р(Нк) Р(А]\Нк)

А,) Р(Н к) Р(А,Нк)

На основе субъективного выбора нетрадиционно записываемых полных групп несовместных комбинированных событий можно увеличить количество модификаций формулы Байеса, включающих свидетельства, а также то или иное количество их отрицаний. Например, наиболее полной группе комбинированных событий

и и Нк /"./ ^ и и Нк Ё\ соответствует (с учетом отсутствия нормирующего делителя) модификация формула; =1 А"=1 ; =1 лы Байеса

Р(Нк\~) - Р(Н к) ПЁ^^^

где элементарное событие в виде свидетельства Е\ е II II / "/ является одним из элементов указанного множе-

о При отсутствии отрицаний свидетельств, то есть при Ё\ = // е и /"./,

^ Р(Н\Е) Р(Нк) Р(Е,\Нк)

Е Р(Нк) Р(Е\Нк) к - 1

Таким образом, модификация формулы Байеса, предназначенная для определения сравниваемых по степени возможности условных вероятностей гипотез при одиночных несовместимых свидетельствах выглядит следующим образом. В числителе содержится нормируемая вероятность одного из комбинированных несовместных событий, об-110 разующих полную группу, выраженную в виде произведения априорных вероятностей, а в знаменателе - сумма всех

нормируемых вероятностей. При этом соблюдается принцип сохранения отношений вероятностей - и получаемый результат является правильным.

Вероятности гипотез при одиночных совместимых свидетельствах. Формулы Байеса традиционно применяются для определения сравниваемых по степени возможности апостериорных условных вероятностей гипотез Нк (к = 1,...,п) при одном из нескольких рассматриваемых совместимых свидетельств ЕЛ (1 = 1,...,т). В частности (см.,

например, и ), при определении апостериорных условных вероятностей Р(Н 1Е^) и Р(Н 1 Е2) при каждом из двух совместимых свидетельств Е1 и Е2 употребляются формулы вида:

P(H 1) PE\H1) P(Hj) P(E2Hj) P(H J E1) = --1-и P(H J E 2) =--1-. (5)

I P(Hk) PE\Hk) I P(Hk) P(E2 Hk)

k = 1 k = 1 Необходимо учесть, что это еще один случай, когда формула Байеса неприменима. Причем в данном случае должны быть устранены два недостатка:

Проиллюстрированное нормирование вероятностей комбинированных событий некорректно, ввиду принадлежности разным полным группам рассматриваемых событий ;

В символических записях комбинированных событий HkEx и HkE2 не находит отражения тот факт, что учитываемые свидетельства E х и E 2 являются совместимыми.

Для устранения последнего недостатка может быть использована более развернутая запись комбинированных событий с учетом того, что совместимые свидетельства E1 и E2 в одних случаях могут быть несовместными, а в других совместными:

HkE1 = HkE1 E2 и HkE2 = HkE 1E2+HkE1 E2, где E1 и E 2 являются свидетельствами, противоположными E1 и E 2.

Очевидно, что в таких случаях произведение событий Hk E1E2 учитывается дважды. Кроме того, оно может быть учтено еще раз отдельно, однако этого не происходит. Дело в том, что в рассматриваемой ситуации на оцениваемую обстановку влияют три вероятных несовместимых комбинированных события: HkE1E2, HkE 1E2 и

Hk E1E2. При этом для лица, принимающего решение, представляет интерес оценка по степени возможности лишь

двух несовместимых комбинированных событий: HkE1 E2 и HkE 1E2, что соответствует рассмотрению только g

одиночных свидетельств. ¡Ц

Таким образом, при построении модификации формулы Байеса для определения апостериорных условных ве- ¡^

роятностей гипотез при одиночных совместимых свидетельствах необходимо исходить из следующего. Лицо, прини- ^

мающее решение, интересует, какое именно элементарное событие, представленное тем или иным свидетельством из

числа рассматриваемых, реально произошло в конкретных условиях. Если происходит другое элементарное событие в К

виде одиночного свидетельства, требуется пересмотр решения, обусловленного результатами сравнительной оценки н

апостериорных условных вероятностей гипотез с непременным учетом других условий, влияющих на реальную об- щ

становку. 3

Введем следующее обозначение: HkE- для одного (и только одного) несовместимого комбинированного со- ^

бытия, состоящего в том, что из m > 1 рассматриваемых элементарных событий Ei (i = 1,...,m) совместно с гипотезой «

Hk произошло одно элементарное событие Ex и не произошли другие элементарные события. се"

В наиболее простом случае рассматриваются два одиночных несовместимых свидетельства. Если подтвер-

ждается одно из них, условная вероятность свидетельства в общем виде выражается формулой л

P(Hk E-) = P(Ei\Hk) -P(EjE^Hk) = P(Ei\Hk) -P(M^Hk)P(M^Hk) , i = 1, -2 (6) g

В справедливости формулы можно наглядно убедиться (рис. 1).

Рис. 1. Геометрическая интерпретация вычисления Р(Нк Е-) при / = 1,...,2 При условно независимых свидетельствах

Р(К1К2\Нк) = р(Е\Нк)Р(Е2\Нк),

поэтому с учетом (6)

Р(Нк Е-) = РЕ Нк) - Р(Е1 Нк) Р(Е21Нк) , = 1,.,2. (7)

Аналогично вероятность Р(НкЕ-) одного из трех (/ = 1,...,3) несовместимых событий НкЕ^ выражается формулой

Например, при i = 1:

p(HkEl) = P(Ei\Hk)-[ S P(Ei\Hk)P(Ej\Hk) ] + P(EiE2E3Hk)

p(HkE-) = P(E7|Hk)- P(E]E^Hk)- P(E7EjHk) + P(E]E2E3\Hk)

Справедливость данной формулы наглядно подтверждает геометрическая интерпретация, представленная на

Рис. 2. Геометрическая интерпретация вычисления Р(Нк Е-) при / = 1,...,3

Методом математической индукции можно доказать общую формулу для вероятности Р(Нк Е-) при любом количестве свидетельств е, 0=1,...,т):

Р(НкЕ-) = Р(Е,Нк)- т РЕ\Нк) Р(Е]\Нк) + 1 Р(Е\Нк) Р(Е]\Нк) Р(Е^Нк) +■■■ + (-1)

] = 1(] * 0 ],1 * 1

Используя теорему умножения вероятностей, запишем условную вероятность Р(НкЕ~-) в двух формах:

^ из которых следует, что

P(Hk E -) = P(H k) P(E-|Hk) = P(E-) P(Hk

E-)= P(HkE-) "" P(E-)

С использованием формулы полной вероятности P(Ei) = S P(H£) P(Ei Hk) получается, что

Е-) = Р(НкЕТ)

2 Р(НкЕ-) к = 1

Подставив в полученную формулу выражения для Р(НкЕ-) в виде правой части (8), получим окончательный вид формулы для определения апостериорных условных вероятностей гипотез Н^ (к = 1,.. .,п) при одном из нескольких рассматриваемых несовместимых одиночных свидетельств: (Е ^ \Нк)

Р(Нк)[Р(Е,\Нк) - 2 Р(Е,\Нк) Р(Ер к) +...+ (-1)т-1 Р(П Р(Ерк)] Р(Н, Е~) =-] = 1(] * ■----(9)

к 1 п т т т

2 Р(Н к) 2 [Р(Е,\Н к) - 2 Р(ЕгНк) Р(Е^Нк) + ...+ (-1)т-1 Р(П Р (Ер к)]

к=1 , = 1 } = 1(} *,) ■! =1

Сравнительные оценки. Рассматриваются довольно простые, но наглядные примеры, ограничивающиеся анализом вычисляемых апостериорных условных вероятностей одной из двух гипотез при двух одиночных свидетельствах. 1. Вероятности гипотез при несовместимых одиночных свидетельствах. Сравним результаты, получаемые с применением формул Байеса (2) и (3), на примере двух свидетельств Л. = Л и Л. = Л при исходных данных:

Р(Н1 = 0,7; Р(Н2) = 0,3; Р(Л| Н^ = 0,1; Р(Л\н 1) = 0,9; Р(Л\Н2) = 0,6; Р(Л\Н2) = 0,4. В рассматриваемых примерах с гипотезой Н1 традиционные формулы (2) и (3) приводят к следующим результатам:

Р(Н.) Р(А\Но 0 07

Р(Н, Л) =-- 11 = - = 0,28,

2 Р(Н к) Р(А\Нк) к = 1

Р(Н Л Р(А\Н 1) 0 63

Р(Н, Л) =-- 11 = - = 0,84,

2 Р(Нк) Р(А\Нк) к = 1

ормирующих делит Р(Н 1 Л) = Р(Н^ Р(Л\Нр = 0,07; Р(Н^ А) = Р(Н1) Р(л|Н^ = 0,63. 1ения предлагаемых формул отно:

Р<Н)Р(АНА-Р(А|Н1) _ 0,07

а при предлагаемых формулах (4), не имеющих нормирующих делителей: «и

Таким образом, в случае применения предлагаемых формул отношение нормируемых вероятностей равно от- й ношению нормированных вероятностей: К

гт ж Р(Н 1) Р(А\Н 1) А11 |

При использовании известных формул при таком же отношении -;-=-= 0,11 нормируемых веро- н

Р(Н 1) Р(А\Н 1) «§

ятностей, указанных в числителях, отношение получаемых нормированных вероятностей: 2

Р(Н 1) Р(А\Н 1) Р(А\Н 1) 0,63

Р(Н1 Л) = 0,28 Р(Н 1 Л) = 0,84

То есть принцип сохранения отношений вероятностей не соблюдается, и получаются неверные результаты. При этом £

в случае применения известных формул значение относительного отклонения отношения (11) апостериорных услов- и ных вероятностей гипотез от корректных результатов (10) оказывается весьма существенным, так как составляет

°,33 - °,П х 100 = 242%.. I

2. Вероятности гипотез при совместимых одиночных свидетельствах. Сравним результаты, получаемые с приме- д нением формул Байеса (5) и построенной корректной модификации (9), используя следующие исходные данные: ^

Р(Н1 = 0,7; Р(Н2) = 0,3; Р(Е1Н1) = 0,4; Р(Е2Н1) = 0,8; Р(Е1\Н2) = 0,7; Р(Е^Н2) = 0,2. 113

В рассматриваемых примерах с гипотезой H 2 в случае использования традиционных формул (5):

P(H 2) P(E1 H 2) Q, 21

P(H 2 E1) =-2-!-2- = - = Q,429,

I p(Hk) p(El Hk) k = 1

P(H 2) P(E 2 H 2) Q,Q6

P(H 2 E 2) =-2-- = - = 0,097.

I P(Hk) P(E 2 Hk) k = 1

В случае же применения предлагаемой формулы (9) с учетом (7) P(H

P(H2) 0,168

E.) ----- 0,291,

Z P(Hk) Z "

P(H2) 0,018

E0) ----- 0,031.

Z P(Hk) Z k - 1 i - 1

При использовании предлагаемых корректных формул, ввиду одинаковых знаменателей, отношение P(H2) -

Нормируемых вероятностей, указываемых в числителях, равно отношению

P(H2)

нормированных вероятностей:

То есть принцип сохранения отношений вероятностей соблюдается.

Однако в случае применения известных формул при отношении указанных в числителях нормируемых вероятностей

Р(Н 2) Р(Е1\Н 2) _ 0,21 _3 5 Р(Н 2)Р(Е 2 Н 2) 0,06 ,

отношение нормированных вероятностей:

Р(Н 2 = 0.429 = 4,423. (13)

Р(Н 2 \е2) 0,097

То есть принцип сохранения отношений вероятностей, как и прежде, не соблюдается. При этом в случае применения известных формул значение относительного отклонения отношения (13) апостериорных условных вероятностей гипотез от корректных результатов (12) также оказывается весьма существенным:

9,387 4,423 х 100 = 52,9%.

Заключение. Анализ построения конкретных формульных соотношений, реализующих формулу Байеса и ее модификации, предлагаемые для решения практических задач, позволяют утверждать следующее. Полная группа сравнивае-2 мых по степени возможности комбинированных событий может выбираться субъективно лицом, принимающим решение. Данный выбор основывается на учитываемых объективных исходных данных, характерных для типовой об-й становки (конкретные виды и количество элементарных событий - оцениваемых гипотез и свидетельств). Представ--о ляет практический интерес субъективный выбор других вариантов полной группы сравниваемых по степени возмож-

ности комбинированных событий - таким образом обеспечивается существенное разнообразие формульных соотношений при построении нетрадиционных вариантов модификаций формулы Байеса. На этом, в свою очередь, может ^ основываться совершенствование математического обеспечения программной реализации, а также расширение области применения новых формульных соотношений для решения прикладных задач.

Библиографический список

1. Gnedenko, B. V. An elementary introduction to the theory of probability / B. V. Gnedenko, A. Ya. Khinchin. - 114 New York: Dover Publications, 1962. - 144 р.

2. Вентцель, Е. С. Теория вероятностей / Е. С. Вентцель. - 10-е изд., стер. - Москва: Высшая школа, 2006. - 575 с.

3. Андронов. А. М., Теория вероятностей и математическая статистика / А. М. Андронов, Е. А. Копытов, Л. Я. Гринглаз. - Санкт-Петербург: Питер, 2004. - 481 с.

4. Змитрович, А. И. Интеллектуальные информационные системы / А. И. Змитрович. - Минск: ТетраСи-стемс, 1997. - 496 с.

5. Черноруцкий, И. Г. Методы принятия решений / И. Г. Черноруцкий. - Санкт-Петербург: БХВ-Петербург, 2005. - 416 с.

6. Naylor, C.-M. Build Your Own Expert System / C.-M. Naylor. - Chichester: John Wiley & Sons, 1987. - 289 p.

7. Романов, В. П. Интеллектуальные информационные системы в экономике / В. П. Романов. - 2-е изд., стер.

Москва: Экзамен, 2007. - 496 с.

8. Экономическая эффективность и конкурентоспособность / Д. Ю. Муромцев [и др.]. - Тамбов: Изд-во Тамб. гос. техн. ун-та, 2007.- 96 с.

9. Долгов, А. И. Корректные модификации формулы Байеса для параллельного программирования / А. И. Долгов // Суперкомпьютерные технологии: мат-лы 3-й всерос. науч-техн. конф. - Ростов-на-Дону. - 2014.- Т. 1 - С. 122-126.

10. Долгов, А. И. О корректности модификаций формулы Байеса / А. И. Долгов // Вестник Дон. гос. техн. ун-та.

2014. - Т. 14, № 3 (78). - С. 13-20.

1. Gnedenko, B.V., Khinchin, A.Ya. An elementary introduction to the theory of probability. New York: Dover Publications, 1962, 144 р.

2. Ventsel, E.S. Teoriya veroyatnostey. 10th ed., reimpr. Moscow: Vysshaya shkola, 2006, 575 p. (in Russian).

3. Andronov, А.М., Kopytov, E.A., Gringlaz, L.Y. Teoriya veroyatnostey i matematicheskaya statistika. St.Petersburg: Piter, 2004, 481 p. (in Russian).

4. Zmitrovich, А.1. Intellektual"nye informatsionnye sistemy. Minsk: TetraSistems, 1997, 496 p. (in Russian).

5. Chernorutskiy, I.G. Metody prinyatiya resheniy. St.Petersburg: BKhV-Peterburg, 2005, 416 p. (in Russian).

6. Naylor, C.-M. Build Your Own Expert System. Chichester: John Wiley & Sons, 1987, 289 p.

7. Romanov, V.P. Intellektual"nye informatsionnye sistemy v ekonomike. 2nd ed., reimpr. Moscow: Ekzamen, 2007, 496 p. (in Russian).

8. Muromtsev, D.Y., et al. Ekonomicheskaya effektivnost" i konkurentosposobnost". Tambov: Izd-vo Tamb. gos. tekhn. un-ta, 2007, 96 p. (in Russian). IB

9. Dolgov, А1. Korrektnye modifikatsii formuly Bayesa dlya parallel"nogo programmirovaniya. Superkomp"yuternye tekhnologii: mat-ly 3-y vseros. nauch-tekhn. konf. Rostov-on-Don, 2014, vol. 1, pp. 122-126 (in Russian). ^

10. Dolgov, А1. O korrektnosti modifikatsiy formuly Bayesa. ^ Vestnik of DSTU, 2014, vol. 14, no. 3 (78), pp. 13-20 (in Russian). *

При выводе формулы полной вероятности предполагалось, что вероятности гипотез известны до опыта. Формула Байеса позволяет производить переоценку первоначальных гипотез в свете новой информации, состоящей в том, что событие произошло. Поэтому формулу Байеса называют формулой уточнения гипотез.

Теорема (Формула Байеса). Если событие может происходить только с одной из гипотез
, которые образуют полную группу событий, то вероятность гипотез при условии, что событие произошло, вычисляется по формуле

,
.

Доказательство.

Формула Байеса или байесовский подход к оценке гипотез играет важную роль в экономике, т.к. дает возможность корректировать управленческие решения, оценки неизвестных параметров распределения изучаемых признаков в статистическом анализе и.т.п.

Пример. Электролампы изготовляются на двух заводах. Первый завод производит 60% общего количества электроламп, второй – 40%. Продукция первого завода содержит 70% стандартных ламп, второго – 80%. В магазин поступает продукция обоих заводов. Лампочка купленная в магазине оказалась стандартной. Найти вероятность того, что лампа изготовлена на первом заводе.

Запишем условие задачи, вводя соответствующие обозначения.

Дано: событие состоит в том, что лампа стандартная.

Гипотеза
состоит в том, что лампа изготовлена на первом заводе

Гипотеза
состоит в том, что лампа изготовлена на втором заводе

Найти
.

Решение.

5. Повторные независимые испытания. Формула Бернулли

Рассмотрим схему независимых испытаний или схему Бернулли , которая имеет важное научное значение и разнообразные практические применения.

Пусть производится независимых испытаний, в каждом из которых может произойти некоторое событие.

Определение. Испытания называются независимыми , если в каждом из них событие

, не зависящей от того появилось или не появилось событие
в других испытаниях.

Пример. На испытательный стенд поставлены 20 ламп накаливания, которые испытываются под нагрузкой в течении 1000 часов. Вероятность того, что лампа выдержит испытание, равна 0,8 и не зависит от того, что случилось с другими лампами.

В этом примере под испытанием понимается проверка лампы на ее способность выдержать нагрузку в течении 1000 часов. Поэтому число испытаний равно
. В каждом отдельном испытании возможны только два исхода:


Определение. Серия повторных независимых испытаний, в каждом из которых событие
наступает с одной и той же вероятностью
, не зависящей от номере испытания, называется
схемой Бернулли.

Вероятность противоположного события обозначают
, причем, как было доказано выше,

Теорема. В условиях схемы Бернулли вероятность того, что при независимых испытаниях событиепоявится
раз, определяется по формуле

где
число проведенных независимых испытаний;

число появлений события
;

вероятность наступления события
в отдельном испытании;

вероятность не наступления события
в отдельном испытании;